
Table 13.9. (conL) Seasonally adjusted areal reduction factors for the Southeast region. 

0 set4 Months 

Area (mi2) 1 hr 6hr 12hr 24hr 48hr 72hr 
10 1.000 1.000 1.000 1.000 1.000 1.000 

so 0.952 0.964 0.967 0.972 0.986 0.994 

100 0.917 0.926 0.932 0.951 0.965 0.976 

200 0.879 0.896 0.898 0.927 0.941 0.961 

soo 0.838 0.849 0.859 0.893 0.916 0.939 

1000 0.791 0.815 0.833 0.859 0.883 0.907 

2000 0.719 0.750 0.783 0.794 0.815 0.829 

sooo 0.543 0.618 0.664 0.680 0.711 0.743 

10000 0.376 0.484 0.562 0.585 0.612 0.634 

0 set 5 Months 

Area (mi2) 1 hr 6hr 12hr 24hr 48 hr 72hr 
10 1.000 1.000 1.000 1.000 1.000 1.000 

so 0.968 0.974 0.977 0.981 0.986 0.990 

100 0.938 0.941 0.952 0.968 0.981 0.993 

200 0.910 0.916 0.923 0.951 0.964 0.984 

soo 0.876 0.880 0.894 0.924 0.948 0.971 

1000 0.836 0.841 0.875 0.896 0.915 0.934 

2000 0.776 0.781 0.820 0.825 0.841 0.855 

sooo 0.612 0.646 0.709 0.714 0.729 0.753 

10000 0.432 0.526 0.608 0.622 0.639 0.662 
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Figure 13.12. Depth-area relations for the California Northwest/Northeast region for 1 to 72 hour durations. Same as 

Figure 8.1. 
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Figure 13.13. Depth-area relations for the California Midcoastal region for I to 72 hour durations. Same as Figure 8.2. 
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Figure 13.14. Depth-area relations for the California Central Valley region for 1 to 72 hour durations. Same as Figure 8.3. 
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Figure 13.15. Depth-area relations for the California Sierra region for I to 72 hour durations. Same as Figure 8.4. 
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Figure 13.16. Depth-area relations for the California Southwest region for 1 to 72 hour durations. Same as Figure 8.5. 
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Figure 13.17. Depth-area relations for the California Southeast region for 1 to 72 hour durations. Same as Figure 8.6. 



cumulative 6-hour values. A margin of plus or minus 0.5 inch is permissible in 
drawing this curve due to various roundings in Steps I to 6. Subtract each 

cumulative 6-hour depth from the depth of the next longer cumulative 6-hour 

duration. Some applications may require hourly increments. If this is the case, the 
smooth curve is subdivided into 72 cumulative hourly amounts and each cumulative 
hourly depth is subtracted from the depth at the next cumulative !-hour longer 

duration. 

8. Snowmelt parameters, temporal, and areal distributions. 

During peer review a consensus recommendation was to include some procedures in 

the report to deal with these items. These items had not been within the scope 

originally formulated for the study. The snowmelt procedure from HMR 36 (1961) 

is incorporated in this report and found in Appendix 4. 

Chronological partitioning of the PMP and its areal distribution were not studied in 

this report We would recommend that the user employ historical storms or divide 
the 72-hour PMP into 6-hour increments. Then arrange the final storm configuration 

into a front-, middle-, or end-loaded temporal distribution depending on the water 

management decisions that are required. One possible way of doing this is as 

follows: 

A. For DAD regions 1-6 (Figure 13.11), group the four heaviest 6-hour values of the 

72-hour PMP in a 24-hour sequence. 

B. Within the maximum 24-hour period arrange the four 6-hour values as follows. 

Place the second highest 6-hour values next to the highest, the third highest on either 

side of the first two 6-hour values, and the fourth highest at either end. 

C. The 24-hour largest 6-hour values may be positioned anywhere in the 72-hour 

storm period. The remaining eight 6-hour amounts may be positioned anywhere else. 

