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A PRELIMINARY VIEW OF STORM SURGES
BEFORE AND AFTER STORM MOD!FICATIONS

C. P. Jelesnianski
and
A. D. Taylor

Storm surges are computed numerically with a two-
dimensional dynamic surge model, before and after storm
modifications. The driving forces used to generate the
surges are derived from wind profiles, used here in two
different forms. First, a continuous analytic form is
used. Second, tabulated wind values from Doppler wind
observations measured at 12,000 ft altitude are used;
these winds are incremented at 1 n mile intervals from
the storm's center.

The resulting computations imply that the peak surge
on the open coast is not always monotonically related to
the parameter, maximum wind speed of the storm. In fact,
with the analytic wind profile, the peak surge may increase
or decrease according to the manner in which the other
storm parameters are affected by the change in maximum
wind speed. From the tabulated wind profiles, it is found
that the shape of the wind profile has an effect on the
peak surge and is separate from the effects of maximum
wind, pressure drop, and size scale.

1. INTRODUCTION

't may be possible to internally modify tropical storms through
external activity, such as cloud seeding (Simpson et al., 1963; Gentry,
1370; Rosenthal, 1971). Storms are also naturally modified when moving
within surrounding meteorological systems, across sea-surface temperature
gradients, etc. For such cases, the newly modified storm may give a
significantly different storm surge. We are interested in this problem
because the storm surge can--and at times does--account for a significant
fraction of the total storm damage.

The storm's driving forces form a circulating mound of water that
can precede, lag, or remain directly under the storm as it traverses
the Continental Shelf. The position of this mound, relative to the
storm's center, depends on the storm's motion and size, as well as the
geometry of the ocean bottom. Eventually, the mound impinges on the
shoreline to form abnormal tides or surges on the open coast. To
investigate this phenomena as it relates to storm modification, we make



use of a dynamic storm model (Jelesnianski, 1967). This model was
redesigned to accept general forces, and in particular, observed driving
forces given in tabulated form.

Our primary goal here is not to give a definitive ves/no answer
to the practical question, '"Do surges increase/decrease with storm
modification?" The issue is too complicated for simple answers. To
tackle the question in a preliminary manner, we isolate our system and
consider surge changes due solely to storm modification. To do this,
we fix--throughout this paper--the bathymetry of the Continental Shelf,
the vector storm motion, and latitude of landfall. In this way, we
avoid complications and external effects due to varying shelf bathymetry,
changes in landfall, varying storm motion, etc. We point out, however,
these complications and external effects can have greater significance
for surge changes than meteorological modifications. Our results in
this study are very specialized and only touch on the total problem.

Two types of meteorological input data are used to compute storm
surges on the open coast. The first uses an analytic wind profile
(Jelesnianski, 1966) to form driving forces, and we call this a model
wind profile. We modify the profile in some analytic fashion, compute
the surges with our dynamic surge model - both before and after storm
modification - and then compare the resulting surges on the open coast.
There are objections here inasmuch as the model profile, and modifica-
tions, may not sufficiently represent natural conditions. We offer
the results from this approach as a guide for the contemplation of surge
changes. The principal lesson derived is that changes in only one
parameter, such as the maximum wind, are insufficient to determine
whether the storm surge will increase or decrease. A decrease in maximum
wind may be associated with either a decrease in surge or an increase,
or neither, depending on how the other storm parameters are changed.

Second, we use in-situ observations of wind to form driving forces,
both before and after storm modification, and compute coastal storm
surges. This is still an idealized situation, however, because the very
few available observations were made at 12,000 ft altitude. At this
time, we do not know how to represent surface forces solely from high=
altitude wind observations. We bypass this impasse simply by trans-
lating the observed winds to the surface. We offer the results of this
approach as a guide for contemplating surge changes. Our principal
finding here is that the shape of the wind profile has much to say about
the magnitude of the peak surge, even apart from the maximum wind
parameter.

2. SOME PERTINENT DEFINITIONS

There are two driving forces that generate surges on the sea surface:

surface wind stress and pressure gradient force; these act parallel and
normal to the sea surface, respectively. Their relative importance
depends on the water depth and changes from point to point. We formulate
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the driving forces from analytic/observed wind-speed profiles, appendix

C. Each driving force, acting alone on the sea, generates its own surges.
Our dynamic surge model is a linear one; hence, the surges due to wind

and pressure can be superimposed without interaction.

The assemblage of surges on the coast, for any given time, is
called a coastal storm surge profile. The assemblage of highest water
at each point on the coast, for all time, is called a coastal storm
surge envelope. The highest surge on the envelope is called the peak

surge.

In our dynamic surge model the local surface wind-stress driving
force varies with the local wind speed squared. One might then expect the
peak surge on the profile to be directly and monotonically related to
the maximum wind. |s this true? Yes and no, depending on circumstances.
In part, the circumstances are size of storms, the distribution of the
wind about the storm, pressure drop of storm, basin bathymetry, and
vector storm motion. To simplify our presentation, we will constrain
all our storms to traverse a standard basin with a standard vector storm
motion. These are defined as:

Standard basin: A basin with a straightline coast, whose depth
profile seaward is one-dimensional, and whose bathymetry is a linear
slope (Jelesnianski, 1972). This can be viewed as a hypothetical mean
basin for all of the U. S. coasts.

Standard storm motion: A storm motion of 15 mph and a track
normal to the coast from sea to land. The storm must landfall at some
coastal point; we arbitrarily set this at latitude 30°N. This motion
can be viewed as a hypothetical mean motion for all storms.

With these constraints, we concern ourselves with storm conditions
and modifications, exclusively.

3. SURGES FROM ANALYTICALLY DEFINED DRIVING FORCES

To study storm surges, it is not enough to specify the maximum wind
speed of a tropical storm. Additional meteorological parameters such as
pressure drop and storm size are indeed helpful but still insufficient.
We need to know the distribution of wind from the storm center, i.e.,
the wind profile.

In our tropical storm model (Jelesnianski, 1966), we make a bold but
most convenient assumption: the sea surface wind profiles for stationary
tropical storms are similar. This is illustrated in figure 1 where we
have nondimensionalized our wind! speed W, and the distance 'r' from

10ur wind speed W, and the maximum wind, Wy, at distance R from the storm
center are a special kind of average wind. For a discussion of winds,
see appendix A.
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Figure 1. Nondimensional wind and pressure Rrof?lgs from center of a
stationary model storm. The wind profile is szmzlqr for aZZ.stormg.
The pressure profile is similar only if R, the radius of maximum wind,
is ceonstant. 'r' is radial distance from the storm center.

storm center; we call this our model wind profile. Certainly, normalized
wind profiles for natural storms do not always parallel figure 1; this

is readily obvious for a point vortex storm or the oppos ite extreme R,
but for the limited range used in this report, 10<R<50 miles, this may

be an adequate approximation. It would be nice |f the pressure profiles
were also similar for all storms, but this is not to be, because of the
changing curvature of the pressure isobars at distance R from the storm
center, i.e., the larger R the less curvature. For constant R, the
nondimensionalized pressure profiles in figure 1 are nearly similar for
any AP = Pyo- P, (where P o is ambient air pressure surrounding the storm
and P, is the storm's central pressure) ; we say nearly similar because
surface friction and Coriolis weakly enter the picture, and these do

not have such similarities.

