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ABSTRACT. 1In the first portion of this report we shall
study the properties of a number of finite-difference
schemes currently used in boundary layer models. Ve
shall do this by introducing a computational diffusion
coefficient, K., which usually differs markedly from

the physical diffusion coefficient, K, for short Fourier
component waves. Unless the difference scheme is
inconsistent with the differential equation, K. approaches
K for long components. The rate at which KC/K approaches
unity determines the accuracy of the scheme. The
behavior of K. for short and moderate waves is inves-
tigated for explicit, pseudo-implicit, and fully implicit
difference schemes.

The second portion of this report is concerned with

the properties of some implicit advection schemes based
upon well-known explicit schemes. The study was moti-
vated by a desire to apply Marchuk's "splitting'" technique
to two- and three-dimensional systems. The "splitting'
technique makes the application of implicit techniques

to multi-dimensional systems economically feasible. The
dissipative and dispersive properties of the schemes are
tabulated.
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E. I. Dupont de Nemours & Co.
Aiken, South Carolina 28901



I. INTRODUCTION

At the Techniques Development Laboratory of the National Weather Service,
we are develoning a large-scale atmospheric boundary layer model for the
prediction of temperature, wind, and humidity from the earth's surface to
about 2 km. In figure la, the small inner square shows the horizontal ex-
tent of our boundarv layer system: a grid consisting of 25 x 25 mesh points
with a 80-km grid interval which we may eventually telescope to 15 km.

The large octagon is the NMC PE (National Meteorological Center Primitive
Equation) forecast area. The large and medium squares respectively repre-
sent the NMC LFM (limited area fine-mesh) and coarse-mesh boundary layer
models.

There are a dozen vertical levels in our model, separated into two portions
the contact (or surface) layer and the transition layer (see figure 1b).
The contact layer utilizes the constant flux relations of Obukhov which
have been determined empiricallv bv Businger [1], Webb [12] and others.
These relations are integrated and provide the lower boundary conditions
for the transition layer equations.

The transition layer equations are shown below in their real and complex
form and include eddy transfer coefficients which allow the diurnal transfer
of heat, momentum, and humidity (see table 1 for an explanation of the
notation): 30
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Table 1.--Notation

Q? = 0(jAaz, nAt) = Q(z,t)
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Table 1.--(Continued)

¢: computational phase velocity
f: Coriolis parameter
[ef complex geostrophic wind

g: amplification factor for a finite difference scheme

g*: coniugate of g

&,: amplification factors for "physical" and "computational" modes

— of a three-level difference scheme
i: \f:f-

j: 1level index; Z=jAZ

K: ‘diffusion coefficient

K.: computational diffusion coefficient

KLz

&: effective computational diffusion coefficient shear

Km, Kq’ Kw: diffusion coefficients for momentum, humidity and
and heat

L: wavelength of a particular Fourier component

L, : wavelength for which K. becomes unbounded

n: time step index; t=nAt

Q: general scalar variable

q: specific humidity

R: Courant number; R= UAt/Ax

T: complex temperature-humidity variahle; T=0+iq
t: time

u: east-west wind component

u east-west geostrophic wind component

ot

= :
V: wind vector




Table 1.-«Continued)

north-south wind component

north-south geostrophic wind component
complex horizontal wind vector

time step or increment

level spacing in boundary layer model

wavenumber for Fourier wave used in analyzing finite —
difference scheme; A = 27/L

weighting factor for Crank-Nicolson diffusion scheme (P £ u £ 1)

Fourier number, non-dimensional diffusion coefficient;
o = KAt/AZ2

Fourier number at which pole occurs for K.(A, o)

potential temperature




The eddy diffusion coefficients in the transition layer are calculated from
the 0'Brien [8] cubic profile relation which frequently produces daytime
maximum values equal to or greater than 100 m“sec—l. Uhen these large values
are used with a large time step and an expanding level system which begins
with a level spacing of 50 meters, a considerable strain is placed upon the
finite-difference scheme that is used to solve the vertical turbulent trans-
fer equations. Because of the fairly complicated contact layer relations

and the energy balance method involving radiation calculations used to com-
pute the surface temperature and local heating, we would like to use a large
time step in the numerical integration of the model, as much as one-half

hour if possible. We therefore set about studying existing finite-difference
schemes to determine their limits of stability and, if absolutely stable,

the factors and circumstances attending their eventual degradation.