A hydrologist may experiment with different temporal sequences to uncover any 

factors that would make a particular sequence more critical than another for a basin 
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of concern. Selection of a particular sequence for a basin is a decision for the user. 

One way of distributing the storm spatially is by developing au isopercental analysis 

based on the 100-year precipitation frequency maps from NOAA Atlas 2 (1973). 

This approximation was used to develop the individual storm analyses for this study, 

and has been used on other occasions to represent storm distributions. 

Another approximation can be made by using a significant storm with a sufficient 

number of observations to draw a storm pattern over the basin of interest. If such a 
storm has been observed, then the storm pattern can be used to define an isopercental 

analysis for the PMP distribution. However, only a few California storms have 

sufficient detail to define a storm pattern over the complex terrain. 

13.3 Example of General-Storm PMP Computation 

The 973-mi2 Auburn drainage above Folsom Lake is used as an example for the 

general-storm PMP. The Auburn drainage is located in the Sierra subregion or region 5. 

In this example, we will use the steps of Section 13.2. First, we will calculate the all-season 

PMP for the drainage, and then the PMP for the off-season month of May. 

AU-Season Calculation 

Step 

1. Drainage Outline 

The Auburn drainage is outlined on a section of the 24-hour, general-storm PMP 

Index in Figure 13.18, at a scale of 1:1,000,000. 

2. User Decision 

We will do an all-season PMP calculation. 
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Figure 13.18. Contours of general-storm index PMP in and around the 973-m{2 Auburn 

drainage (heavy solid line) in California. 
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3. All-Season Index PMP Estimate 

Figure 13.18 shows the contours of index (IO-mi2
, 24-hour) PMP superimposed on 

the outline of the Auburn drainage. It's average value is 24.6 inches. 

4. Seasonal Index PMP Estimates 

Skip this step. 

5. Depth-Duration Relations 

The Auburn drainage is within the Sierra classification (region 5) except for a very 

small portion near the darn site which may be regarded as inconsequential. Table 

13.1 gives the ratios for durations from I hour to 72 hours. 

Ratios for Auburn dralnae:e 

Duration (hours) 

I 6 12 24 48 72 

All-Season .14 .42 .65 1.00 !.56 1.76 

Multiply the result from Step 3, the average JO-mi2
, 24-hour PMP of24.6 inches, by 

these ratios to produce the following 10-mi' depths of all-season PMP for Auburn: 

Auburn drainage 10-mi' PMP 

Duration (hours) 

I 6 12 24 48 72 
All-Season Depth 

(inches) 3.4 10.3 16.0 24.6 38.4 43.3 
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6. Areal Reduction Factors 

Using the Auburn drainage area of 973 mi2 and Figure 13.15, we get the following 

reduction ratios: 

I 6 12 24 48 72 

All-Season .64 .67 .70 .72 .77 .80 

The depths from Step 5 are multiplied by these ratios to obtain the all-season, storm

centered average depths of PMP for the 973-mi2 area of the Auburn drainage: 

All-Season Depth 

(inches) 

I 

2.2 

Duration 

6 12 

6.9 11.2 

The results are plotted in Figure 13.19 as a solid line. 
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Figure 13.19. Depth-duration curves for storm-centered, average depth of all-season (solid) and May (dotted) PMP for the 

973-mi2 Auburn drainage in California. 