The ratio AP/R is a rough measure of the pressure gradient. For
storm surge generation with our model storm, it is of some significance
whether a change in pressure gradient is due to a change in AP with R
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unchanged, or to a change in R with AP unchanged; this is so even if
the same change in pressure gradient is produced. The reason for this
distinction is that, at constant R, the scale size of the storm is
unchanged while the intensity is altered.

Now, if the driving forces are similar for sets of storms, that is
constant R, then the sets of generated surge profiles? are also similar;
this assumes basin and vector storm motion to be the same.

Consider the special case where R is held constant, but maximum wind
is reduced; AP must then become smaller, see figure 1 and appendix A.
For this case, the three normalized profiles, wind, pressure, and surge,
remain similar; i.e., no changes occur in horizontal scale size. Hence,

a reduction in maximum wind means a reduction of values throughout the
three profiles, and in particular a reduction of the peak surge.

Consider now the special case where AP is held constant but maximum
wind is reduced; the scale size R must then become larger, see figure 1.
Contrary to the previous case, the pressure profiles are no longer
similar when R is altered (fig. 1), and for the pressure gradient force
our similarity argument breaks down. We can no longer argue for a reduc-
tion of peak surge with a reduction of maximum wind.

Now in most cases with tropical storms, the generated surge due to
wind stress is much greater than from pressure gradient force. Hence,
with similar wind profiles, we are inclined to assume that surge pro-
files will remain similar; i.e., the surge decreases/increases directly
with maximum wind. Things are not this simple, however; what we need
to keep in mind is that a scale change in storm size requires a
compensating change in basin size® and storm motion to maintain
similarity of surge profiles. But, because our basin and storm motion
have been fixed, we expect changes in the surge profile with changes in
storm size. How does the surge react? To answer this question, we use
the dynamic surge model and storm model to compute figure 2.

Figure 2--which assumes a model wind profile--is a nomogram that
relates R, AP, Wy, and SS; size of storm, pressure drop, maximum wind,
and peak storm surge. We need only to specify any two of these
parameters, such as R and AP to use it, but note that the peak surge SS
is valid only in a standard basin for a standard storm motion. An

2We have not portrayed any surge profile in figure 1. The omission is
purposeful. The profile is a function of time, and as such it builds
and abates with time as the storm traverses the Continental Shelf.

3By basin size we mean a length, derived by dividing a typical depth in
the ocean by the slope of the Continental Shelf; hence, to change the
size we would need to consider a change in the slope of the Continental
Shelf.
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examination of figure 2 shows that it is impossible to change Wy without
changing AP or R, or both; however, a specified change in WM does not in
itself tell which one is changed or by how much. This
importance as we show with an example.
of AP = 80 mb and R = 18 miles. The nomogram gives immediately

Wy = 120 mph and SS = 16.8 ft. Now suppose the wind speed is decreased
by 10 mph; what is the final state? We can reach a final state by many

paths, but consider only two of them; let either AP or R stay constant
as the winds decrease. These states are:

is of crucial
Suppose we have an initial state

AP cnst R cnst
Initial Final Final
AP 80 80 68
R 18 31 18
Wy 120 110 110
SS 16.8 18.3 14.3

Note the increase in surge with decrease in maximum wind in the middle
column.

Suppose now the initial state is the middle column above and the
wind is again decreased by 10 mph to a final state. Then,

AP cnst R cnst
Initial Final Final
AP 80 80 67
R 31 43 31
Wy 110 100 100
SS 18.3 17.1 15.5

So, if you want to decrease the peak surge by decreasing the maximum
it is better if R-~-rather than AP--remains constant. Merely
decreasing the maximum wind is not sufficient in itself to decrease the
peak surge. It is even possible, under some circumstances, to decrease
the peak surge by increasing the maximum wind.

wind,




For moving storms, and with AP constant, the peak surge can vary
ei ther way when R is modified. Here an increase in R generates larger
surges until a critical R is reached; thereafter the peak surge decreases.
The argument is reversed by decreasing R (appendix B). We mention a
significant by-product; with increasing R the coast length affected by
significant surges is also increased, and especially so if the peak surge
also increases. Similarly, the potential for inland inundation is
greater with increasing storm size.

Of course, the above dynamics do not occur in nature with such
simplicity. These are only convenient modeling techniques that appear
to explain observed surges reasonably well. Other storm models may
explain the observed surges as well or better. |n particular, the
assumption of a similar wind profile for all tropical storms is
questionable.

Remember that storms do not jump at once from initial to final
state; it takes time to do this. Conceivably, the storm surge could be
vitiated if landfall occurs during the transient period between storm
states, i.e., while the driving forces on the sea--following the
storm--are undergoing accelerative changes.

In addition to wind and pressure profiles, there is also the inflow
angle profile, i.e., the inflow angle of wind on concentric circles about
the storm center. This information is necessary to determine direction
of surface stress. We have not shown any profiles for this angle because
they have no simple similarities such as the wind and pressure profiles.
Large changes in the inflow angles give small changes in the computed
surge, all other things being the same. The inflow angle is strongly
dependent on friction coefficients, whose numerical values vary slowly
with storm parameters. it is possible that for huge changes in meteoro-
logical Parameters, the total surge change that results when using
figure 2 is improper because of poorly designed friction coefficients;
however, for the small changes in storm parameters with which we are
dealing, the surge change due solely to changing inflow angles is at most
minor. That is, large or global changes in figure 2 might be suspect,
but small or local changes are qualitatively correct.

L. SURGES COMPUTED WITH IN-SITU WIND OBSERVATIONS

Some of the most detailed wind observations were made inside
Hurricane Debbie, August 1969. We were supplied with wind speed profiles,
tabulated at 1 n mile intervals, figure 3 (we have interpolated at 1
statute mile intervals for convenience) , before and after seeding
operations by Project STORMFURY.