IT. THE NUMFRICAL DIFFUSION SCHEMES

We shall study the following finite—difference schemes (see Table 1
for notations):

1. Explicit Schemes

2 1N
A: 0gQ = K D Q;

2 oK n
. n _ n Pkt
B: AtO_j—KD Qj+azDoo-j
n
D . . K'<0
3K _ Q
c: 2.Q% = k D% o + X S
5 | 9Z D Q. K'> 0
T J
n - n
. . =D (K.DQ,
D AtQJ (JQJ)

Scheme A is a simple two-level explicit scheme for a constant K which mav
be extended to variable K in several ways as is shown in B, C.and D. Schemes
B and D are geometrically different, but for most K profiles give nearlv
equal solutions. Scheme D is derived by specifying K in between the levels at
which Q is computed and by taking the finite-difference analogue of the flux
conservation equation. B and C are created by simply taking A and adding
shear terms. If K varies linearly with height, B and D give identical
results. For arbitrary stratification, B and D differ only by terms of order
K" as may be seen by a Taylor series expansion. Scheme C is used in the
NMC large-scale atmospheric boundary layer model derived from the Air Force
GWC model [4]. Tt requires a fairly small time step and introduces anomalous
computational diffusion through the shear term, as will be described in more
detail later.
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Scheme E is an attempt to improve upon the one-sided time difference by
using a centered difference. Since it uses three time levels, it has a
parasitic computational mode which in this case is unstable regardless of
how small the time step is taken to be. The scheme was devised by Richardson
and is now only of historical and pedagogical interest.

When the X shear vanishes, scheme F formally reduces to A (with At>2At),
but has a computational mode. The scheme has been used by Tag [1] in his

study of surface temperature in an urban environment and is conditionally
stable.

2. Pseudo-implicit Schemes*

n K [ n n n+l n
G: . = . - + +
ey = 122 LQJ‘l @3+ ) Qj+i]

H: A0QR= F T n 1
€7 72 [Kj—l/sz_l‘ 2 (Rja1/25-1/2) (G Q) + Ky )y Q§+l] .

Scheme G was considered by Mahrt [6] in a numerical study of advective
effects on boundary layer flow at low latitudes, and has greater stability

than schemes A to F. This scheme may be generalized to variable K by speci-
fying K at half-intervals as in H.

‘ n_XK n _ n+1 n
Lt 0e0y T A (Qj_l 29,7 Qj+l)

‘ n_ 1 #i ~ n+ly n+tl n ]

Partly because of its absolute stability, scheme I was chosen by Mahrt
for his study. Its generalization to variable K, scheme J, was used by Nappo

[7] in the numerical boundary layer model devised for use in the Air Resources
Atmospheric Turbulence and Diffusion Laboratory.

% . . :
By pseudo-implicit, we mean a scheme which can be solved explicitly although
one or more terms in the spatial derivative is expressed at n + 1.
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' Scheme K is the widely-used Dufort-Frankel scheme which may be generalized
in L or M. L is the scheme used by Estoque [3] in his early boundary layer
models and has been widely used bv other modelers.
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Qj ; Qi _ £ n nt+l/2
it =z (0] - pooft?) e
N:
| ,n+1 n+1/2
R K +1 1/2 ~——
= D, 0% — n+
At = 0z (0495 D_9; )
Qp+l/2_ Qn
3 4 1 ;
e TP B
@
=7 . o .
At 2072 [Ky41/2 (Dp0F1)  — Ky (D_()E,l+l/2)] S

Scheme N and its generalization, 0O, which constitute the Saul'yev [10]
alternating method, have only recently been adonted by western modelers.
The technique mav be applied to alternate time steps, hence its name, or to
fractional time steps as shown here. Although formally implicit, the scheme
mav be solved explicity. The arrows indicate the directions in which the
schemes are to be solved. For example, in the first scheme 0§+1/2 is expli-

citly computed from Qn+l/2, Q?’and o

=1 i j+1°



3. Implicit Schemes

EXI Q?-K{u n2 Q?+1+(l-u) p? o ]

3
n K n+1 n
gr A, Qj = r.h.s. (P) + EE-DO EJ Qj + (l = U) Qj]
R: A Q% = D (KjDQ‘j‘ﬂ) + (1 - v) D (k;003)

Schemes P and 0 and R are variations of the generalized Crank-Nicolson
[2] scheme. Although the schemes are implicit, the systems of unknowns

at time step n + 1 form 3-band matrices which allow solutions to be readily
calculated [9].

