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1. INTRODUCTION 
  

Ensemble forecasting systems are routinely 
run at many operational meteorological forecasting 
centers.  Ensembles provide useful forecast guid-
ance; however, near-surface weather element fore-
casts derived directly from ensembles typically con-
tain systematic biases.  Moreover, ensembles are 
often under-dispersive.  That is, too frequently the 
verifying observations fall outside the predicted enve-
lope.  Statistical post processing can improve the utili-
ty of ensembles for operational forecasters by correct-
ing these deficiencies.  Numerous post processing 
techniques have been proposed including Ensemble 
Dressing (Roulston and Smith 2003, Wang and Bish-
op 2005), Bayesian Model Averaging (BMA; Raftery 
et al. 2005, Wilson et al. 2007), Nonhomogenous 
Gaussian Regression (NGR; Gnieting et al. 2005, 
Wilks and Hamill 2007), and Ensemble Regression 
(Unger et al. 2009).  One of the earliest techniques, 
Model Output Statistics (MOS; Glahn and Lowery 
1972), has been used by the National Weather Ser-
vice’s (NWS) Meteorological Development Laboratory 
(MDL) for decades to statistically post process deter-
ministic numerical models.  Glahn, et al. (2009a), de-
veloped a MOS-based technique called Ensemble 
Kernel Density MOS (EKDMOS) which is applicable 
to ensemble forecasting systems.  EKDMOS gener-
ates a statistically reliable forecast cumulative density 
function (CDF) from the ensemble. 
 

An important component of probabilistic 
forecasting for continuous weather elements is de-
termining the expected skill of the ensemble-mean.  
Intuitively, the ensemble-mean should be less accu-
rate when the ensemble-members spread widely and 
more accurate when they tightly cluster around a so-
lution.  Specifying the correct spread is referred to as 
2

nd
 moment calibration.  The original EDKMOS tech-

nique outlined by Glahn, et al. (2009a) used an empir-
ically determined spread adjustment factor to calibrate 
the 2

nd
 moment.  The method produced statistically 

reliable results over a large number of cases. Howev-
er, the technique lacked station specificity.  More re-
cently MDL has improved EKDMOS by adapting a 
spread adjustment technique proposed by Grimit and 

Mass (2007).  Specifically, we develop spread-skill 
relationships which model the expected skill of the 
ensemble-mean as a linear function of the ensemble 
spread.  Several other studies have also used the 
Grimit and Mass (2007) adjustment technique.  
Kolczynski, et al. (2009) applied a technique called 
Linear Variance Calibration to model wind forecast 
uncertainty, and Eckel, et al. (2011) used a compara-
ble method to calibrate a global ensemble and assess 
forecast ambiguity.  
 

This paper provides a brief overview of 
EKDMOS and documents our recent improvement to 
the 2

nd
 moment calibration procedure.  We use our 

improved EKDMOS technique to generate probabilis-
tic forecast guidance from a global multi-model en-
semble and present verification results for 2-m tem-
perature, dewpoint, daytime maximum temperature, 
and nighttime minimum temperature.  
 
2. DATA 
 

We used numerical model output from the 
North American Ensemble Forecast System (NAEFS; 
Toth et al. 2005).  The NAEFS is a suite of 42 en-
semble-member forecasts combining the Canadian 
Meteorological Centre’s (CMC) Global Environment 
Multiscale (GEM) Model and NCEP’s Global Ensem-
ble Forecast System (GEFS).  The operational cen-
ters distribute a similar set of model outputs from their 
respective ensembles on the same 1x1 degree grid.  
The GEM and GEFS are each composed of a control 
run and 20 ensemble-members.   MDL maintains an 
archive of operational NAEFS forecasts from July 
2007 to present. 
 

Station-based observations were taken from 
an archive maintained by MDL.  A set of 2303 stations 
distributed throughout the conterminous United 
States, Canada, Alaska, Hawaii, and Puerto Rico was 
used for development and testing. 
  
3. THE EKDMOS TECHNIQUE 
 

We developed MOS equations using the en-
semble-means following Glahn, et al. (2009a). MOS 
uses forward screening multiple linear regression to 
relate numerical model predictors to verifying obser-
vations (i.e., predictands).  Typically model fields 
closely related to the predictand are chosen.  For ex-
ample, model 2-m temperature and geopotential 
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thicknesses are the most common predictors in MOS 
2-m temperature equations.  Harmonics such as the 
cosine and sine of the day of the year are also offered 
as predictors and are important in the later projec-
tions.  Forecasts were stratified into warm (April 1 – 
September 30) and cool (October 1 – March 31) sea-
sons.  We developed MOS equations for each projec-
tion, station, cycle, season, and forecast element.  
Separate equations were developed for the GEFS 
and GEM models.  We applied the equations to the 
ensemble-members within each ensemble forecasting 
system.  Kernel density fitting (Wilks 2006) was used 
to construct a probability density function (PDF) from 
the member forecasts.  We used a normal kernel with 
a standard deviation equal to the MOS equation pre-
dicted standard error.  The resulting PDF is our un-
calibrated EKDMOS forecast. 
  

