New BUFR Table C operator descriptor:

Table Reference:

2-07-
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Operator Name:

Increase scale, reference value and data width

Operator Definition:

For Table B elements which are not CCITT IA5 (character data), code tables, or flag tables:

1.  Add 
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 to the existing scale factor

2.  Multiply the existing reference value by 
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 bits to the existing bit width.  Note that this expression should be evaluated using integer division (ie. as an integer divided by integer 3) in order to ensure uniformity of results across various computer platforms.

Reword of Notes to BUFR Table C as follows:

(1)
The operations specified by operator descriptors 2 01, 2 02, 2 03, 2 04, and 2 07 remain defined until cancelled or until the end of the subset.

(4)
Nesting of operator descriptors must guarantee unambiguous interpretation.  In particular, operators defined within a set of replicated descriptors must be cancelled or completed within that set, and the 2 07 operator may not be nested within any of the 2 01, 2 02, and 2 03 operators, nor vice-versa.

The following discussion describes the derivation of the above formula for modifying the bit width:

If we assign:
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 = old scale factor
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 = new scale factor
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 = old reference value
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 = old bit width
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then the upper bound of actual numbers that we can encode (including the “missing” value) using the old and new values, respectively, are
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and
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Now, we want to ensure that
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and solving this inequality for 
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However, by definition, we also know that
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which, via substitution and simplification, allows us to rewrite the above inequality as
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Now, the above expression, being solely a function of the old bit width and the desired increase in scale, seems simple enough to implement in practice, and we can always round the result upward to the next largest integer (using, e.g. the “ceiling” function); therefore, at least at first glance, it appears that we have a workable formula for determining 
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.  However, the computed result will always be a real number, and therefore we must remain mindful of the issues relating to floating-point representation on computer systems.  Specifically, suppose that a particular pair of 
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 and 
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 values yielded a computed result that was very close to an integer.  Could we guarantee that we would always get the same result on any two computers running anywhere in the world?  As an example, suppose that, for a particular case, one computer obtained a result of 20.001 and another obtained a result of 19.999?  Then, applying the “ceiling” function in each case would yield two different values of 21 and 20, respectively, for 
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!  Obviously, we want to avoid such a situation at all costs in order to maintain the machine-independent nature of BUFR, so it seems then that we must resort to a different approach in order to guarantee that two computers running anywhere in the world for any particular pair of 
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 and 
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 values always obtain the same result for 
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.  In practice, this turns out to be more straightforward than one might think! 

To see this, first of all note that
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Also, note that, for any real and positive 
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, it is true that
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Therefore, for any 
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 and 
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, we can redefine the upper bound 
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 via the inequality
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Or, written another way,

(
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In other words, the required increase in bit width is always an upper bound to the increase in scale multiplied by the constant 
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.  A rather straightforward computer simulation lends further proof to this assertion while also showing that, for each increase of scale represented in the first column below, the corresponding increase of bit width in the second column is always sufficient for every possible 
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:

  1    4

  2    7

  3   10

  4   14

  5   17

  6   20

  7   24

  8   27

  9   30

10   34

The above table covers all but the most extreme cases and could be published as a look-up table within the BUFR regulations, thereby ensuring that any BUFR encoder/decoder programs running anywhere in the world always utilized the same increase in bit width for a given increase in scale.  However, there is an even better way which allows the above table to be extended for any theoretical increase of scale but which at the same time avoids any of the aforementioned pitfalls of differing floating-point representation schemes.  Namely, if we let 
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 represent the first column above, then, the second column is given by 
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 when computed using integer division.

New BUFR Table C operator descriptor:

Table Reference:

2-08-Y

Operator Name:

Change character data width

Operation Definition:

Y characters from CCITT International Alphabet #5 (representing Y * 8 bits in length) replace the specified data width given for each CCITT IA5 element in Table B.

Note that the maximum value for Y is 255 and the rewording of Note (1) to BUFR Table C as follows:

(1) The operations specified by operator descriptors 2 01, 2 02, 2 03, 2 04, 2 07, and 2 08 remain defined until cancelled or until the end of the subset.
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