IIT. ANALYSIS OF THE SCHEMES

The stability and accuracy of computational schemes are usually studied
by examining under what conditions their amplification factors remain within
or on the unit circle in the complex plane and to which differential equa-
tions the difference equations converge for small AZ and At, with the order
of the truncation error determined.

An alternative is to examine the behavior of what we shall call the compu-
tational diffusion coefficient, K., a function of the grid spacing, time step,
wavenumber under considerationj;and the particular finite-difference scheme.
The computational diffusion coefficient is defined by

1
Ke(d) = - e 1n|g]

and the computational shear of K by

oK 1 :
(”aEc = ot 95 & = |le™

where g is the amplification factor of the scheme, © is the argument of g, and
A is the wavenumber. These relations are motivated by assuming the coeffic-

ients of the following equation to be quasi-constants and findingthe ele-
mentary solutions of the differential equation

RO+ R gl =28 s exp [-(RA + EK'A) EHAZ].

The defining relations for K¢ (A) and K's (A) then follow.



The values for K. and K'c may be computed directly or approximated from a
power series in ), for which, apart from the neighborhood of singularities
or for large wavenumbers, a few terms are generally sufficient. The ampli-
fication factor for diffusion schemes are frequently real, even functions;
the shear portions generate odd power series. There are, however, exceptions.

We begin with a simple example: the well-known two-level explicit scheme,

Aywhich becomes unstable when sigma, the Fourier number, defined as
KAt/AZZ,exceeds 0.5:

r\n_
bQj =KD 0

It follows from

g = 1-40 sin? ALZ
2
that
R . 2 AAZ
K. = - o In (1-4 osin _E—)
1.1 32,2 ¢1 L
= K |1-= 2°AZ° (= - o) + 0 (A1), .
L = k3 )] ( (A.1)
Instability creates a negative K_ . The deviation of K. from K is approximately

quadratically dependent upon the wave number but for long wavelengths (small
wavenumbers) E, and K become virtually identical.

The A2 term in (A.l) may be made to vanish by choosing a time step such
that the Fourier number, o, equals 1/6. The upper curve in figure 2 shows
the ratio of K, to K as a function of wavelength for 0=0.4. When the time
step is chosen to make the second term in the power series for X vanish, the
ratio approaches unity much more rapidly than before, as is shown in the
lower curve in which 0=1/6. A pole occurring in the upper curve exists
whenever o> 1/4. Within the range of stability of the scheme, a 4AZ wave
is the longest wave for which the pole can be created.

As noted earlier, schemes B and D, although different geometrically,
yield nearly the same results and have a limited stability range. Scheme C
uses a one-sided difference for the shear term, introducing anomalous compu-
tational K even in the long wavelength limit,

z oKl AZ [, _|3K] At
KC‘K+|32 —Z<1 I“a’z_l AZ>
It, too, has a rather restricted stability limitation.

10
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Figure 2.—-KC/K as a function of wavelength for scheme "A".
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Tag's scheme F is analogous to the leapfrog advection scheme because it
uses a centered time difference, an advection-like term, K shear evaluated
at the middle of the time step; requires a two-level scheme to initialize
it; and has a computational mode. Unlike the previous scheme, the shear

term introduces no anomalous computational K, even to the
be seen in (F.2):

term as can

On+l_ Qn—l K
= K, ) B ) .
T (et ezt @) e i e Y.
240t AZ g1 J j+l 26z \ 3+1 3-1
8rat . [K'at)?
AZ2 AZ f-l‘; enough for stability (F.1)
If (F.1) holds, then
2 :
8,12 = [1-8 osin? 22027
& 2
K. 2K 1-x2Az2<l_._ K At_) (F.2)
c 12 AZ?

Mahrt's scheme G averages the middle terms of the spatial derivative, and
in doing so doubles the permissible time step of the earlier two level scheme,
but not without a price. An expansion of g about A=0 leads to (G.l), which
then gives a zero- order computational K which may be in considerable error:

n K n n n+1 n
AtQy = . - p 0. .
e} = 377 [95o1 - (& + oF)+ ofn

g = (1-0) + 20 cos MAZ

1+ ¢
5 51 - VA
1+ 0o
By B catbcec (G.1)
1 + KAt
AZ?