To perform 2
nd

 moment calibration we creat-
ed spread-skill relationships that relate the ensemble-
member standard deviation to the ensemble-mean 
standard error.  This technique follows Grimit and 
Mass (2007).  We first post processed each ensem-
ble-member by applying either the GEFS or GEM-
based MOS equation.  Using the post processed 
members, for each forecast case i we calculated the 

ensemble-mean (���) using 
 

��� = �
�∑ �
����� ,  (1) 

 
where  is the number of ensemble-members and �
� 
is the ensemble-member k.  In addition, we calculated 
the ensemble-member standard deviation (�
) using 

 

�
 = ∑ �������		������
���

���� . (2) 

 
The cases were sorted by the ensemble-member 
standard deviation from lowest to highest and 
grouped into equal case count bins.  For each bin b 
we calculated the ensemble-mean standard error 
(��)	 and the bin-averaged ensemble-member stand-

ard deviation ������� following 

 

  �� = �∑ (������)��	∈	�
���� , (3) 

 
and 
 

  ����� = 1
!"∑ �#	#	∈	" .  (4) 

 
Here #	 ∈ " indicates summation over the cases within 
bin b, Nb is the bin case count, and oi is the verifying 
observation.  A linear regression line was fit to the 
derived data points providing a continuous function 
that relates the ensemble-mean standard error to the 
ensemble-member standard deviation.  Testing re-
vealed that approximately 100 cases per bin were 
required to develop a stable, monotonically increasing 
relationship.  Because we had limited data available 

for development, four bins were used.  To ensure 
reasonable relationships, we required the regression 
line slope parameter to be greater than 0. In addition, 
we used an F-test to determine if the slope parameter 
was statistically different from 0.  We required there to 
be less than a 25% probability that the slope was pos-
itive solely due to chance.  If either criterion was not 
met, we rejected the spread-skill relationship and 
substituted the standard error estimate from the origi-
nal MOS equation. 
 
 Figure 1 illustrates how spread-skill relation-
ships are developed.  The example is for the 72-hour 
2-m temperature forecast at the Baltimore-
Washington International Airport, KBWI.  The ensem-
ble-member standard deviation is plotted on the ab-
scissa while the error of the ensemble-mean is plotted 
on the ordinate.  Each dot represents one dependent 
forecast case.  In Figure 1a the vertical dashed lines 
are the breakpoints used to bin cases.  We calculated 
the ensemble-mean standard error for the cases with-
in each bin.  The value for each bin is plotted as a 
black square in Figure 1b.  The black line is the 
spread-skill relationship fit to the derived data points. 
  
4. VERIFICATION RESULTS 
 

In order to increase our independent sample 
size we performed cross validation (see Wilks).  We 
developed MOS equations and spread-skill relation-
ships using two years of dependent data and verified 
using the remaining independent year.  All results 
presented below are for three years of cool season 
data covering the period 1 October 2007 – 31 March 
2010.  The verification statistics were computed using 
the full list of 2303 stations. 
   

Mean absolute error (MAE) plots are shown 
in Figures 2 through 5 for 2-m temperature, dewpoint, 
daytime maximum temperature, and nighttime mini-
mum temperature.  In each figure, the MAE of the 
NAEFS EKDMOS mean forecast is plotted as the red 
line.  For comparison we include the MAE for the op-
erational GFS MOS (blue lines).  The GFS MOS fore-
casts are taken from an archive maintained by MDL.  
The GFS MOS underwent a major update in March 
2010, which is not reflected in our verification sample.  
We include the GFS MOS to approximately gauge the 
expected increase in skill afforded by NAEFS EKD-
MOS.  For 2-m temperature and dewpoint, the 
NAEFS EKDMOS MAE is lower than the GFS MOS at 
all projections except at the 6-h and 9-h forecasts.  
The GFS MOS utilizes a persistence predictor at the 
earliest projections.  Due to the delayed availability of 
the NAEFS data, EKDMOS does not use a persis-
tence predictor, likely explaining the difference in ac-
curacy.  Examining the MAE plots for daytime maxi-
mum temperature and nighttime minimum tempera-
ture we see that NAEFS EKDMOS is more accurate.  
At the 8-day lead time, NAEFS EKDMOS provides 
approximately one day increase in accuracy.  For 
example, the NAEFS EKDMOS 198-hour daytime 
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maximum temperature forecast is almost as accurate 
as the 174-hour GFS MOS forecast. 
 