Wind speed profiles in the figure are Doppler wind observations--
measured along rays from the storm center outward--from aircraft at
12,000 ft. The observations were in the most vigorous storm quadrant;
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Figure 3. Profiles of observed wind speed and computed inflow angle,

pressure, and open coast surge for Hurricane Debbie (1969) before and
after storm modifications. The surge is the envelope of high water on
the coast for all times. The numbers on the pressure profiles are
pressure drop in millibars.

i.e., in the region of maximum winds for a moving storm; they do not
represent a stationary storm. The one-quadrant observations were

heavily accented along the core of the storm; i.e., about 60 miles from
the storm center. We make no comments on the dynamics of the storm

modi fications, the noise levels, the smoothing techniques used to derive
the profile, etc.; we merely accept the winds as given.

The given observations extend 230 statute miles from the storm
center; we extend them farther by allowing the wind to decay exponen-
tially. We also pretend the winds on the sea surface are the same as

INFLOW ANGLE

PRESSURE P-P,



these (12,000 ft), and that they are for a stationary storm. Now, before
driving forces can be input into the dynamic surge model, we need somehow
to derive the inflow angle of the wind on concentric circles about the
storm center, the pressure profile, and hence the pressure gradient. A
method for doing this (using tabulated wind data) is given in appendix C;
the results are shown jn figure 3. Note the gyrations along the profiles
of inflow angle that correspond to secondary maxima on the wind profiles;
we assume that a given wind profile results from a balance of forces, and
the inflow angle is calculated from that balance. Hence, a complicated
wind profile means a complicated inflow angle profile,

The surges computed by the dynamic surge model, using the gi ven
observed winds to determine driving forces, are also shown in figure 3.
We display there the envelope of high-waters on the coast; i.e., the
envelope of all surge profiles against time. The peak surge, computed
before and after storm modification, decreased by 45 percent on the 18th
of August and 17 percent on the 20th of August; the computed pressure
drop decreased by 13 percent and 20 percent, respectively. From the
chaotic appearance of the wind profiles, it is difficult to directly
ascertain changes in storm sizes.

Referring to figure 2, we can easily decrease the surge by 17 per-
cent with our similarity wind profile, the pressure drops for Debbie on
the 20th of August, and changing storm size. Now, in no case can we
decrease the surge by 45 percent with our similarity wind profile, the
Pressure drops for Debbie on the 18th of August, and changing storm size;
this means that the large decrease in surge is due in part to wind
profiles that are dissimilar when normalized.

If the shape or distribution of measured wind profiles differs sub-
stantially from our model wind profile, but all other things remain the
same, then the computed surges from both profiles can also differ sub-

stantially. It is desirable, therefore, to have on hand some assessments
on how surges will change if the shape of the wind profile changes. To

investigate this situation, at least qualitatively, we form a standard
for comparing measured wind profiles against the model wind profile. We

measured profile in a least-squares sense. That is, we choose the
parameters of maximum wind speed and radius of maximum wind for our model
wind profile so that--on the average--the squares of the differences
between the model wind and measured wind“ are minimized. This is com-
parable with selecting a square that 'best fits' a circle on the grounds
of having equal area or equal perimeter, even though it may not appear
to resemble the circle very well.

“We recall that the observations extend only to 200 n miles (230 st
miles) from the storm center, and the best fit process was limited to
this distance.
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If the observed wind profile is a complicated shape and form, then
the best fit model wind profile could be distinctively different (i.e., a
poor representation). |t does not follow that the pressure and inflow
angle profiles--for the best fit wind profile--will also be the best fit;
in fact, the pressure drop for the best fit storm may be substantially
di fferent from that of the observed storm.

Since model wind profiles are similar in shape, a change of scale
in both distance and speed can cause them to lie on top of each other;
the same changes in scale on measured wind profiles will then allow a
comparison. The result is that we can graph the observed and best fit
model storms--before and after seeding--as if they had the same size and
intensity, then the remaining discrepancies highlight the different
distribution of wind speeds.

I f we normalize the observed wind profiles in accordance with the
best fit model® profile, we get a comparison of the shape of the
observed wind profiles before and after seeding. Figure &4 illustrates
such fits, and we immediately see two types of conditions:

1. The observed profile is peaked relative to the best fit
model profile.

2. The observed profile is flattened relative to the best fit
model profile.

In addition to being peaked, the profiles are also skewed; i.e., in
the absence of skew, a flattened profile should have shoulders on either
side of the model profile, and otherwise for a peaked profile. There-
fore, we see two more conditions:

V. The observed profile is skewed to the right of the best
fit model profile.

2. The observed profile is skewed to the left of the best
fit model profile.

i

Based on empirical computations, we can say tentatively that:

A. The computed peak surge from a peaked wind profile skewed
to the right is larger than from the best fit model profile.

B. The computed peak surge from a flattened wind profile
skewed to the left is smaller than from the best fit model
profile.

SThe shape of the model profile is only a guess, based on subjective
experience. We await with pleasure a determination for an alternative
shape of the wind profile, based on observations or scientific studies.
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1.3+ HURRICANE DEBBIE

PEAKED AND SKEWED TO THE RIGHT

FLATTENED AND SKEWED TO THE LEFT 18 AUGUST 1969
~—— BEFORE SEEDING
—~— AFTER SEEDING
--~8EST FIT MODEL STORM

FLATTENED AND SKEWED TO THE RIGHT 20 AUGUST 1969
~— BEFORE SEEDING

~—— AFTER SEEDING
-=—BEST FIT MODEL STORM

Figure 4. 4 comparison of observed and model wind profiles for Hurriecane
Debbie. The profiles ave normalized with respect to the model wind
profile. The model profile is a best fit in least-squares sense.

These qualitatjve Statements are rough and of a subjective nature;
we consider them useful only if the peaked, flattened, or skewed condi-
tion is substantial. In figure 4%, the normalized observed wind profile--
before seeding on the 18th of August-~-is highly peaked and highly skewed
to the right, and its computed peak surge is substantially larger than

6In all the surge computations, both driving forces--pressure gradient
force and wind stress--were used.
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that resulting from the best fit model storm (see A above); the
normalized observed wind profile--after seeding on the 18th of August--
is slightly flattened and slightly skewed to the left, and its computed
peak surge is only slightly smaller than that which results with the best
fit model storm (see B above). The remaining two wind profiles--before
and after seeding on the 20th of August--have some peaked and skewed
conditions in the normalized observed wind profiles, but they do not act
in concert for A and B above; the computed surges do not differ substan-
tially from those computed with the best fit model storm; see table 1.

Table 1. Computed surges for Hurricane Debbie
data and a best fit model storm.

AP R Wi 53
(mb) (st miles) (mph) (ft)

18 August 1969

observed 41.0 27.0 107.5 14.3
before modification {

best fit 46 .8 25.9 84.3 10.4

observed 35.8 ? ? 7.9
after modification

best fit 37.3 33.8 70.6 8.2

20 August 1969

observed 66.1 ? ? 15.1
before modification

best fit 69.2 20.0 109.5 14.9

observed 52.7 25.0 97.0 12.5
after modification {

best fit 56 .2 28.6 91.9 12.6

In figure L, note that the first observed wind profile (18 August,
before seeding) is the only one that differs substantially from the best
fit model profile; in table 1, note that only for this observed profile
do the peak surge? and pressure drop substantially differ from the best
fit model profile. This suggests that if observed wind profiles do not
grossly differ from our best fit model wind profile, then the computed
surges using either profile may be representative.