For example, when o=1 (the stability limit of the scheme) K. is only 1/2
the desired value.

In order to retain the accuracy of the scheme, o must be
kept small, in which case the simpler two-level scheme A would suffice.

Now, it is easy to see that whenever 0> 1/3, singularities occur in KC for
some wavelength beginning with the 2AZ waves for o=1/3 and extending to the
4AZ waves when o=1. For a given Oos the wavelength L, which is totally
damped is given by
L, = 2TAZ
1 Oo_l
cos (=%—
(260 )

12



Those waves shorter than L, undergo a sign reversal at each time step.
Variable K can be handled by scheme H ,

n_ 1 n _ 1 n+l n)
beQ5 = 172 Kj—l/2Qj-l Py (?j+l/2+ Kj—l/é)<Qj + Qj

+ Ky41/203+1

By evaluating the middle term of the diffusion expression completely at
time level n + 1, absolute stability is achieved but at an even greater
cost in accuracy than in the preceding scheme. The amplification factor
has a magnitude less than unity for all possible K, At, AZ, and wavenumbers
(see I.1), but the expansion about A=0 reveals even poorer fidelity than

For extremely large values of o, Ko=1/2 AZ? s

Mahrt's previous scheme. x

therefore K. ultimately becomes independent of K altogether:

n K n n+1 n
. = —= (Q. = LT+
bQy = 372 (Qj—l 9 Qj+1>
B 140 cosAAZ
g = 1+20 (1.1)

K

1+2 KAt (1.2)
AZ2

Ke

Total damping occurs for some wavelength, L,, whenever 0>1/2. Regardless
of the size of o, waves longer than 4AZ are never completely damped. The
connecting relation is (T.3). As before, waves shorter than Lo are very
badly handled.

Lo 2mAZ (1.3)
°0 = n-cost(1/2 oo) ‘

The restriction of totally damped waves to 4AZ or less is, unfortunately,
not shared by the Crank-Nicolson scheme, and is one of the reasons for the
latter's ultimate degradation as At is increased.

The extension of I to variable K is carried out in J. When the diffusion
coefficients are expanded about the jth level, the shear makes its presence
felt bv a destabilizing centered difference term. The scheme need not re-
main stable, but the shear required for instability is apparently great.

The computational K’ is modified in a manner analogous to the computational K,

s K"
1+2 KAt
AZ2

K'

13



The Dufort-Frankel method (scheme K) is a three-level scheme which averages
the middle diffusion term between the past and the future. The scheme ig
well-known to he absolutelv stable with the amplification factors given by

(K.1):
n K n =1 n
5 = — . +
“eQy = 472 éﬁ—l 24 Qj+l>

AZ?
20cosAd + 1-4025in2)2 "2 (K.1)
1+20

Whenever 0¢1/2, both the g's are real. A calculation of the computational
K to zero order yields the correct damping for the physical mode and total

damping for the computational mode,

Ket 2 K
ANZ=BR<<1

o< s

Koo o

For higher-order terms (shorter waves), both K.'s depart from their
ideal values. The shortest wave of the computational model is completely

undamped.

Increasing ¢ above 1/2 induces an imaginary part to g for certain short
waves and creates a false computational shear given by

‘/ AZ2
§g>= L1 . 402sin’)? "2 -1
BZC ~ AAt tan 20CoSAAZ .

If one takes the following limit of the shear, A>0, o+, and 08>«  then the
computational shear becomes simply + This is in agreement with the
frequentlv made statement that the Dufort-Frankel scheme becomes consistant
with a hyperbolic equation if At and AZ are reduced in a fixed ratio. One
notes that however large o may be, a wavelength may be found with no false
shear associated with it or with longer wavelengths. For intermediate
and shorter waves, a calculation for K yields
e 1 é§>2
Ke = 2x02 (At ,

that is, the computational K becomes inversely proportional to the physical K.

ght may be accomplished by

Accounting for diffusivity variable with hei
C equation, as was done byv

either adding a shear term directly to the basi
Estoque, or by specifiying ¥ at intermediate levels,

1 =n n
) 0 ... n _ . .
6eQ3 = 372 [%j—l/ZQj—l/Z (Kj+l/2+ Kj—l/Z) Qg + Ky41/2 QJ+i]

Both approaches lead to nearly the same results. Although amplifying solu-

tions are evidently possible, a large local shear is required.

