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A METHODOLOGY FOR EVALUATING AND ESTIMATING PERFORMANCE METRICS

Harry R. Glahn

1. INTRODUCTION

One of the ways the National Weather Service (NWS) evaluates
its service is by computing metrics for a selected sample of
forecasts. For instance the Probability of Detection (POD),
False Alarm Ratio (FAR), and Critical Success Index (CSI) are
computed for a number of event forecasts such as tornadoes and
flash flood. Other metrics, or verification scores, are mean
absolute error (MAE) and root mean square error (RMSE) for
continuous variables such as temperature and wind speed. Mean
Square error (MSE) is computed for the probability of precipita-
tion (PoP) and is usually called the Brier Score. The lead time
in forecasting certain events is also computed, for example, for
tornadoes, flash flood, and hurricane landfall.

Generally, these metrics are summarized and presented in terms
of monthly, seasonal, or yearly values. Because most metrics are
quite dependent on time of year (and time of day if relevant),
tracking over time is done in a way that the seasonal variability
does not dominate and distract from the main issue at hand. For
instance, plotting MAEs for summer seasons will present a coher-
ent pattern that will indicate how the accuracy level is chang-
ing, if at all; scores for different seasons plotted on one chart
are harder to comprehend. In a like manner, yearly scores have
the seasonal influence masked, but provide a good overall picture
of the accuracy or skill of the forecasts to which the scores
pertain.

Even when the diurnal and seasonal aspects are not dealt with,
either by averaging them out, or dealing with one specific time
of day or year, there is considerable variability in scores due
to the variability of weather patterns, accuracy of the verifying
observations, and the variability in sampling that is done of the
total number of forecasts made. So, when an additional score is
added at the end of a year and it is above or below the previous
year's score, the question arises as to whether this difference
indicates an increase or decrease in skill, or whether it is just
due to "natural" variability.

Many metrics computed on NWS forecasts have been showing
improvement, most of then in fact. But improvement usually comes
in small doses. Major technological improvements, like the
introduction of Doppler radar and highly improved computing
resources, have occasioned improvements in some forecasts that

'Definitions of metrics are contained in the National Veri-
fication Plan (1982). "Scores" and "metrics" are used inter-
changeably in this paper.




are immediately apparent, but these situations are the exception
rather than the norm. So how do we judge when an improvement has
been made?

Metrics can be plotted for a number of years, and the trend, if
any, established from those scores. This usually does not
address whether or not forecasts for a particular year were
"better" or "worse," but rather whether or not there was general
improvement over a number of years. On the other hand, a "new"
score may be so different from the past scores as to indicate
real change in performance. Some method is needed to assist the
analyst in judging whether a change has occurred; that is, how
much different does the score have to be to indicate a change not
due to natural variability?

In addition to the need to assess past performance, the NWS
sets goals for metrics for a few years in advance. Such metrics
can only reasonably be established by analysis of past metrics.
So then, the question is how to analyze past data to project the
metrics into the future.

Usually, the number of past scores that can be used for predic-
tion is rather limited, and this limits the complexity of analy-
sis that can be legitimately done. For instance, the analysis of
a half dozen scores is basically limited to a one or two parame-
ter model. A one parameter model can be to project the mean (the
one parameter) of the past scores into the future--forecast no
change in the scores within the next few years. Or to account
for possible trend, a two parameter linear regression model is
appropriate. With the same data, confidence bands can be put on
the regression "line" at some desired level of significance such
that only the corresponding fraction of scores would fall outside
those bounds merely by chance, provided the assumptions on which
the model is based are true. Major departures can be judged
suspect. In the same manner, the regression line can be extended
into the near future, with the understanding that the line really
applies to the data analyzed and not to future data. However, in
the absence of better tools and the necessity to make such
projections, the regression analysis provides an appropriate
framework for making such estimates. As stated by Neter and
Wasserman (1974) (hereafter called NW), pp. 29-30, "Regression
analysis serves three major purposes: (1) description,

(2) control, and (3) prediction....The several purposes of
regression analysis frequently overlap in practice."

This paper presents a methodology that can be used in judging
whether changes have occurred and for making estimates for future
scores. This will be done in the framework of yearly scores, but
can be applied to other situations, for instance the probability
of detection of low ceiling heights at a particular hour in a
particular month, given sufficient data on which to base the
analysis. Examples are shown to illustrate the methodology.