7The pressures and surges were computed, not observed.
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two driving forces that generate

We remind the reader that there are
the wind stress. The wind stress

surges: the pressure gradient force and

accounts for most of the surge activity in the region of peak surge, and
the surge is insensitive to mild changes in inflow angles. Hence, we
require a good representation of the wind profile. On the other hand, a
poor representation of the pressure and inflow angle profiles will, at
most, only mildly affect the surges. For these reasons, we compared
surges from the best fit model with observed wind profiles, regardless of
the end disposition of the other profiles. We remark on the following:

1. In operational forecasting of surges, the wind profile is
unknown, but we do know something about the pressure
drop and storm size. If a model wind profile is described by
these two parameters and it adequately represents the real wind
profile, then it is possible to distribute the winds from the
storm center outwards. Note: the model wind profile here is at
the mercy of the measured parameters. If the real wind profile
di ffers radically from the mode] wind profile, then our surge
forecast can be seriously in error; see the wind profiles
(pressure drops and storm sizes), figure 4 and table 1, for
Hurricane Debbie on 18 August before seeding.

s due to storm modifications, the wind
profiles were known® but the pressure and inflow arigles were

not specified for these computations. A balance of forces--
using the observed winds as input data--was then used to
determine the unspecified profiles (appendix C). Thus, the
unspecified profiles (including pressure drop) were at the mercy

of the observed wind profile.

2. |n assessing surge change

3, In best fit model wind versus observed wind profiles, the
resulting pressures and inflow angles for each wind profile can
di ffer (this can occur even with good representation between the
two wind profiles). In itself this is not serious, for the
wind stress accounts for the lion's share of surges in the
region of peak surge. Note: the best fit model wind profile
here is at the mercy of the observed wind profile.

5. SUMMARY AND CONCLUSIONS

temptation to use the maximum wind speed

One must stoutly resist the
ct measure of peak surge

of a tropical storm as the sole and dire
generated by the storm. When dealing with storm modifications, the

resulting change in maximum wind speed alone is not a particularly good
indicator for change in peak storm surge; it is even possible for the

§At least at aircraft altitude, for one storm quadrant or a limited

portion of it.
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sense of the change in peak surge to be contrary to the change of maximum
wind. At least one additional parameter is imperative.

It may also prove unfruitful to consider changes in several meteoro-
logical parameters as indicators of storm surge activity. We point out
that the form of the wind profile, i.e., the distribution of wind from
the storm center, is highly important for surge generation; however, it
is possible to have a rich variety of wind speed profiles with the same
meteorological parameters. |If it were possible to specify the form of
the wind profile with only a few simple meteorological parameters, then
it would be possible to specify surge changes due solely to modifications
of these parameters. This was done in the main report as a special
case when we assumed that all wind profiles are similar.

At present we cannot give hard and fast rules on surge modification
due solely to storm modifications. This is so because the form of wind
profiles is not universally known. Using particular observed wind
profiles, such as for Hurricane Debbie (1969), to generate surges in our
dynamic model is interesting and instructive, but inconclusive for general
considerations; it does point out, however, the importance of the form
or shape of wind profiles.

The tendency to concentrate on meteorology for indicators of storm
surge activity, while ignoring oceanic shelf conditions, can be dangerous.
| f specific oceanic shelf conditions were to be considered, then a rich
harvest of intriguing possibilities for storm surge amelioration is
possible. In this study, constant-slope basins were used, but there are
many areas along the U. S. Continental Shelves where the ocean depth
topography changes dramatically in two dimensions. In these areas,
peak surge on the coast will also vary dramatically.

{f a storm increases in size so that location of peak surge changes,
and if the shelf topography varies, then the newly positioned peak surge
can change drastically in height. An example of such an area lies
between Gulfport, Mississippi, and Pensacola, Florida. |In this area,
Hurricane Camille (1969), which was an ordinary sized storm for the Gulf
of Mexico, gave a record surge in the Gulfport area; however, if the
storm had been larger with maximum winds farther from its center, the
peak surge would have occurred in a steeper shelf area where a surge has
a smaller potential. Thus, shelf topography may dominate the surge
changes expected from wind profile alterations. Note that the opposite
effect occurs for storms landing in an area where the shelf topography
becomes shallower with distance from the storm center; here, we would
want a smaller sized storm with the maximum winds closer to the center.

When the storm size changes, there are other and much more subtie
effects that can also ameliorate the storm surge. For example, a storm
moving alongshore generates surges whose heights depend on distance of
track from shore, relative to storm size. Now, if the track remains the
same but relative distance changes due to changing storm size, then the
surge heights will also change. We refrain from discussing many other
such oceanographic effects.
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The maximum surface wind of storms is not used directly as a param-

APPENDIX A - MAXIMUM SURFACE WIND

eter in our model because it is implicitly defined by AP and R.
distressingly difficult parameter to measure or observe, even its
definition is open to question.

For a stationary storm, repeat stationary, we relate, for our storm
model (Jelesnianski, 1966), the maximum wind Wy with AP and R, figure Al.
Our maximum wind is an idealized® wind on a circle of radius R from the
This relation is used in the dynamic surge model where we
limit R to 10<R<50 miles; i.e., we do not want to consider point vortex
storms nor overly large storms compared with the average Continental
For constant R, WM varies as (AP)!/ 2 and for constant AP

storm center.

Shelf width.

SWe assume that a continuous, well-behaved, wind profile results from a
balance of forces, appendix C, and on this wind profile there exists

one--and only one--maximum wind.
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Figure A1. 4 nomogram relating three storm parameters for a stationary
storm; the maximum wind Wy, the radius of maximum wind R, and the
pressure drop of the storm AP. The storm center is at latitude 30°.

RADIUS OF MAX WINDS (MILES)
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it varies linearly as mR+b, where m and b are functions of AP; these are
rough estimates.