14



The alternating Saul'yev method (schemes N and 0) does not require the
retention of past variables or the computation of the first step by a two-
level scheme and does not have a computational mode. Written in time-
splitting form, the scheme is marched first from the bottom to the top level

to get values at t + 1/2 At, and then dovnward, using values at t + 1/2 At
to get values at t + At,

nt+l/2 n
Y -9k 5o _ b n+l/2)
At 282 ( +Q3 - D-Q
Qn+1 _ Qn+1/2
] ] _ X D QI}+]_ - D_ Qn+1/2)
At T 2MZ J h|
The amplification factors for these steps are given by g, and g, . The

over-all amplification factor is the product of the two fractional=step g's
and is always real and less than unity. There are no poles in the plot of
K.> save at L=2AZ when o=1, and no sign reversals,

_ 1+% (e-iXAz -1)

o = g*
1-7 (1142 _1) 2

[1—% (1—cos)\AZ>]2 7sinzmz

g

+ 4

8= 88 ro S
[L+2 (1—cos>\AZ>] + 4 sin?\AZ

It is intuitively plausible that the exclusive application of either of
the asymmetric schemes leads to the eventual accumulation of fairly large
errors. The reason is not that the individual schemes produce grossly in-
correct computational K; they do not, but rather the individual schemes
introduce anomalous K shears. These are caused by the presence of imaginary
parts in g7 and gj3. To the lowest order of calculation, the imaginary parts
vanish and appear only for the shorter waves. The false shears are opposed

to one another and cancel completely for all wavelengths when the schemes
are applied alternately.

&1

The Saul'yev scheme shares with the Dufort-Frankel scheme the problem of
inconsistency. Unless At/AZ vanishes in the limit At /AZ250, the correct
computational K will not be recovered. When very large time steps are used,
waves of moderate length are badly handled. Using some of the same approxi-

mations as in the analysis of the Dufort-Frankel scheme, one can derive the
result,

g b E)Z
S Y (At

which, except for the numerical factor, is identical to the Dufort-Frankel
scheme.
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When K varies with height, a slight change in the original scheme accomo-
dates the variable K,

Qn+l/2 - Q0
J j 1 n n+l/2
At T2z (Kj+l/2 Dy Q5 = K5 1/5 D_ O )
Qr}+l B Qn+l/2
J J 1 n+l _ n+l/2
st = 2z (o172 P+ 057 = Ky b )

It can be easily shown that the additional terms taken alone cause g to lie
on the unit circle. No anomalous diffusion or amplification is involved.

The stability properties of the generalized Crank-Nicolson scheme [P,Q,and R]
are well known. When the factor u which weights the future and present deriv-
atives is taken greater than 1/2, the scheme is stable for all time steps.

For u<1/2, the scheme is conditionally stable,

n

Y =x|u D2 Q?+l + (1-u) D2 g (P.1)

AeQ5

o<u<1

stable for u >-l :

2
stable for u < l-j_f o f___};____
2 2(1-2u)

Although for u>0 the scheme is implicit and requires the solution of a
3-band system of simultaneous equations, the effort required is well spent,

as will be shown in figure 6.

In computing the computational K, an expansion of A about zero yields a
relation whose deviation from K can be reduced to 0 (X“) by requiring the
expression in the square brackets to vanish,

24972 [
K /K = 1 - L_é\_z_~ l — (l—2u)
c 2 6

The improvement in the computational K is felt even by very small wavelengths
as can be seen in figure 3. The lower curve is the scheme with the deriva-
tives computed completely in the future. The ratio K./K=1 is approached
slowly. The upper curve represents the simple explicit scheme which has a
pole at the 2AZ wave, after which it fairly quickly approaches the correct
value. A great improvement is achieved by setting u equal to the optimum
value suggested above (in this case, u=1/6). As can be seen, even the 3AZ
wave is well handled. When the value of ¢ is increased, the optimum value
of u rapidly approaches 1/2.
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Figure 3.--K./K as a function of wavelength for scheme "P".
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The ultimate degrading of the Crank-Nicolson scheme for a large time step
is caused by the pole which appears at increasingly longer wavelengths and
the sign reversal which accompanies it; for wavelengths shorter than the pole-
producing wave, the K¢ is badly in error and produces solutions of alternating
sign. However, the region of poor fidelity of the scheme is considerably
narrower for large ¢ than with the other schemes. The consistency problems
which afflict other schemes are absent here.