7. Incremental Estimates 

Cumulative depths at 6-hour increments, extracted from the curve of Figure 13.19 

are: 

6-hour cumulative depths 

Duration (hours) 

6 12 18 24 30 36 42 48 54 60 66 72 

All-Season PMP 
(inches) 

6.9 11.2 14.6 17.7 20.8 23.8 26.7 29.6 31.6 32.7 33.7 34.6 

The 6-hour incremental amounts are obtained by subtracting each (cumulative) 

durational amount from the next larger amount to get: 

6-hour incremental depths 

Duration (hours) 

6 12 18 24 30 36 42 48 54 60 66 72 

All-Season PMP 
Increment (inches) 6.9 4.3 3.4 3.1 3.1 3.0 2.9 2.9 2.0 1.1 1.0 0.9 

8. Temporal Distribution, Areal Distribution, and Snowmelt Parameters 

Using the rules from Step 8 the twelve 6-hour increments from Step 7 could be 

distributed as following: 3.1, 3.0, 2.9, 2.9, 3.1, 4.3, 6.9, 3.4, 1.1, 0.9, 2.0, 1.0 

The areal distribution can be found by following Step 8 in Section 13.2. 

For snowmelt parameters see Appendix 4. A completed example for the all-season 

month of November may be found there. 
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Seasonal or Monthly PMP Calculation 

Step 

I. Drainage Outline 

As with the all-season example, the outline of the drainage depicted nominally at a 

scale of l: I ,000,000 in Figure 13.18 is the of Auburn drainage. 

2. User Decision 

We will calculate seasonal PMP for the month of May. 

3. All-Season Index PMP Estimate 

Even though we are doing PMP for May which is not an all-season month, we need 

an all-season index value as a starting point. As with the previous all-season 

example, Figure 13.18 shows the average depth to be 24.6 inches. 

4. Seasonal Index PMP estimates 

Figure 13.4 shows the variation of general-storm PMP for the month of May as a 

percentage of all-season PMP (Plates I and 2). We determined an average value of 

68 percent (to the nearest whole percent) for the Auburn drainage. This percentage 

was multiplied by the average depth from Step 3, and gives an average value ofPMP 

of 16.7 inches for May. The nearest all-season month is March (Figure 13.2), and 

the monthly offset is 2. 

5. Depth-Duration Relations 

As indicated earlier, the Auburn drainage is within the Sierra classification (region 5) 

except for a very small portion near the dam site which is inconsequential. Table 

13.2 shows that the seasonally adjusted !O-mi2 depth-duration ratios for May or a 

two-month offset are: 
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Ratios for Auburn drainage 

Duration (hours) 

1 6 12 24 48 72 

May .148 .437 .663 1.00 1.451 1.549 

The 10-mi2 depth of May PMP is obtained by multiplying the average 24-hour, 

10-mi2 PMP for May (16.7 inches) at Auburn by ratios for 1 hour to 72 hours. These 

are shown below: 

Auburn drainage 10-mi2 PMP 

Duration (hours) 

1 6 12 24 48 72 

May Depth (inches) 2.5 7.3 11.1 16.7 24.2 25.9 

6. Areal Reduction Factors 

Interpolating to 973 mi2 from Table 13.7 (Sierra region, offset of 2), we obtain the 

following reduction ratios: 

1 6 12 24 48 72 

May .548 .607 .648 .687 .731 .773 

Multiplying these ratios by the corresponding May PMP depths from Step 5 gives 

the following storm-centered average depths of PMP across the 973-mi2 Auburn 

drainage for May: 
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I 6 12 24 48 

May Depth (inches) 1.4 4.4 7.2 11.5 17.7 20.0 

7. Incremental Estimates 

The results from Step 6 are also plotted in Figure 13.19 and a curve (dotted line) is 

drawn for these results. Cumulative depths at 6-hour increments to the nearest tenth 
of an inch, extracted from the curves, are as follows: 

6-hour cumulative depths 

Duration (hours) 

6 12 18 24 30 36 42 48 54 60 66 72 

May PMP (inches) I 4.4 J 7.2 9.4 11.5 13.3 15.0 16.4 17.7 18.5 19.1 Jt9.6 1 20.0 

To obtain 6-hour PMP values, subtract each (cumulative) amount from the next 

larger amount to get: 

6-hour incremental depths 

Duration (hours) 

6 12 18 24 30 36 42 48 54 60 66 72 

May PMP Increment 
(inches) 

4.4 2.8 2.2 2.1 1.8 1.7 1.4 1.3 0.8 0.6 0.5 0.4 

8. Temporal Distribution, Areal Distribution, and Snowmelt Parameters 

A possible temporal precipitation (inches) sequence for the twelve 6-hourincrements 

in May is: 0.6, 0.8, 2.2, 4.4, 2.8, 2.1, 1.8, 1.7, 1.4, 1.3, 0.5, 0.4 
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This is a possible sequence from the guidelines mentioned is Step 8 of Section 13.2. 