WM is significantly smaller than the Yfastest mile" wind currently

;
employed by weather forecasters. This is shown in figure A2 where we n
compare WM against an empirically derived curve of "fastest mile'" wind n
(Holliday, 1969). our WM , plotted for latitude 30° only, varies n
with R as well as pressure. m
These two winds represent different attitudes with respect to
weather and surge forecasting. |In weather, we are interested in a w
selected, local maximum wind for a measure of potential damage on small ir
structures; thus, it is an end product. [n surge forecasting, we view in
the wind as a means to an end, i.e., the generated surge. Except for sh
very small effects, the local surge is_not directly dependent on the to
locaLJQLQg. For surge generation, we view our winds 'W' as long-time
averages, that is winds without nojse (i.e., gusts); for any ray from the
mo
th
be
60 70 80 90 100 110 120 130 140 150 160 170 180 san
T T T T T T T T T T T T gus
wit
9I0 100 how
wav
920 490 win
& 930 80
= 7o) s toi
a .
& 940 470 3 P
) E IS ¢
(‘g o have
Y 950 60 & take
a
s 960} 450 &
<C D
= 40 &
EE 9701~ . a
Wi ac
Q a
980+ 30
990} -120
o
1 1 1 i 1 I | | 1 ! 1 | tha
60 70 80 90 100 110 120 130 140 150 160 170 180 cor
WIND (MPH) the
tive
Figure A2. A comparison of the model storm maximum wind 'W' from 11
figure A1 against an empirically derived 'fastest mile wind' Holl
(Holliday, 1969). Para
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storm center the wind profile is the same’®’. Our model winds are neither
spot measurements or measurements from small sampling periods, nor are
they represented by Doppler winds measured on selected rays from the
storm center. The observed winds for Hurricane Debbie--discussed in the
main report, (fig. 3)--appear to have a noisy structure (gusts?); we do
not permit such detail in our model wind profile and assume that the

noisy structure of the winds end up as viscosity terms in equations of
motion.

A '"mile" wind measures the average speed for a mile of air passing
wind measuring devices. The averaging time for this "mile' wind is an
inverse function of the wind; as such it guarantees that gusty winds,
imbedded in mile length parcels of air and properly oriented, will

shorten the averaging time. Hence, the 'fastest mile' wind is biased
towards gusty wind speeds.

A wind speed measuring device fixed on the ground and sampling a
moving storm can sample most any wind speed depending on the sampling
time. For an extremely long sampling time, the average wind speed would
be some number for, say, the general circulation; for an extremely short
sampling time, the '"fastest' average would be some number for extreme
gusts. The ''"fastest mile'' wind is an admirable compromise when dealing
with the small structures, or even short gravity waves such as sea surf;
however, it can be an erroneous picture when dealing with long gravity
waves such as storm surges. Our Wy can be significantly smaller than
winds averaged along selected segments of the storm, and faster on others.

The '"'"fastest mile' winds of figure A2 are for moving, not stationary,
storms. We remark that 1.3 Wy, for R=20 miles, closely parallels the
empirically derived curvell up to a pressure drop of about 65 mb; this

is a rough measure of the difference for the two winds. Note that we

have not proved any direct connection between these winds. 1t would

take a far more complete analysis to do that.

10In the model, we incorporate simple corrections for storm motions so
that the upper maximum wind becomes Wm+: the storm speed. Storm motion
corrections are designed to become negligible at large distances from
the storm center. |t turns out that the generated surge is not sensi-
tive to this correction except when storm speed approaches our Wy

11Holliday (fig. A2) does not use the radius of maximum winds as a
parameter.
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APPENDIX B - CRITICAL STORM S|ZES AND VECTOR STORM MOTIONS

A detailed mathematical analysis of the critical R in figure 2 would
require more effort than seems justified for this report. What follows
is a brief examination of some factors involved. We wish to emphas ize
that in deriving figure 2, a standard basin and a standard vector storm

motion were used; hence, 1t does not apply to other basins or directions
of storm motion.

We consider here three hypotheses that might plausibly explain the
critical R of about 30 miles in figure 2.

1. The total available force on the sea--from wind stress—-is a
max imum when R is about 30 miles.

2. A critical situation occurs when storm diameter and shelf
width are the same.

3. The transient state of surge dynamics in a fixed basin is such
that vector storm motion plays a significant role.

We can compute, with our simple storm model, the total available
force on the sea caused by wind stress; this is done with the wind
profile of figure 1, plus the linear relation of Wy to R in figure Al.
The maximum integrated force occurs with R lying between 70 to 90 miles,
depending on pressure drop. This is only an approximation since inflow
angle is ignored, the storm is stationary in an infinite sea, only
magnitude and not direction of the force is considered, and the near
linear relation from figure Al is open to question with large storms.
The first possibility is not a good choice to determine critical R.
Empirical tests, with basins and storm motion other than standard, give
di fferent critical R's.

At first glance, it appears that the second possibility is a good
choice because critical storm diameter and shelf width used in the
model are nearly the same, but this turns out to be only coincidence.
Empirical tests show that the peak surge computed by our model does not
strongly depend on shel f width, providing the shelf width is at
least greater than R and that the shelf-edge depth approaches or exceeds
an Ekman depth. This is fortuitous, otherwise shel f width would be
yet another parameter to contend with in forecasting surges, and one
whose effects would not be well established.

A special case can exist with a very shallow basin of near constant
depth and abutting a near vertical Continental Slope. Ffor this case,
energy transmissions across the shelf edge is discontinuous. Hence, a
relation between storm diameter and shelf width could conceivably be a
factor for critical R. We note that large storms at all times have
a large part of their strong winds outside the shelf, but small storms-==
for some finite time duration--concentrate most of their strength on a
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small area of the shelf. Now, if the energy for surge formation is
produced while the storm is on the shel f, we expect an optimum R when
total force exerted on the sea surface of the shel f is a maximum; i.e.,
when storm diameter and shelf width are identical.

Natural basins, however, are rarely shallow at the shelf edge; they
are in fact deep. By deep, we mean compared with an Ekman's depth of
about 300 ft, where downward diffusion of momentum from wind stress is
small. This means that energy is transmitted across the shelf without
reflections at its edge.

Empirical tests with the model show that the third possibility can
account for the critical R. For a given basin, and a given storm size--
no matter the fixed parameter AP--there is a critical vector storm
motion that generates the highest peak surge on the coast. This is
illustrated in figure B1 for three different storm sizes moving across a
standard basin. For each ray or direction of storm motion, there is a
critical storm speed that gives the highest peak surge (for storms
traveling from land to sea and near normal to the coast, the critical

speed is zero). Now note that the critical speed of most rays increases’?

with an increase in storm size; we assume this increase is continuous.
The critical speed is a function of R; similarly, critical R turns out
to be a function of storm speed, as seen in figure 2 which shows a
critical R for constant storm speed.