2. LEAST SQUARES LINEAR REGRESSION
A. The Model

The two parameter linear regression model is very simple. It
relates a predictand (also called the dependent variable) Y to a
single predictor (also called the independent variable) X. It is
written:

Y = a + bX

The parameters a and b can be estimated in various ways and with
various assumptions, least squares being the most used. Y, is
treated as a random variable with constant variance at each value
of Xi’ regardless of the va%ue of Xi (NW, p. 31) and Xi is a
known constant (NW, p. 30). This equation applied to the data
points being analyzed yields an estimate of Y, called Y, such
that E(Yi = Y,)” over all n data points is a minimum; no other
line can say %hat.

The task is to find estimates of a and b. This is straightfor-
ward if the variance of all data points is the same. That is,
there is no reason to believe the variation in the measurement
(or computation) of Y., is different from the variation in the
measurement of Y,, etc. In contrast, the measurement error of Y
could depend on X, and the model would not strictly apply.

The solution of the so-called "normal" equations provides the
estimates of a and b (NW, p. 37):

ZX,Y,- EX,5Y./n

1
2 2
ZXj - (2X;)“/n

a =Y - bXx

where
Y = zY./n,
X = IX./n,

and the summations are over all n points.

“The model still applies when the Xi are random variables
(NW, p. 76).



B. Example

Lead times for tornadoes (the time between when the warning was
issued and the report of a tornado in the warned arga) are
available from post Doppler years 1995 through 2001°. These
have been summarized into yearly mean lead times for the entire
United States and are shown in the appendix. The linear regres-
sion model has been applied to these seven scores, and the
regression line

Y = -131.0988 + 0.0708X

is plotted in Fig. 1 and extended to 2006. The reduction of
variance (correlation coefficient r squared) is low, being only
0.053. One immediately wonders whether this is "significant."
The question more formally stated is, can the null hypothesis

h :r" =0
be rejected considering the alternative hypotheses

hlz r2 # 0?
The answer is resoundingly "No." The value to test with the
t-test is only 0.53, and it would require a value of 2.01 for the
null hypothesis to be rejected at the 90 percent level. Does
this mean the regression line cannot be used. Again the answer
is "No." It just means we are not very sure of the location of
the line, and the error bars (see below) will indicate that.

This line, as unsure as we are of it, is all we have unless we
want to use persistence (the most recent score) or the one
parameter model where the mean of the scores is projected for-
ward.

Also plotted in Fig. 1 are the confidence bands at a = 90, 95,
and 99 percent levels. These confidence levels were computed
according to (NW, p. 68):

Yh + t(1—a/2;n-2)s(Yh),
where
Yh = a + bXh

*Lead times for years prior to 1995 are available, but
cannot reasonably be used without a more complicated analysis.
For instance, piecewise regression (NW, p. 196), where the line
changes at some point, could be used, but would not help in
projecting the scores into the future.

“The significance test for the reduction of variance being
different from zero is equivalent to the test for the slope of
the line, b, being different from zero.
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X, is some specific value of X, t is the t distribution with n-2
degrees of freedom at the 1-a (two-tailed) level of 51gn1flcance,
and s(Yh) is the estimated standard deviation of Yh given by the
square root of the estimated variance

5 o 1 x, -®)?
s“(Y,) = MSE| - + g (NW, p. 67)
n (X - X)
h 8 .
By - Yi)2
MSE = (NW, p. 45)

n -2

where the MSE is the error (or residual or unexplained) sum of
squares divided by the degrees of freedom, n-2.

These confidence bands apply to the mean response. This may be
a bit confusing. If repeated samples could be taken at a given
X, call it X then the mean of those samples, the "expected"
value of Y, E(Y ) , would be expected to lie within the confidence
bounds at that point the quoted percent of the time. However, we
cannot take repeated samples of the yearly mean. To elaborate
further, the model assumes each yearly mean lead time is drawn
from a normally distributed sample of mean lead times, and the
mean of those means is what the error bars apply to. Note that
only one of the seven scores used in the analysis falls outside
the 95 percent bands, not an unreasonable expectation.

Note that there is a confidence interval for each value of X
that it is a minimum at X, and its width varies with X, - X.
These individual values when plotted about the regression line
and connected form hyperbolas [Draper and Smith, 1966, (hereafter
called DS) p. 23].

From the above discussion, it is apparent the confidence bounds
in Fig. 1 are not very useful for prediction because we cannot
make multlple measurements of yearly mean scores. Fortunately,
there is another way of computing bounds that is useful.

If a new score becomes available, (score, here, is the mean of
several measurements, but not a mean of several means), then the
estimator of the variance of the new score is

1 (X, - X)
= MSE| 1 + - + -
n T(X; - X)

2 A
- (Yh(new))

and the prediction bounds are computed in the manner given above

A

Y ey & t(l-a/2;n-2)s (Y

h(new))'
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This wider interval accounts for the fact the confidence limits
pertain to the mean response, while the prediction limits pertain
to a single new independent score (NW, pp. 69-73 give a particu-
larly good discussion; DS, pp. 23-24; Dixon and Massey 1983,

p. 217). Fig. 2 indicates the prediction bands for the same
regression line for an individual score.