The areal distribution of isohyets can be obtained using the guidance from Step 8 of 

Section 13.2. No snowmelt parameters are required for May, since they are only 

valid for October through April. 

13.4 Local Storm Procedures 

Two options are available for obtaining the local-storm PMP values. They are: 

A. Obtain the average depth of PMP for a drainage without specifying its areal 

distribution, or 

B. Specify the areal distribution of the precipitation from a PMP storm within a 

drainage. 

Option A requires Steps 1-5 below; Option B requires that Steps I and 2 are used 

followed by Step 6. If Option B is selected. a drainage average depth of the isohyetal 

precipitation pattern for various PMP storm placements must be chosen. There will be as 

many average depths for the drainage as there are placements for the PMP storm. The 

average depths of precipitation in a drainage obtained from Option B will be less than the 

average depth of PMP from Option A unless the drainage has the exact boundary shape 

shown in Figure 13.20. 

Step 

I. One-hour, l-mi2 local-storm PMP 

Locate the basin on Figure 13.21 and determine the basin-average, 1-hour, 1-mi2
, 

local-storm index value of PMP. Use linear interpolation. 

2. Adjustment for Mean Drainage Elevation 

Determine the mean elevation of the drainage. No adjustment is necessary for 

elevations of 6,000 feet or less. If the mean elevation is greater than 6,000 feet, 
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Figure 9.18. 
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Figure 13.21. California local-storm PMP precipitation estimates for 1 me, 1 hour (inches). 

Dashed lines are drainage divides. Same as Figure 9.23. 
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reduce the PMP from Step I by 9 percent for every I ,000 feet above the 6,000-foot 

level. Figure 13.22 can be used to graphically determine this value. 

As an example of the elevation adjustment let us assume we have a basin with a mean 
elevation of 8,700 feet (2,700 feet above 6,000 feet). The reduction factor would be 

24.3 percent (2. 7 times .09), giving an elevation-adjusted PMP of 76 percent 

(rounded) offulll-hour, 10-mi2 PMP. Had Figure 13.22 been used, a value of about 

76 percent is read off the line labeled pseudo-adiabat for an elevation of 8,700 feet. 

3. Adjustment for Duration 

The 1-mi'local-stormPMP estimates for durations less than I hour are obtained from 

Figure 13 .23, as a percentage of the !-hour amount from Step 2. For durations 

greater than I hour, determine the location of the basin on Figure 13.24, which 

provides a 6-hour to !-hour ratio of the local-storm PMP. Multiply this ratio by the 

!-hour local-storm PMP to obtain the 6-hour local-storm PMP. The four multipliers 

on Figure 13.24 are defined as A (1.15), B (1.2), C (1.3), and D (1.4) and correspond 

to the A, B, C, and D of Figure 13.23. Local-storm PMP amounts for durations of 

I to 6 hours can be obtained from Figure 13.23 or Table 13.10 for specific durations. 

4. Adjustment for Basin Area 

Figures 13.25 to 13.28 give the area reductions to 500 mi2 depending on the 6-hour 

depth-duration ratio used in Step 3. The reductions obtained for the selected 

durations and area of the basin then are multiplied respectively by the results from 

Step 3, and a smooth curve is drawn on graph paper for the plotted values to get 

estimates for durations not specified. 

