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XEFS will enable seamless hydrologic ensemble prediction from weather to climate scales and translate
weather and climate prediction into uncertainty-quantified water information

July 15-17, 2008 National DOH Workshop, Silver Spring, MD 2



SAC,
UHG

Precipitation ensemble forecast

f,(SQIN) =j f,(SQIN | FMAP)

fl(QIN):j f,(QIN | SQIN)| f,(SQIN) dSQIN
Krzysztofowicz (1999), Seo et al. (2006)

Integration of input and hydrologic uncertainties

= 500 cms

-\

400 500
! !

3p0
I

= 250 C

treamflow ensemble forecast

S
<|
o
:

Simulated streanpflow (cms)

f.(FMAP) dFMAP

100

200

300 400 500

Observed strgamflow (cms)

v

T T I

iPost-processed streamflow ensembie

July 15-17, 2008

National DOH Workshop, Silver Spring, MD



Status

e A prototype ensemble post-processor exists (Seo et al. 2006)

— An earlier version of the processor was implemented in AWIPS
In 2007 to support short-term (~5 days) ensemble forecasting

— Uses daily streamflow data for statistical modeling due to

general lack of availability of sub-daily historical streamflow data
necessary for calibration

 Work carried out, but not completed, in 2007~2008
— An Adjust-Q procedure for EnsPost
 To mimic MODs in calibration
 To mimic operational Adjust-Q in ensemble generation

— A multiscale probability matching procedure to render ensembles
of weekly, monthly, seasonal, etc., flow volume reliable
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Remaining work for Phase 1

 Complete the Adjust-Q procedure for Ens Post
 Complete the multiscale probability matching procedure
« Disaggregation of daily to sub-daily flow

 Assessment of data and ensemble size requirement

« User interface and display tools for parameter estimation
and calibration

e Training

From EnsPost Phase 1 GAPS (XEFS Design & Gap Analysis Report, NWS 2007)
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Issues

« Potency of EnsPost depends largely on:
— The availability of long-term observed flow data

— The degree to which stationarity in the streamflow
climatology holds

e In areas where snowmelt is important, additional
stratification of the data may be necessary, which would
require a larger data set for parameter estimation /
calibration

« Parameter estimation / calibration of EnsPost should be
Integrated with the general model calibration procedures
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EnsPost: Methodology

* Recursive linear regression in the normal space

— Normal transformation is based on normal quantile
transformation (NQT) of observed and model-
simulated flows (daily)

° ZobsK: (1_b) ZobsK_1 +b ZsimK + ¢
— b, and mean and variance of ¢ are flow range- (low
and high) and seasonality-dependent parameters
e Bias correction and uncertainty accounting

— Generates ensembles via conditional simulation of
QObSK given QObSK-L and QsimK
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Methodology (cont.)

* Process for lead day k for the it ensemble member
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Methodology (cont.)

« (Generation of ensemble forecasts at daily time step
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Examples — MARFC/Juniata

The following 5 slides are excerpted from
http://www.copernicus.org/EGU/hess/hessd/3/1987/hessd-3-1987.htm

Juniata River Basin http://www.erh.noaa.gov/marfc/Rivers/juniata.png
Daily, Modeled & Supplemental Points
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Fig 4. Ratio of the sum of the observed

flow to that of the model-predicted (in solid
line) or the post-processed (in dotted line)
in the parameter estimation period versus

lead time (days).
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Fig 5. Percent reduction in root mean
square error (RMSE) by the post-
processed flow over the model-predicted
in the parameter estimation periods
versus lead time (days).

From Seo et al. (2006)
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Fig 6. Scatter-plots in linear scale (left panels) and in log scale (middle panels), and
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simulated flows (upper panels) and between the observed and the post-processed flows
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Fig 8. Same as Fig 5, but for the
validation periods.
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EnsPost: Findings

 Performance of the ESP post-processor is sensitive to
data availability

 If long-duration data is available, the post-processor
performs as expected (correct model biases, produce
reliable ensemble traces)

 The ESP post-processor does not handle regulated
flows very well

o Storm typing/stratification/conditioning is necessary to
handle disparate events (e.g. rain-on-snow)
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Post-processing streamflow
ensembles: Attribution

* Resolution
« Reliabllity (i.e. bias in probability)
— At the model-native time step/scale (e.g. hourly)
« Univariate error modeling
e Scaling

— Reliability at other time scales of aggregation (e.g.
daily, weekly, monthly, seasonal, annual)

 Not an issue if scaling holds  f(w) = a(cx)* = ¢ f(z)  f(2)
« Multivariate (in time) error modeling
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/)
- Some ideas from image processing

2.1 Wei-Levoy algorithm

(a) (b) (¢)

Figure 2.1: [llustration of the synthesis input and output. The texture sample (a) 1s used to
transform the noise (b) in the image (c¢).

From ECOLE POLYTECHNIQUE, PROMOTION X-98, RAPPORT DE
STAGE D’OPTION SCIENTIFIQUE, Paul BILLAULT (2001)

July 15-17, 2008 National DOH Workshop, Silver Spring, MD 19



fw In: Proceedings of the First IEEE Workshop on Internet Vision (held m conjunction with CVPR), 2008.

Super-Resolution Texturing for Online Virtual Globes
Diego Rother Lance Williams Guillermo Sapiro
University of Minnesota Google, Inc. University of Minnesota
dircth@umn.edu lancewlgoogle.com guille@umn.edu

2 S0cm
Figure 1: “Powers of two.” This sequence of images illustrates the framework proposed 1n this article to supplement and enhance
the imagery of virtual globe applications (e.g.. Google Earth). The first four images were extracted from Google Earth, the rest
were synthesized with the proposed framework following the user’s zoom-in request. See the corresponding video at [28].
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monthly, seasonal, etc., flows reliable)

 Generate a temporally correlated streamflow
ensemble (e.g. in the normal space, then back-

transform)
* Apply probability matching from large to small
temporal scales of aggregation
-1,2,3,4,6, 8,12, 16, 24, 32, 48, 64, 96, 128,
192, 256, 384, 512, 768, 1024, 1536, 2048
(hrs)
* Do kernel smoothing

A proposed procedure for scaling (to make weekly <~
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Thank you

Q/A, Discussion
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