A practical application of Fig. 2 is that if metric goals are
to be set for this variable, mean tornado lead time, the regres-
sion line provides a good estimate, provided there are no major
changes expected for the years for which the estimates are to be

made that would materially affect the scores. That is, there is
a small improvement indicated by the past scores, and this might
be expected to continue. This small improvement may have been
due to a number of small factors, and small factors, even differ-
ent ones, can be expected to improve the scores in the future.

The prediction bounds indicate that if a goal were to be set
above the upper 95 percent bound, then given the conditions
stated above, one would expect the new score to fall above the
bound at the new X only about 2.5 percent of the time. So if
stretch goals are set and they are outside the upper confidence
bound, then some dramatic change would likely be necessary to
influence the future scores.

If a new score falls outside the 95 percent bound, one can be
95 percent sure the change is not due to random fluctuation in
the scores. For instance, the "chance" component of the score
should not cause it to fall below the lower confidence band more
than 2.5 percent of the time.

3. WEIGHTED LEAST SQUARES LINEAR REGRESSION
A. The Model

The linear regression model discussed above is based on certain
assumptions. Basic is the assumption that Y. is treated as a
random variable with constant variance at eadh value of X.,
regardless of the value of X. (NW, p. 31). This essentiaily
means that if there were a rindom variable, tornado lead time,
with the same distribution as the observed tornado lead times,
and repeated random samples were taken at each of the X., then
the means of those samples would have the same variance.
Although we are not really dealing with a random variable--we
seldom are in meteorological analysis--the assumption seems
reasonable. At least we know of nothing much better as an
assumption. However, if we did know the sampling variability at
each Xi’ then we could use weighted least squares.

Estimates of a and b are then given by (Neter, et al., p. 419):

Zw.X.Y.- Zw.X.Zw,Y. /2w,
i7i7i 17177171 i

2 2
ZwiXi - (Zwixi) /Ewi



a = zw.Y./Sw.,- bw.X./Zw,
i1 i i7i i

and the w. should be the inverse of the variances of yearly
scores. &he trick is, what are the wi?

In this case, two things present themselves as possibilities.
First, the individual lead times are available (from which the
yearly means were computed). The variance of the means, oy,
could be estimated from the variance of the individual lead
times, and usually, according to the central limit theorem, this
should provide a good estimate. However, the distribution of the
individual lead times is highly non-normal, and the estimate of
Og = Oy /n may not be a good estimate.

The other possibility is that the weight would vary with the
number of cases on which each score was computed. This seems
reasonable, and follows the suggestion by Montgomery and Peck,
(1982, p. 99) who state, "In some problems, the weights may be
easily determined. For example, if the observation Y. is
actually an average of n, observations at X,, and if all original

; 1 g 2 ;
obsegvatlons have constant variance o¢“, then the variance of Yi
is o /ni, and we would choose the weights as wy =n;."

B. Example

Applying weighted least squares to the tornado lead time data
used above and using the number of cases as weights gives the
regression line:

Y = -197.9869 + 0.1043X

This line and the associated prediction bands are plotted in
Fig. 3. The prediction bands are plotted in the same manner as
above, where:

1 (X, - X
= MSE| 1 + - + S

2 A
= (Yh(new))

and Xw refers to the weighted X so that

s _ 5
Xw = ZwiX/Zwi.

It is interesting to note that the mean of X is different
than with unweighted least squares in addition to the mean of Y
being different.



MSE is calculated the same way as before with the Q estimated
from the weighted regression line:

S .2
i~ Y¥4)

MSE = — (NW, p. 45)

Confidence bands for weighted least squares may not be as sure
to contain the prescribed percentage of the data points if the
weights are considerably different for different points. For
instance, a point with a very small weight will not influence the
placement of the line or the confidence bands very much and might
lie outside the bands.

In a similar manner, with prediction, one would expect a new
point to have a weight of the same order of magnitude as the
weights used in the analysis for the prediction bands to apply.
This just means the new score should be of the same quality as
the scores on which the analysis was based.

This line and the line obtained with unweighted regression are
compared in Fig. 4. Since all n, are of the same order of
magnitude, there is no practical difference in the two regression
lines. Predictions made by one line would not vary much from
predictions made by the other even out to 5 years in advance.