A stationary storm eventually sets up an equilibrium sea surface

whose coastal surges are highest when the storm center is on, or close to,

the shore. An infinitely fast moving storm exerts no stress on the sea
and hence no storm surges; because it takes time to di ffuse momentum
downward into the sea when generated by surface stress. We cannot assume
that the stationary storm sets up the highest possible surge, for we
would then ignore the dynamics of surge generated by a moving storm. The
momentum field in the sea consists of two parts: a divergence part and

a vorticity part. The divergence produces surges directly and travels
more or less with the storm; the vorticity part in our linear model,
however, cannot produce surges or travel until it is converted to
divergence. This can de done slowly by the Coriolis effect or more
quickly by the sloping depths of the Continental Shelf. Consequently,
the faster the storm travels, the greater the spread of the two effects.
If the storm is not moving too fast, then the potential surge generation
is greatest when land-falling storms move toward shallow water (from sea
to land) and least when moving to deeper depths (from land to sea); this
is why we have a zero critical speed for storms moving from land to sea.

We remark that the basin is a factor for critical vector storm

motion. |f the slope of the depth profile is increased (decreased) then
critical speed increases (decreases).

22

e
CC

Cc

fec
St



is
when

s i.ee,

ge; they
th of
ess is
1ithout

ity can
-m size--
Srm

5 1S
across a
re is a
rms
‘itical
increases12
-inuous .
irns out
Js a

surface

or close to,

n the sea
mentum

pnot assume
for we
storm. The

. part and

| travels
model ,

i to

- more

:quently,

vo effects.
generation
r (from sea
sea); this
and to sea.

storm
eased) then

APPENDIX C - COMPUTING PRESSURE AND INFLOW ANGLE PROFILES
FROM A GIVEN WIND PROFILE

Our storm surge model requires the fields of forces on the sea
surface generated by tropical storms. The required information includes
the wind speed and direction, and the surface pressure as a function of
position. Since this massive quantity of data is generally unobtainable,
we have adopted the policy of constructing a model wind profile and
computing the pressure and wind direction for a stationary, symmetric
storm; we then apply a correction term to the wind speed to approximate
the asymmetry due to storm motion. Details are given in Jelesnianski

(1966) .

The pressure, wind speed, and wind direction for the stationary
symmetric storm are not quite arbitrarily chosen. The pressure and
direction are determined from the wind speed by a balancing of forces.
The equations for this are presented in (Jelesnianski, 1966) and are
reproduced here. They are adapted from Myers and Malkin (1961):

2
1dp _Ksvo v (1)
Py dr  sing dr
1 dp cosp = fV + !j-cos¢-vz 99-sincb + k. V2. (2)
pg dr r dr n

Here p_ is the surface atmospheric density considered constant, p(r)
is the pressure, ¢(r) the inflow angle, or angle toward the storm center,
V(r) is the wind speed; all are functions of r, the distance from the
storm center., The terms ks and kn are empirically determined coefficients,
representing stress coefficients in the directions opposite and to the
right of the wind, respectively. These stresses are given by the
coefficients times the square of the wind speed, and f denotes the
Coriolis parameter.

Equations (1) and (2) are to be solved for p(r) and ¢(r), but the
form of the wind speedl3 profile V(r) must be known first. For the storm
surge forecasting program SPLASH (1972), currently in use, the profile

2Rr
r R%r?2

V(r) = Vv (3)

131n this appendix, V corresponds to W, and V. corresponds to Wy as
given in the main text.
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The term, R, the 'radius of max winds," is the

has been adopted.
= V(R) is the

distance from the center at which V(r) is greatest, and V,
value of that maximum wind speed.

0f course, many other profiles may be chosen. Equation (3) has the

property of increasing wind speed from r=0 to a maximum at r=R, then
decreasing back to zero. The same would hold if the term E%BLE were
+r

replaced by a function of itself, say

2Rr yvq 1 2Rr + 1 1- R2+r2
REI?E) or log (R2+r2 ) or exp {*EE:—}.

In this report, we replace V(r) by an interpolated function between
tabulated values of wind speed, obtained from Project STORMFURY experi-
ments. For reasons of stability, which we discuss later, it is important
to use an interpolation scheme that is continuously differentiable, which
rules out the common Mewtonian or Lagrangian schemes; all favor some such

scheme as the spline curve.

The procedure for solving (1) and (2) for p(r) and ¢(r), with a
given wind profile has been a Runge-Kutta type integration scheme applied
to a transformation of (1) and (2). The transformation reduced problems
of instability associated with a straightforward application of the
Runge-Kutta method. This procedure was stable for the wind profiles
given by (3) and for commonly encountered values of Vi, R, and latitude,
but not for extreme values. That is, it was only marginally stable.

Because STORMFURY experimental data deviates from the profile given
by (3), it became clear that another, more stable computation technique
would be required. An investigation was then opened to determine the
reason stability was so difficult a task, and to design a new and more

stable method.

Ironically, we found that a leading contributor to the instabiljty
of the Runge-Kutta integrating scheme was the extreme stability of the
differential equations used. The extreme nature of the stability arises
from the equations being singular at the storm center.

We proceed by eliminating the pressure from (1) and (2) and write
u = cos¢ to obtain

(4)
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The right side of (4) will be called the "slope function' F(u,r).
We shall consider a strip in the u,r plane 0 < r <, 0 <u<1. IfF
is continuous in the interior of the strip, then by the geometric theory
of differential equations (Lefschetz, 1962), through every point uy, ry,
in the interior of the strip passes one of the solutions u(r) of (4).
At r = r,, that solution has the slope du - F(uo, ro). Thus, a graphic
method of solving (4) is to place short lines of slope F(u,, r,) through
each point, then, guided by these slopes, trace the curves. Indeed,
numerical methods of solving such equations can be regarded as highly
precise applications of this procedure.

In all of our subsequent discussion, we assume the wind profile
v(r) to be a continuously differentiable function, that vanishes at
r=0 and is bounded. Examining (4), we find that, for u=0, F(u,r)<0,
while for fixed r>0, F(u,r)>+ © as u>1. With fixed u, 0 <u<1,
Flu,r)> =~ © as r>0,

The point u=1, r=0, which is the intersection of two lines on which
F=+oand F=-», respectively, is of great interest. Because of the
continuity of F in the interior, it follows that in any neighborhood of
this point, however small, the siope function F takes on all values
between + @ and - «@. Such a point is an essential singularity; at this
point, various principles of differential equations no longer apply.

Again because of the continuity of F, there is a smooth curve
u = ug(r) on which F(u,r)=0. It extends from r=0 to r==, and, for rTo,
0 < up(r) < 1. As r>0, clearly up(r)>1. We call this curvel* the zero-
slope curve. When traced to the right, all solutions of (k) slope upward
when they are above the zero-slope curve; they slope downward when they
are below it, and they are parallel to the r-axis when they cross the
zero-slope curve.

In figure C1, we show the strip 0 <u <1, 0 <r <= for the wind
profile of (3) with R = 30 miles, V. = 100 miles/hr, and latitude is 30°N.
The vertical scale has been stretched to emphasize the details for u ~ 1.
Some of the solution curves for (4) have been traced in this figure.