5. Temporal Distribution 

Review of local-storm temporal distributions for this region show that most local 

storms have durations less than 6 hours and that the greatest !-hour amount occurs 
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in the first hour. The recommended sequence of hourly increments is as follows: 
arrange the hourly increments from largest to smallest as obtained directly by 

successive subtraction of values read from the smoothed depth-duration curve. The 
most intense 1-hour of precipitation occurs in the first hour of the storm, the second 
most intense hour in the second hour, and so forth. 

Table 13.10. 
Depth-duration relations (percent of 1-hour amount) for l-mi2 PMP for 

California local stonns. 

Relationship Designator (see Figure 13.23) 

Duration (hours) A B c D 

0 0 0 0 0 

114 55 55 55 55 

1/2 79 79 79 79 

3/4 91 91 91 91 

I 100 100 100 100 

2 109.5 110.5 114 117 

3 112 116 120 126 

4 114 118 125 132 

5 114.5 119 128 137 

6 115 120 130 140 

6. Areal Distribution for Local-Storm PMP 

The elliptical pattern in Figure 13.20 and the tabulated percentages in Tables 13.11 

to 13.14, are used to describe the areal distribution of precipitation of a local PMP 

storm. The 2:1 ratio of the major to minor axis of Figure 13.20 should be used or 

placed only on a map at a 1:500,000 scale. The average index value from Step 2 (or 

Step 1 if no elevation adjustment is made) is multiplied by each of the percentages 

from the appropriate table (Tables 13.11 to 13.14) to obtain the value for each 
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Table 13.11. Isohyetallabel values (percent of 1-hour, 1-mf average depth) to be used in 

conjunction with isohyetal pattern of Figure 13.20 and basin-average depths 

from Figure I 3.25. 

Duration (hours) 

Isohyet 1/4 1/2 3/4 1 2 3 4 5 6 

A 55 79 91 100 109.5 ]]2 114 114.5 115 

B 35 57 68 74.8 83.5 85.5 87.5 88 88.5 

c 24 40 49 56 62.9 4.5 66 66.5 67 

D 18.5 30.5 39 43 48 49.5 50.6 5l.l 51.5 

E 13 22.5 29 32.2 36.6 37.7 38.6 39 39.5 

F 7.5 14.0 19 22.4 25 25.7 26.3 26.7 27.0 

G 4.5 8.5 12 14.0 16.2 16.8 17.4 17.9 18.2 

H 1.8 3.5 5 6.5 8.3 8.8 9.3 9.8 10.3 

I 0.4 0.7 0.9 1.1 2.2 2.7 3.2 3.7 4.1 

J 0.1 0.3 0.5 0.7 1.2 1.7 2.2 2.6 2.9 

Table 13.12. lsohyetallabel values (percent of /-hour, 1-mi2 average depth) to be used in 

conjunction with the isohyetal pattern of Figure 13.20 and basin-average 

depths from Figure 13.26 . 

Duration (hours) 

Isohyet 114 112 3/4 I 2 3 4 5 6 

A 55 79 91 100 110.5 116 118 119 120 

B 35.5 55 68 78 88 95 99 101 102.5 

c 24 39 49 57 66 72 75 77 78.5 

D 19 30 39 44 51.5 56 58.5 60 61 

E 13.5 22 28 33 39 42.7 44.5 46 47 

F 8.5 15 20 23 28 31.5 33.5 35 36 

G 5.5 9.5 13 15 19 22 24 25 26 

H 2 4.5 6.0 7.5 11.5 14.5 16.5 17.5 18.5 

I 1 2 3 4 8 11 13 14.5 15.5 

J I 2 3 4 7 10 12 13.5 14.5 
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Table 13.13. Isohyetallabel values (percent of 1-hour, 1-mf average depth) to be used in 

conjunction with the isohyetal pattern of Figure 13.20 and basin-average 

depths from Figure 13.27. 