Figure 4 shows the behavior of several schemes for ¢=0.25. Curve 1 is
the simple explicit scheme which has good fidelity. Curve 2 represents the
Crank-Nicolson and Saul'yev schemes which happened to give very similar re-
sults for the small chosen value of 0. Curves 3 and 4 represent the schemes
used by Nappo and Mahrt, neither of which approaches unity as L increases.,
The accurate physical mode of the Dufort-Frankel scheme is shown by curve 5.
The computational mode of the Dufort-Frankel scheme, shown by curve 6, is
heavily damped even for fairly short waves,

The superiority of the Dufort-Frankel curve is diminished when ¢ is in-
creased to unity (see figure 5). The Saul'yev scheme creates a pole at the two-
grid wave, falls rapidly but then recovers fairly quickly. The schemes of
Nappo and Mahrt behave even less accurately than before. The Dufort-Frankel
Kc peaks at about wavelength 10AZ and then slowly decends to unity. The
Crank-Nicolson scheme has complete damping at the 4AZ wave and then quickly
drops to the correct value. This pattern persists for larger time steps,
with the superiority of the Crank-Nicolson scheme becoming even more evident.

The results of a sample calculation of the numerical r.m.s. error as a
function of time for a diurnal temperature wave calculation using a 50-meter
level spacing are shown in figure 6. The bottom boundary condition is a
sinusoidal temperature wave. The supplied diffusion coefficient is a period-
ically varyinghO'Brien cubic profile. The Crank-Nicolson scheme performs
best with a very small error, followed by the alternating Saul'yev, the
Dufort-Frankely and the Nappo-Mahrt schemes.

IV. THE NUMERICAL ADVECTION SCHEMES

Although a number of accurate explicit advection schemes now exist, the
schemes are restrained by stability criteria. On the other hand, the "split-
ting" method of Marchuk [5] allows stable implicit schemes to be used in
place of explicit schemes by reducing a two-or three-dimensional advection
equation to a sequence of one-dimensional implicit systems which can be
solved relatively easily. We calculated the dissipative and dispersive
properties of several conventional difference schemes, making each of them
implicit by expressing their spatial derivatives both in the present and the
future.

The computational phase errors and diffusion of the explicit schemes were
frequently worsened by the conversion to implicit form (see table 2). TFor
example, the largest computational diffusion coefficient for the explicit
upstream scheme is less than or equal to the smallest computational diffusion

18



using o = 0.25.
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Figure 4.--K /K as a function of wavelength for several schemes
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Table 2.--Advection Difference Schemes

Crank-Nicolson:

n+1

AtQ? +U0 [u DOQj + (1-n) DOQ? l]=0

Lax-Wendroff:

n+1 n R n+1 n
L = o - = D + (1-u) D Q.
Q; T [ u ij OQJ]
2 n+1
+%~[uD2Q +(1-u)D2Q?]=O
j

Leap-frog:

+1
5eQF +U [ uD0y  + (1-w) D0f 1 = 0

Saul'yev*:
Q?+1/2 - Q? n
] i+ [D,Q; +D_Q
At

il - g

: U
J i + 5, [0 +DQ
At N T3

n+l/2

Upstream#**:

n
8,05 +00- [ w Q™+ (- Q¥ 1=0
J ]

A2 Upstream**:

3 +
ae Q+ [ a2 -2 s 2 ™
] Ax j j-1 2 j-2
@ Gof -2t 1=0

*Although |g| < 1 for all At, the sweep becomes unstable when R > 2.
**For U > 0; obvious change when U < 0.
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coefficient for the fully implicit version. Weighting the present and future
derivatives equally reduces the diffusive effect of the fully implicit equa-
tion somewhat.*

Table 3 shows the relative phase velocities of the schemes for 5AX waves
as a function of the Courant number, that is, the ratio UAt/AX. All except
the second-order upstream scheme have retarded waves. The retardation be-
comes acute for large Courant numbers.

Table 4 shows that the non-dimensional computational diffusion coefficient
(Ke At/AX#) varies considerably between the schemes and is zero for the
Crank-Nicolson and Saul'yev schemes.