The weighted regression line has a slightly larger slope primari-
ly because the relatively low 2001 score is only for a partial
year and the number of cases is smaller. Therefore, it had
relatively less effect than it did with the unweighted solution.

4. LOGISTIC FUNCTION
A. The Model

There are situations where a metric is limited in scope. For
instance, certain measurements are binary such as the forecasting
of an event like flash flood. Given the occurrence, it was
either forecast or not--a binary outcome. Means of the measure-
ments (detection or not) give the relative frequency of detection
and lie between 0 and 1. While each original measurement would
be at either y = 0 or y = 1, the means would lie somewhere
between, given repeated sampling at a given value of X (that is,
the scores would be aggregated by year, say).

Linear regression, either weighted or unweighted can be used to
estimate the relative frequency, or probability of detection POD,
although it is easy to visualize that a linear line would be a
poor fit, and projected forward in time could fall outside the
0-1 interval. A model appropriate for fitting such data is the
logit:

e(a + bX)

Y = :
1 + e(a + DbX)



According to Cox (1989, p.19), "It will turn out that in many
ways the most useful analogue for binary response data of the
linear model for normally distributed data is provided by the
linear logistic model."

This form can be used to solve for a and b with the original
data, Y being binary. However, when multiple measurements are
available at each X and none of the relative frequencies is 0 or
1, the transformation

Y

P = 1n

1 -9
"linearizes" the model, which then becomes
P = a + bX,

and a and b can be solved by regression (Montgomery and Peck,
Pp- 238-241).

It is obvious in this situation that the variance o2 is not
constant for all p. because the event is binary and ¢ is differ-
ent for the different values of relative frequency. Fgr the
linearized model when each n; is large, the value of o° is
estimated to be:

0 = 1/[n;B; (1 - B3)]

and the weights are therefore (Montgomery and Peck, pp. 239-240)
w, = n;p; (1 - py).

After solving for a and b, the estimates P can be transformed
back to the original space by.

o(a + bXy) e(Py)
Y., = = .

1 1 + e(a + bxi) 1+ e(Pi)

B. Example

No real data were readily available, so a dummy set, shown in
the appendix, was used. Both the unweighted liner least squares
regression and the weighted logit model were applied with all n;
equal, and the results are plotted in Figs. 5 and 6. This set GOf
data represents what might be probabilities of detection, possi-
bly of a winter storm 24 hours in advance. There is a good
linear relationship shown over the past few years, and if linear
regression were used to project into the future, impossible
values of over 100 percent would be reached. On the other hand,
the logit gives realistic results with error bars shown. The



error bars were computed with the transformed data according to
the weighted liner least squares regression model and transformed
back to the original metric space.

5. DISCUSSION

Generally, least squares regression is a good model for deter-
mining whether a new value of a metric is within what would be
expected by chance or whether it represents a possible real
improvement or deterioration in performance as measured by the
metric.

Many times the number of cases representlng each value of the
metric is large and does not vary much; in this case it matters
little whether weighted or unweighted least squares regression is
used.

When dealing with metrics which are relative frequencies, the
logit model can be used when the values are near (but not ex-
tremely near) 0 or 1. Within values of about 0.2 and 0.8. and
when the trend is small, the logit fit will be close to that for
regression. It is only when the "prediction line" will approach
0 or 1 does the logit need be used.

A major consideration in any analysis of this sort is to not
use data for which major abrupt changes have occurred. For
instance, the introduction of a new numerical model might make
such a change in the metric that a trend analysis would be
inappropriate until a few scores were available for the new
model. Also, observing practices could change, making the
verifying observations of such a different character that data
before and after the change should not be mixed.

There are instances where the metric is limited in scope other
than the binary event discussed above. For instance, MAE for
temperature forecasts may be quite low (good), and the recent
trend may have been downward, but this trend cannot be expected
to continue indefinitely. In such cases, projecting the last
metric or the mean of the last few may be the most reasonable
thing to do.

Another instance of limitation in scope is where the percent
improvement is calculated. A favorite metric for the probability
of precipitation is the improvement over climate. This will be
capped at 100 percent. However, generally the scores are not
close to 100 percent, and regression is adequate.

The software on which this paper is based is available from the
author.
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APPENDIX

The tornado mean lead time data used in this paper are given
below. The values for 2001 are not for a complete year.

Year Lead Time No. of Cases
(minutes)
1995 10.1010 1297
1996 9.6888 1221
1997 9.8813 1163
1998 10.9606 1522
1999 11.5133 1505
2000 10.0381 1155
2001 9.9847 851

The Dummy data on which the logit model was based is:

Year POD
1995 .60
1996 .70
1997 .65
1998 .75
1999 .85
2000 .87
2001 .90
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