Duration (hours) 

Isohyet 114 112 3/4 I 2 3 4 5 6 

A 55 79 91 100 114 120 125 128 130 
B 44 66 77.6 86 100 106 Ill 114 116 
c 26 44 53.6 61 74 81 86 89 91 
D 17 31 40.2 46.5 58 65 70 73 75 
E 11 20 26.8 32.5 42 49 54 57 59 
F 6.6 13 19 24 32 38 43 46 48 
G 6.5 II 14 16 23 28 33 36 38 
H 5 8 10.5 12 17.5 21.5 25.5 29 31 
I 3 6.0 8.5 10.5 16 20 24 27.5 30 
J 2.5 5.5 8 10 15 19 23 26.5 29 

Table 13.14. Isohyetallahel value (percent of 1-hour, 1-mP average depth) to be used in 

conjunction with the isohyetal pattern of Figure 13.20 and basin-average 

depths from Figure 13.28. 

Duration (hours) 

Isohyet 114 1/2 3/4 I 2 3 4 5 6 

A 55 79 91 100 117 126 132 137 140 
B 39 61 74 84 100 109 115 120 123 
c 24 42 52 60 76 85 91 96 99 
D 15 28 37 44 59 67 73 78 81 
E 9 19 26 32 44 52 58 63 67 
F 6 13.5 19 24 34 40 45 50 54 
G 6 10 13.5 16 24 30 35 39 42 
H 4 7 10 13 19 24 28 32 35.5 
I 3.3 6.5 9 II 18 23 27 31 34.5 

J 3 5.5 8 10 17 22 26 30 33.5 
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lettered isohyet (A- J). Once the lahels have been determined for each application, 

the pattern can be moved to different placements on the basin. In most instances, the 

greatest volume of precipitation will be obtained when the pattern is centered in the 

drainage. However, peak flows may actually occur with placements closer to the 

drainage outlet. The basin-averaged depth of precipitation is obtained for chosen 

local PMP storm placements, by using planimetty, a GIS, or other area-averaging 

methods. 

13.5 Example of Local-Storm PMP Calculation 

We have selected a small area in southeastern California known as the McCoy Wash 

to illusttate the steps for calculating local-storm PMP. The Wash has an area size of 167 nti2 

and its boundary, along with selected contours of elevation, is shown in Figure 13.29. We 

will illustrate both options A and B referenced in the previous section. 

Local-Storm PMP for McCoy Wash 

Step 

l. One-hour, l-nti2 PMP 

The centroid of the Wash is near latitude 33.75' N and longitude 114.75' W. 

Interpolation to this centroid on Figure 13.21 gives an average local PMP value 

(!-hour, l-nti2
) of 11.4 inches to the nearest tenth of an inch. Interpolation was 

appropriate here since there is little, if any, gradient of index values across the Wash. 

For locations where significant gradients of index values exist, an average index 

value should be found. 

2. Adjustment for Mean Drainage Elevation 

The mean elevation of the Wash is well below 6,000 feet as shown on Figure 13.29. 

No elevation adjustment is needed, and the local-storm PMP from Step I remains at 

!1.4 inches. 
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Figure 13.29. McCoy Wash, California drainage boundary (solid, heavy line) with elevation 

contours (solid, thin lines) in hundreds of feet. 
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3. Adjustment for Duration 

The value of the 6-hour to 1-hour ratio near the Wash's centroid found in Figure 
!3.24 is 1.3. The depth-duration curve which applies here is curve C from Figure 

13.23, and column Cfrom Table 13.10 is also applicable. 

Multiplication of the colunm C percentages by the average depth from Step 2 gives 

the average 1-mi2 values for the Wash: 

Duration (hours) 

114 112 3/4 I 2 3 4 5 6 

l-mi2 Average Depth 

(inches) 6.3 9.0 10.4 11.4 13.0 13.7 14.3 14.6 14.8 

4. Adjustment for Basin Area 

Figure 13.27 gives the depth-area relations for a 6-hour to !-hour ratio of 1.3 The 

reduction ratios used to obtain average depths basin from 1-me depths for the 
167 mi2 and their depths are: 

Duration (hours) 