In examining figure C1, remember that the entire strip is covered
with solution curves, and only some of them are traced here. The theory

of differential equations provides that solution curves satisfy these
rules:

(1) Through every point where F is continuously differentiable
passes one, and only one, solution curve.

N some instances, other curves exist where F(u,r)=0. These are closed
urves, containing a finite portion of the u,r plane not touching any

ortion of the boundary of our slope. They may safely be ignored in
hat follows.
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Figure C1. Some solutions to (4] inside the strip 0 Sr L=, 0 Zu <1,
The curve labeled 'S' is the

where u 18 the cosine of inflow angle.
only curve lying entire
'boundary condition at «'.
with parameters at V = 100 mph, R
vertical scale has been

ip, and hence satisfies the
ds to an analytie wind profile
= 30 miles, latitude = 30°N. The
stretched to clarify detatls at the top of

ly inside the str

the strip.

(2)

(3)

This solution curve may be extended to the left and to the

right indefinitely, or until it encounters one of the
boundaries of the strip, i.e., no solution curve ends in the

middle of the strip.
or even meet, at any point where
F is continuous; any solution curve that starts between two

others remains between those two others. Furthermore, any two
distinct curves are separated at all times by some length,

however small.

No two solution curves Cross,
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The dashed curve in figure C1 is the zero-slope curve; as mentioned
earlier, above this curve all solution curves ascend when traced to the
right; below it, they descend to the right.

On further examination of figure C1, it becomes clear that, if any
two solution curves are traced to the left they quickly converge,
becoming so close as to be nearly indistinguishable. This illustrates
the high stability of the differential equation. Suppose, for example,
a method of tracing solution curves is used to follow the particular
curve marked S, and at r=200 miles, a momentary breakdown causes it
to skip to a point midway between S and the curve marked 6. [f it then
follows the solution curves properly, the curve it traces will be
squeezed between S and 6, becoming indistinguishable from S at about
r=180 miles. Contrariwise, if the solution curves are traced to the
right, a slight misstep causes a rapid deviation from the desired curve.

Again examining figure C1, we may suspect that, since the solu-
tion curves converge on each other so fast, they are all going to the
same point. Indeed, it can be proved that all solutions to (4) pass
through u =1, r = 0, in apparent contradiction to rule (3) above. This
contradiction, however, is only apparent, since F is not continuous at
this point. Furthermore, it also turns out that all derivatives of any
one solution at r=0 are equal to the corresponding derivative of any
other solution. This makes it quite fruitliess to attempt to specify a
boundary condition at r=0, in terms of specifying a value for u or for
its derivative at r=0.

In tracing a solution curve to the left, we see that the curve
cannot pass through the top or the bottom of the strip. For, to arrive
at the top, the curve must ascend above the zero-slope curve while
running to the left, but above the zero-slope curve solution curves
ascend only to the right. Similarly, to get to the bottom of the strip,
the solution curves would have to descend below the zero-slope curve.

There is no such prohibition against solution curves through the
top or bottom of the strip when traced to the right. Indeed, from
figure C1, it appears that most of the curves do just this. Solution
curves that pass through the top of the strip take on values of
u=-cos ¢ >1, and do not correspond to real inflow angles.

Solutions that pass through the bottom take on values of

cos $ < 0, corresponding to anticyclonic flow for all values of r
larger than the crossover point. This might be conceivable, but further
analysis shows that such a curve would soon pass through u = cos ¢ = -1
and again real inflow angles would not exist.

y =

Thus, for a solution to be physically valid, it must remain within
the strip for all r, i.e., 0 < u(r) <1 for r >0. It turns out that
there is one and only one solution curve with this property, which must
be taken as our 'boundary condition' imposed at ''r = o',

This curve
has been labeled ''S'" in figure Ct.
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For practical reasons, we do not actually start at r = ©, but select
an arbitrary initial condition at some point To» much larger than the
values of r in which we are interested. We then trace this solution
curve to the left, being assured in the first place that the solution
curve will remain in the strip 0 < u <1, and in the second place, that
it will rapidly converge on S, being Practically identical with S well
before values are required.

Having seen that the singularity at u =1, r = 0 makes (4) a most
unusual boundary value problem, let us take up again the question of in-
tegration schemes. The derivation of the various Runge-Kutta schemes of
integration rests on smoothness assumptions of two types: (a) the assump-
tion that the solution curves u(r) have derivatives to certain orders,
and these derivatives do not change greatly in the length of an integra-~
tion step Ar, and (b) the assumption that the slope function F(u,r) has
derivatives to certain orders, and these derivatives do not change
greatly in the course of changes in r of amount Ar, and in changes in u
of amount ,F[ Ar (i.e., in the amount u would change while tracing solu-
tion curve one integration step) .

When we examine curve !’ of figure C1, assumption (a) seems quite
plausible. However, assumption (b) refers, not only to points on a
solution curve, but also to points on either side of a solution curve,
gEd we must examine it carefully. Consider, in particular, the derivative
5u- This expresses the rate with which the slope function is increasing
as you go from one solution curve to a nearby one, with fixed r. |f you
consider two nearby solution curves in a region where 9F > 0, the higher

u
curve is descending to the left more rapidly than the lower (or the
lower is ascending more rapidly than the higher) so that the curves
converge, as in figure C1. Hence, gﬁ is an indication of stability of

3

the differential equations and if 9% >> 0 the curves converge extremely

fast; therefore, we call the differgntial equation highly stable.

The term.gi can measure the curvature of the solution curves. For,
u

. d?u _ d = oF du | 3F _ . oF | oF
by the chain rule, we have a7 4 F(u,r) = S0 dr +-§F = F = +.§.F
for any soltuion of 94 - F(u,r). Assumption (b) above states that the
derivatives of F, angrhence the curvatures of the solution curves, do
not change rapidly as we go from one solution curve to a nearby one.
Now compare curves ''S'' and 2" of figure C1. At the point where curve
"2" stops rising sharply and turns to parallel ''s" (r = 16 miles), the
curvature is extremely sharp and concave. However, curve !''S' ig only
mildly curved, and concave. This demonstrates dramatically that the
curvatures do change rapidly as we move from one solution curve to

another nearby one. Consequently, we must reject assumption (b).
We decided to modi fy a Runge-Kutta type scheme by removing its

dependence on assumption (b) above. For the particular case of equation
(4), this turned out to be fairly easy.
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First, a change of variable was made for (4). We write
w = Vru = Vr cos ¢, and (4) becomes

kewVr
£11“—=—-°'—-fr—kn Vr. (5)
dr N 2p 2oy 2

We write the right side of (5) as G(w,r), the slope function for w.

In the new coordinate system, the solution curves from figure C1 appear
as in figure C2. The dashed curve in figure C2 does not correspond

to that in figure C1. It is the zero-slope curve for w, G(w,r) = 0.

