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Hydrologic model prediction uncertainty ?
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Predictive uncertainty and links with climatic and landscape heterogeneity (Sivapalan et al., 2003)




Streamflow prediction uncertainty
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How ?

» Construct prediction bands
» Monte Carlo Simulation

Why ?
» To assess overall model prediction ability
» To learn the way to reduce prediction uncertainty




Outline

1.

CREW: a physically based and distributed
hydrological model at the catchment scale

Study area: Howard springs and Susannah brook

The analysis of model uncertainty in streamflow
prediction

3.1 construction of uncertainty bands in streamflow
prediction

3.2 the value of additional data:
uncertainty quantification and reduction



1. CREW

A physically based and distributed hydrological model at the catchment scale




C R EW (Lee et al., 2006)

 Balance of mass and momentum at the scale of catchment:
Reggiani (1998, 1999)

« Benefits: physically sound,
less input data requirement,
less computational cost,
suitable for large scale modeling (~ > 100 km?)

« Application: Weiherbach, Germany (Lee et al., 2006)
Collie river basin, Australia (Lee et al., 2006)




Reggiani et al.’s theory
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Reggiani et al. (1998,1999,2000)

- http://www.fsl.orst.edu/lter/research/component/hydro/summary.cfim?sum=dye02&topnav=62

- Yoshi (2003)




Discretization: 1 catchment=13 analysis units

REW1 REW2

watershed outlet

Reggiani et al. (1998)




Water Balance Model (CREW)

Channel reach

Reggiani et al (1999)




Governing equations (CREW)

 Mass balance equations (Reggiani et al., 1998, 1999; Lee et al., 2006)
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Governing equations (CREW)

« Momentum balance equations (Reggiani et al., 1998, 1999, 2000)

Unsaturated Zone (V) v =R[—su+%+|y1uq The catchment scale Darcy’s law
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Howard springs




Howard springs
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3. The analysis of model uncertainty in streamflow prediction

3.1. construction of uncertainty bands in streamflow prediction




eneralized | ikelihood ' 'ncertainty = stimation ( : Beven and Binley, 1992)

- A Bayesian Monte-Carlo simulation-based technique

« Likelihood measure:

L(@i\v):l—"—i (62 < 0?)

O,

Hi : parameter set Y : data

2

i 2 i
j - errorvariance g : observed variance

« Parameter sets: 30,000




Susannah brook: 99% in runoff prediction
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Howard springas: 99%
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Prediction uncertainty in streamflow

Susannah brook Howard springs

of 89% uncertainty bounds
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Prediction uncertainty in annual water balance

| :infiltration
= S sannah brook
R :recharge
IE : Infilteration excess

SE: saturation excess

SS: subsurface flow
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E : simulated evaporation

Q : simulated streamflow




3.2 the value of additional data
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Flux data as add
Hutley et al., (2000




The use of evaporation data (2001/1/1 - 2003/3/29)

Soill moisture content (s)




Uncertainty (H): measure & reduction

H — —2 Li IOg 2 Li Shannon entropy measure (1948a, b)

& Howard springs (GLUE)

m— Howard springs (GLUE & FUZDY

evpporation dgta




4. Summary

- Regarding

Uncertainty analysis using GLUE revealed poor CREW
performance at peak flows.

The use of flux data helped reduce uncertainties In
streamflow prediction which were quantified by
Shannon entropy.




4. Summary

- Regarding

1. Through the simulation of Susannah brook and Howard
springs using CREW with GLUE showed that

were related to
of catchments.

2. At the simulation of Howard springs, low flows are
sensitive to the changes in evaporation process at the
beginning of the rainy season, but insensitive at the end

of rainy season due to the nonlinear control of soil with
respect to water movement.




Thank you!!!