To assess statistical reliability, probability in-
tegral transform (PIT) histograms are shown in      
Figure 6.  An in-depth explanation of PIT histograms 
and their interpretation is provided by Hamill (2001) 
and Glahn, et al. (2009a).  Mound-shaped PITs indi-
cate over-dispersion while U-shaped PITs indicate 
under-dispersion.  Ideally, the PIT should be uniformly 
flat with the height of each bin equal to 1.  We see 
that for all forecast elements considered, the PITs are 
generally flat indicating the NAEFS EKDMOS fore-
casts are statistically reliable. 
   

Compared to our original methodology, the 
spread-skill calibration technique produces greater 
day-to-day variability in the predicted spread.  In Fig-
ure 7, we show histograms of the predicted 80% cred-
ible interval (CI) width for the 102-h 2-m temperature 
forecast at the Baltimore-Washington International 
Airport.  Here we have normalized the 80% CI width 
by dividing by the mean value.  The values along the 
abscissa can be interpreted as the percent difference 
from the average predicted spread.  For example, a 
value of 1.2 implies the 80% CI is 20% wider than 
average, while a value 0.8 indicates the 80% CI is 
20% narrower.  Results for our original calibration 
technique, shown in Figure 7b, are labeled Spread 
Adjustment.   Comparing spread-skill with spread 
adjustment, we see than the spread-skill histogram is 
much broader.  Examining the full set of stations, we 
found that spread-skill produced greater spread vari-
ability at 92% of the stations and that on average the 
degree of spread variability doubled.  Results for oth-
er weather elements and projections were similar. 
 

This increased day-to-day spread variability 
does not degrade statistical reliability significantly.  To 
show this, we constructed PIT histograms using fore-
casts stratified by spread.  At each station, we sorted 
forecasts by the 80% CI width and grouped them into 
three equal case-count spread categories.  Using 
station-pooled results, we constructed PITs for each 
spread category.  An example is presented in       
Figure 8 for the 102-hour 2-m temperature forecast.  
The PITS are generally flat, indicating statistical relia-
bility. 
 
5. DISCUSIONS AND CONCLUSIONS 
 

MDL has used the EKDMOS technique to 
generate accurate and statistically reliable forecast 
guidance from the NAEFS.  MDL has adapted EKD-
MOS to use the 2

nd
 moment calibration technique 

proposed by Grimit and Mass (2007).  The method 
improves the day-to-day spread variability while main-
taining statistical reliability.  This will increase the val-
ue of NAEFS EKDMOS forecast for end users. 
 

NAEFS EKDMOS should be operationally 
implementation on the NCEP Central Computing Sys-

tem (CCS) by the end of the 2012 fiscal year.  The 
implementation will use spread-skill calibration and 
include forecasts for 2-m temperature, dewpoint, day-
time maximum temperature, and nighttime minimum 
temperature.  Forecasts will be generated at stations 
and analyzed to 2.5 km grids covering the CONUS 
and Alaska using the BCDG technique (Glahn et al., 
2009b). Experimental NAEFS EKDMOS products are 
currently hosted online at 
http://www.mdl.nws.noaa.gov/~naefs_ekdmos.  The 
website provides forecast images, meteograms for 
select METAR stations, and gridded forecasts in a 
GRIB2 format.  Once implemented, operational grid-
ded NAEFS EKDMOS guidance will be generated 
twice daily from the 0000 and 1200 UTC runs of the 
NAEFS.  Gridded forecast will be made publically 
available via the NWS’s National Digital Guidance 
Database (NDGD).  Further details regarding the 
NDGD can be found online 
(http://www.nws.noaa.gov/ndgd/index.shtml). 
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Fig. 1: Scatter plots illustrating spread-skill relationship development.  The ensemble-member standard deviation is 
plotted along the abscissa while the error of the ensemble-mean is plotted along the ordinate.  Each dot represents 
one forecast case.  The vertical dashed lines (Fig. 1a) are the breakpoints used to bin cases.  In Figure 1b the black 
squares are the bin-calculated values for the ensemble-mean standard error while the black line is the spread-skill 
relationship.  
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Fig. 2: Cool season 2-m temperature MAE plotted by projection.

 
Fig. 3: Same as Figure 2 but for dewpoint. 
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Fig. 4:. Same as Figure 2 but for daytime maximum temperature. 

 
Fig. 5: Same as Figure 2 but for nighttime minimum temperature. 
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Fig. 6: PIT histograms for 2-m temperature (a-c), dewpoint (d-f), daytime maximum temperature (g-i) and nighttime 
minimum temperature (j-l). 
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Fig. 7: Histograms of the predicted 80% credible interval (CI) width comparing spread-skill (a) with our original 2

nd
 

moment calibration called Spread Adjustment (b).  The figures are for the cool season 102-h 2-m temperature fore-
cast at the Baltimore-Washington International Airport. 

 
Fig. 8: PIT histograms for 102-h 2-m temperature.  Forecasts have been stratified into low (a), medium (b), and high 
(c) spread cases using station-specific thresholds.  The PITs were created using the full set of 2303 stations. 
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