The other curves, however, do correspond. The uppermost curve is w = Vr
or u=-cos ¢ = 1; values of w above it correspond to u = cos ¢ > 1 and
do not correspond to real angles.

Figure C2 is not as useful for exposition as figure C1. For
instance, it is not as clear that, for r>0, u = cos ¢>1 and the inflow
angle becomes zero at the center of the storm. Nevertheless, it is
clear that our considerations above still apply on figure €2 as strongly
as on figure C1.
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Figure C2. Some of the solutions to (5) in the r-w plane, where
w=Vru=Vrcos . The solution curves correspond exactly to
those of (4), figure C1; however, the zero-slope curve does not
correspond to that of (4).
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Equation (5) has several computational advantages. In the first
place, it does not explicitly involve derivatives of V(r), which is a
considerable advantage when working with a curve interpolated through

3G . X
tabulated values. |In the second place, 5; > 0 without exception,
whereas there are some conditions where 3F < 0 in local regions. The

au

important usefulness of this property will develop shortly.

Let us suppose we are tracing a solution curve from right to left,
and at the point ry = kAr we have attained a value for w of wi. We
wish to trace the curve one more step, to r = r_1 = (k-1)Ar where
W= Wi At r, the curve has the slope G(wk, rk), and at Me-1 the

curve should have the slope G(wk_1, rk_1). If we assume that %j%-is
r

slowly varying over this range of r, i.e., that w(r) may be adequately
represented by a parabola, then we have the relationship

"k k-1

i HGl, rd + Glwegs ) (6)

i.e., the average slope over the interval (rk-1, rk) is the average of
the two slopes. Equation (6) might be used to evaluate wi -1, except
for the fact that G(wy.1, ri-1) is not known until wy_q is known.

The Heun method, one of the simplest Runge-Kutta methods, uses (6)
to evaluate wy .y, but approximates Glwy-1, rg-1) with G(Wg-1, rg-1)
where

Wi "W -1
Ar

= Glwk, rk),

i.e., by extrapolation on the line passing through wy, rk with slope
G(wy, ri). The justification for this relies on assumption (b) above,

and is not valid for our purposes.

Our modification consists in treating (6) as an algebraic equation
to solve for wi-1, when the wy, r., and ry -4 values are known.

: Now, the left side of (6) is a linear function of Wi-1, With s lope
T AT while the right side is a monotone, ingreasing function of wy_q,
with positive derivatives 3G and curvature é_g.for w_1> 0. Figure C3
shows a typical situation.awThe roots of (6PWoccur when the two curves
of figure C3 cross, which clearly can occur at only one point. The
importance of this fact is that no decision procedure need be devised
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to determine which root to use. The importance of the fact that é—g >0

for w > 0 is that the very fast Newton-Raphson method can be used

to find the root, provided only that care is used to ensure that each
iteration lies between w = 0 and w= V(r -l)rk-1' If the root W1 of
(6) is actually less than zero, this wourd imply that the finijte
difference scheme is not properly following the solution curve, and a
smaller Ar would increase the slope of the straight line in figure C3
and change the position of the asymptote, but not the y-intercept of the
curve; clearly it would ensure wi_q > 0. |In Practice, however, there
has been no need to change the step size Ar on this account.
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Having solved (6) for Wi-1, WE can now use this value and equation
(6) (replacing k with k-1) to find Wiop at re_p = (k-2)Ar, and so forth,
in the usual manner. The resulting scheme is stable because the curves
in figures C! and C2 were drawn using it.

The accuracy of the present scheme has not been completely deter-
mined. It is plausible that, since (6) is derived by ignoring third-
order terms, the errors from it are of order (Ar)® for each integration
step, and, since the number of integration steps varies inversely with
Ar, the accumulated error should be of order (Ar)%. This estimate may
be too pessimistic, however, for the property of the differential eguation

of squeezing the solution curves together applies also to stable finite
difference approximations of it; hence, after some point the errors
should diminish as fast as, or faster than, they accumulate.

A pragmatic test for accuracy lies in trying out the integration
schemes for values of, say, Ar = 1 mile, 0.1 mile, 0.02 miles, and
determine the magnitude of any changes in the results. Presumably the
more accurate results are for the smaller step sizes. Such a test was
conducted for the exceptional case of Vr = 200 mph, R = 5 miles,
latitude = 5°N and the profile of (3). In proceeding from Ar = 1 mile to
Ar = 0.1 miles, the maximum change took place at r = 10 miles. It
amounted to 0.7° shift in inflow angle out of 2.853°!%, a relative shift
of 23 percent; for r > 15 miles, there was no change to four significant
digits, and, for r < 5 miles, the two profiles agreed to two significant
digits. In the region 5 miles < r < 15 miles, the inflow angle is
undergoing the most abrupt changes in the entire range of interest, and

it is consequently more difficult to trace the solution. In proceeding
from Ar = 0.1 mile to Ar = 0.02 miles, the greatest change again occurred
at r = 10 miles. It amounted to 0.011°, a relative shift of 0.4 percent.

Elsewhere, the agreement was to at least three significant digits, and
to four significant digits in almost all cases. Hence, it appears that
a step length of 0.1 mile is generally quite adequate, and indeed 1 mile
is often sufficient.

Having found u(r), and hence ¢(r), it is easy to use (1) to find
the pressure p(r). Indeed, a simple trapezoid rule integration procedure
appears to be quite sufficient.

For tabulated data such as given by the STORMFURY project, one con-
sideration turned out to be quite important. Conventional procedures
for interpolating between data points, such as the Newton or Lagrangian
interpolation schemes, do not ensure that the interpolating curve has a
continuous derivative across tabulated points. Thus, they generally
allow a jump in the slope dV of the wind profile across a tabulated
point. Now, it will be discovered in differentiating (5) that the
curvature dﬂ%_ also undergoes a jump of amount

dr
15The maximum inflow angle for this example occurred at r = 23 miles and
was ¢ = 28.64°. Relative to this value, the shift was 2.3 percent.
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times the jump in %¥u For w =~ Vr, which occurs near the center of the
storm, this becomes extremely large. Now, recall that (6) was derived

2
on the basis that the curvature %—; did not change greatly in the
r

interval ri_q < r<rig. In consequence, for a wind profile with discon-
tinuous slope, (6) may give quite erroneous values. Indeed, when a
Lagrangian interpolation scheme was used, explosive instability in fact
developed, immediately after one or another of the tabulated data points.

To avoid this source of difficulty, a cubic spline curve inter-
polation scheme was used instead. Such an interpolation scheme uses an
interpolation curve whose first and second derivatives are continuous
everywhere. With this scheme, no instability appeared whatever with
the STORMFURY project data.
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