114 112 I 3 6 

Reduction Ratio .31 .37 .43 .50 .54 

167-mi2 Average Depth (inch) 2.0 3.3 4.9 6.9 8.0 

These results are shown, and a smooth curve fitted to these depths as shown in 

Figure 13.30. 
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Figure 13.30. Average depth of local-storm PMP for the 167-mF McCoy Wash, California. 
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5. Temporal Distribution 

The smoothed cumulative hourly values from Step 4 and the incremental hourly 

values resulting from successive subtractions are: 

Hourly Intervals 

I 2 3 4 5 6 

Cumulative PMP (inch) 4.9 6.1 6.9 7.4 7.7 8.0 

Incremental PMP (inch) 4.9 1.2 0.8 0.5 0.3 0.3 

The highest increment to lowest increment sequence shown above 1s the 
recommended chronology for local-storm PMP at McCoy Wash. 

6. Areal Distribution of Local-Storm PMP 

The areal distribution of local-storm PMP is given by the isohyets of Figure 13.20. 

Remember these isohyets are meant to be placed within a basin boundary at the 

1:500,000 map scale. For this example, the percentages from Table 13.13 apply for 

a basin with a 6-hour to !-hour ratio of 1.3. When the 6-hour to !-hour ratio is 1.15, 

1.2, or 1.4, Tables 13.11, 13.12, or 13.14 apply respectively. 

It is important to note that when Tables 13.11 to 13.14 are used in a particular case, 

that the percentages from the selected table apply only to the l-mi2
, !-hour average 

local-storm PMP from Step 2, and NOT to the values from Step 3. In this example, 

the average depth is 11.4 inches, and the isohyetallabels of Table 13.15 result. An 

average 6-hour depth of 8.0 inches for the 167-mi2 McCoy Wash Basin is given 

(Step 4). Using Figure 13.20 the isohyetallabels range from 14.82 inches enclosing 

1 mi2 to 4.33 inches enclosing 220 mi' for that duration. 

Remember that the isohyetallabels in Step 6 produce the average depths from Step 4 

only if the basin in consideration is elliptical with a 2:1 ratio of the major to minor 
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axis and the ellipses are centered in a perfect drainage. The ellipses with the 

indicated values from this step when placed in an irregularly shaped drainage and 

then averaged, will produce average depths less than those resulting from Step 4. 

The PMP level for the drainage comes from Step 4, with the isohyetal labels of 

Step 6 giving an idea of a possible areal distribution for the storm. 

Table 13.15. Isohyetallabel values for local-storm PMP, McCoy Wash, California ( 167 mf ). 

Duration (hours) 

Isohyetal 

Tag 

(mi2
) 114 112 3/4 1 2 3 4 5 6 

A (1) 6.27 9.01 10.37 11.40 13.00 13.68 14.25 14.59 14.82 

B (5) 5.02 7.52 8.85 9.80 11.40 12.08 12.65 13.00 13.22 

c (25) 2.96 5.02 6.11 9.65 8.44 9.23 9.80 10.15 10.37 

D (55) 1.94 3.53 4.58 5.30 6.61 7.41 7.98 8.32 8.55 

E (95) 1.25 2.28 3.06 3.71 4.79 5.59 6.16 6.50 6.72 

F (150) .75 1.48 2.17 2.74 3.65 4.33 4.90 5.24 5.47 

G (220) .74 1.25 1.60 1.82 2.62 3.19 3.76 4.10 4.33 

H (300) .57 .91 1.20 1.37 2.00 2.45 2.91 3.31 3.53 

I (385) .34 .68 .97 1.20 1.82 2.28 2.74 3.14 3.42 

J (500) .29 .63 .91 1.14 1.71 2.17 2.62 3.02 3.31 

Endnote1 

Plates 1 and 2 have limited detail in some regions. The Hydrometeorological Design Studies Center will 

provide supplemental map(s) containing a more complete set of isohyets or digital values for specific 

drainages areas, upon request. 
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