Table 5 shows the amplification factors and computational K for a Courant
number of 2 as a function of wavelength. Even for long waves, the diffusion
is unacceptably high except for the second-order Crank-Nicolson, Saul'yev,
and second-order upstream schemes.

Using a higher-order scheme can improve the phase error for small Courant
numbers, but the advantage diminishes as the Courant number is increased.
In figure 7, contours of relative phase speeds are plotted for second and
fourth-order Crank-liicloson advection schemes. The graph shows that the
clear superiority of the fourth-order scheme for small Courant numbers quickly
evaporates as the Courant number approaches and passes unity.

Finally, we note that large Courant numbers can create severe problems for
the Crank-Nicolson advection scheme at the outflow boundary of a grid. 1In
figure 8, a narrow Gaussian, severely distorted by phase lag, is advected
to the outflow boundary of a grid where the outflow conditions are held
fixed. A considerable amount of noise is generated locally which eventually
propagates back into the forecast area. The use of the upstream advection
scheme at the boundary works reasonably well for Courant numbers less than
unity but causes a local instahilityv for larger values (figure 9). The
fully-implicit upstream advection equation with its heavy damping applied at
the boundary greatly improves the outflow properties (figure 10).

V. SUMMARY AND CONCLUSIONS

The concept of a computational diffusion coefficient for a finite-differ-
ence eauation was introduced as a useful heuristic device. A computational
diffusion coefficient represents the amount of diffusion actually introduced
by the finite-difference analogue of a partial differential diffusion equa-
tion. The coefficient's size depends upon the mesh spacing, time step, and
wavelength of Fourier component considered. Unless the difference equation
is inconsistent with the differential equation (several examples of incon-
sistent schemes are given), the computational diffusion coefficient K,
should equal the intended diffusion coefficient in the long wavelength limit.
For short Fourier components, K. may be expected to differ considerably from
the intended value. Poles (total damping) frequently appear in plots of K
versus Fourier wave-length for particular values of K, At, and Az, For L<.ﬁ;,

% In table 2, there is the obvious notational change of Z to X.
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Table 3.--C/U as a function of R for 5Ax waves (u=.5)

R = UAt/Ax

advection .1 .25 .50 .75 1.00  2.00 3.00 4.00 5.00 10.00
... Scheme ,

A2 Crank-Nicolson | ,756 « 153 .743 «127 . 706 .605 .509 .432 w373 .217

Lax--Wendroff .756 . 754 . 748 .750 .770 .928 . 764 ~602 490 .249

Leap—-frog « 155 . 743 . 706 .657 .605 .432 =327 .261 .217 117
Saul'yev .757 . 757 .759 .761 . 764 s 10 .751 . 546 .356 .089
AUpstreamn « 757 « 759 . 764 .769 .770 . 704 .586 .486 411 .228
A2Upstream 1.278 |1.267 |1.230 |1.174 |1.105 .829 .638 «514 428 <232
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Tahle 4.*-,g[, K. as a function of R for 54x waves (p=.5)

Advection R = UAt/AX

Schemes | | 25 .50 .75 1.00 2.00 3.00 4.00 5.00 10.00

e 0 e e e o i i 30

12 Crank-Nicolson | g!| 1.000 |1.000 {1.000 |1.000 | 1.000| 1.000 | 1.000| 1.000 1.000| 1.000
Kei .000| .000 | .000| .o000| .000| .000| .000| .000| .COG| .00O
Lax-Wendroff fgt{ .993| .958 | .849 | .707| .567| .400| .585| .722 .806| .945
Ko | .044 | .108 | .207 ] .293| .359| .290| .113| .052} .027| .00%
Leap-frog jat | .996 | .973 | .903 |..814| .725| .465| .331| .254| .206] .105
Ke! .029| .070 | .129{ .174} .204| .242| .234| .217| .200| .143
Saul'yev gy |1.000{1.000 {1,000 |1.000}| 1.000| 1.000| 1.000| 1.000| 1.000| 1.000
K.| .c00| .o0o00 | .oco| .o000{ .000| .cOO| .000} .000; .000f .000
AUpstream gl .933' .843 1 .719| .628| .567| .515| .574| .636| .687| .821
Kol .437 | .432 ) 417 .3%2( .359| .210| .117| .072| .048| .012

t2Upstream | sl .954 .892 .814 .769 .750 174 .820 +855 .879 .935

Koy L300 .291 | .261 $222 .182 .081 .042 .025 .016 .004
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Table 5.~-ld » K. as functions of m=L/Ax for R = 2.

m, L = mAX

Advection

Schemes [ 2 3 4 5 10 20 50 100
42 Crank-Nicolson l g;' 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Ke| 000 | .000 | .000 [ .000 | .000 | .000 | .000 | .000
Lax-Wendroff &) .600 | .576 | .447 400 | .568 | .836 | .969 | .992
Kol 026 | .044 | .163 | .290 | .717 | .907 | .983 | .99¢
Leap-frog |.e|| 1.000 | .500 | .447 | .465 | .643 | .851 | .970 | .992
| Ke| 0. -079 | .163 | .242 | .550 | .819 | .965 | .g01
Saul'yev f[ g|| 1.000 | 1.000 | 1.000 | 1,000 | 1.000 | 1.000 | 1.000 | 1.000

y Bl B 0. 0. 0. 0. 0. 0. 0.
A Upstream el | 333 | .378 | .447 | .s515 | .753 | .o14 | .ogs5 | 906
Ke| 056 | 111 | .163 | .210 | .359 | .453 | .492 | .498
42Upstrean ﬂ g|| .600 | .640 | .707 | .774 | .952 | .996 | 1.000 | 1.000
| Ke| 026 | .0s51 | .070 | .081 | .062 | .022 | .004 | .o01
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Figure 7.--Contours of phase speeds for Crank-Nicolson second-
and fourth-order schemes.
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the values at which the poles appear, the schemes commonly cause phase reversal
of the waves. If a pole may be manipulated to appear for the two-grid inter-
val waves, the finite-difference scheme will have the useful damping property
of removing short waves of questionable accuracy. Unfortunately, this is
frequently not possible. However, even with schemes having good stability
properties, the poles tend to move to increasingly longer wavelenghts as the
time step is increased. Eventually the accuracy of the scheme is destroyed.

The properties of a number of explicit and implicit difference schemes were
investigated. Whenever the diffusion coefficients varied with height, heuristic
techniques were invoked. Although generally accurate, the explicit schemes
normally require small time steps to remain stable. There are several in-
genious exceptions in which an explicit scheme is made partially implicit
resulting in increased stability. The most successful one investigated is
the alternating Saul'yev scheme whichyat first glance, appears to be an im-
plicit scheme requiring a system of equations to be solved. In 'reality, the
scheme is solved explicitly by a forward and reverse sweeping process which
is stable regardless of the time step. Taken individually, the sweeps intro-
duce an apparent diffusivity shear where none is actually present. Taken
together, the false shears cancel exactly.

The Dufort-Frankel scheme is another "pseudo-implicit" scheme which is
widely used. This three-level scheme, with its computational mode, has
consistency difficulties arising whenever the non-dimensional diffusion co-
efficient (o) exceeds 0.5. Apparent diffusivity shears are then created at
moderate wavelengths. Larger values of ¢ produce poles in the "physical"
mode's K. which rapidly shift to longer wavelengths. However, the Dufort-
Frankel scheme is accurate and highly efficient if it is pushed only moderately
beyond the stability limits of simple explicit schemes.

The generalized Crank-Nicolson scheme is absolutely stable and is the most
resistant of all the schemes tested to anomalous computational diffusion.
Because the terms in the spatial derivative are evenly balanced in time, the
consistency problems which occur with the "pseudo-implicit" schemes are absent.
The technique's ultimate degradation is caused by: 1. A pole which pro-
ressively infiltrates longer components; 2. The sign flip-flop which occurs
behind the pole; 3. The slow recovery of K. for wavelengths longer than the
pole-producing wavelength. Because of the lack of adequate damping for short
waves and the onset of sign reversals, the scheme may not work well for

"noisy" initial data and rapidly changing boundary conditions. For smooth
data and slowly varying boundaries, the Crank-Nicolson scheme may be expected
to work quite well even for extremely long time steps.

By use of the "splitting" technique of Marchuk, two-or three-dimensional
advection schemes may be easily created and solved. However, except for their
stability properties, most of the advection schemes studied here were inferior
to their fully-explicit counterparts with respect to both dispersion and dis-
sipation. The fourth-order Crank-Nicolson advection scheme showed considerable
improvement over the second-order scheme for small time steps, but the fourth-
order scheme's additional accuracy was quickly diminished as the time step

was increased.
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