Hydrologic Ensemble Prediction for Risk-Based Water Resources Management and Hazard Mitigation

D.-J. Seo1,2, Julie Demargne1,2, Limin Wu1,3, Yuqiong Liu1,4, James Brown1,2, Satish Regonda1,4, Haksu Lee1,2

1NOAA/NWS/Office of Hydrologic Development
2University Corporation for Atmospheric Research
3Wyle Information Systems, LLC
4Riverside Technology, inc.
Products & Services Goal

Seamless probabilistic forecasts for all lead times

Benefits
- Flood Mitigation & Navigation
- Agriculture
- Reservoir Control
- Health
- Commerce
- State/Local Planning
- Ecosystem
- Recreation Environment
- Hydropower
- Protection of Life & Property

Forecast Lead Time:
- Minutes
- Hours
- Days
- Weeks
- Months
- Seasons
- Years

Forecast Uncertainty
Why hydrologic ensemble forecasting?

• Provide an estimate of the forecast (i.e. *predictive*) uncertainty
 – Confidence information (for the forecasters)
 – For user-specific risk-based decision-making (for the customers)
• Improve forecast accuracy
 – An (optimally weighted) average of two good (or bad) forecasts is better than either of the two
• **Extend forecast lead time**
 – Weather and climate forecasts are highly uncertain and noisy; they cannot practically be conveyed as single-valued
• **Cost-effective improvement of forecast systems, science and process**
NWS Hydrologic Ensemble Forecast System (HEFS)

- An end-to-end hydrologic ensemble forecast system currently under development
- Comprehensive plan developed in 2007 (http://www.weather.gov/oh/rfcdev/docs/XEFS_design_gap_analysis_report_final.pdf)
- NWS/OHD collaborating with RFCs, Deltares, NCEP, OAR and universities through:
 - Advanced Hydrologic Prediction Service (AHPS)
 - Climate Prediction Program for the Americas (CPPA) Core Project
 - The Observing-System Research and Predictability Experiment (THORPEX)
 - The Hydrologic Ensemble Prediction Experiment (HEPEX)
 - Research grants
- Field deployment via the Community Hydrologic Prediction System (CHPS)
- Prototype components under testing and evaluation at a number of RFCs
- Additional prototype deployments during the next 2 years
Current (Seasonal ESP) vs. HEFS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Current</th>
<th>HEFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td>National Weather Service River Forecast System (NWSRFS) (inflexible, outdated)</td>
<td>Community Hydrologic Prediction System (CHPS) (flexible, SOA)</td>
</tr>
<tr>
<td>Forecast horizon</td>
<td>Weeks to seasons</td>
<td>Hours to years</td>
</tr>
<tr>
<td>Input forecasts</td>
<td>Climate outlook forecasts</td>
<td>Short-, medium- and long-range forecasts (HPC/RFC, GFS, CFS, SREF)</td>
</tr>
<tr>
<td>Hydrologic uncertainty</td>
<td>Not addressed</td>
<td>Addressed (but w/ room for improvement)</td>
</tr>
<tr>
<td>Products</td>
<td>Limited number of graphical products</td>
<td>A wide array of user-tailored products via Web-enabled interactive toolbox</td>
</tr>
</tbody>
</table>
Uncertainty integration strategy

\[f_1(q_f \mid q_o) = \int f_2(q_f \mid q_o, s_f) f_3(s_f \mid q_o) \, ds_f \]

where \(q_f \) Streamflow at some future times
\(q_o \) Observed flow up to and including the current time
\(s_f \) Model-predicted streamflow at the future times

Krzysztofowicz (1999)

\[f_3(s_f \mid q_o) = \iiint f_4(s_f \mid b_f, i, p, q_o) f_5(b_f \mid i, p, q_o) f_6(p \mid i, q_o) f_7(i \mid q_o) \, db_f \, di \, dp \]

where \(b_f \) Future boundary conditions (precipitation, temperature)
\(i \) Initial conditions
\(p \) Model parameters

Seo et al. (2006)
Uncertainty integration strategy (cont.)

w/o data assimilator and parametric uncertainty processor

\[
 f_1(q_f \mid q_o) = \int f_2(q_f \mid q_o, s_f) \ f_3(s_f \mid q_o) \ ds_f
\]

Predictive uncertainty in streamflow Residual hydrologic uncertainty Uncertainty in model-predicted streamflow

where \(q_f \) Streamflow at some future times
\(q_o \) Observed flow up to and including the current time
\(s_f \) Model-predicted streamflow at the future times

\[
 f_3(s_f \mid q_o) = \int f_4(s_f \mid b_f) \ f_5(b_f) \ db_f
\]

Uncertainty in model-predicted streamflow Conditional hydrologic model simulation Future forcing uncertainty

where \(b_f \) Future boundary conditions (precipitation, temperature)
Strategy for forcing ensembles

• Current
 – Generate ensembles statistically from the single-valued QPF and QTF
 • HPC/RFC, GFS, CFS
 • Ensemble Pre-Processor (EPP)
 – Schaake et al. (2007), Wu et al. (2010)

• Near-term plan
 – (Post-processed) Multi-model ensembles
 • Currently in experimental operation at some RFCs using MMEFS
 – Include potential evaporation
Strategy for hydrologic uncertainty modeling

- **Current**
 - Lump all hydrologic uncertainties into one and model it stochastically (Seo et al. 2007)
- **Near-term plan**
 - Uncertainty modeling of regulated flows
 - Initial condition uncertainty via ensemble data assimilation
 - Parametric uncertainty via the parametric uncertainty processor
 - Multimodel ensembles
Verification Results: EPP-ESP-EnsPost flow forecast compared to climatological ESP

- Skill Score for Mean CRPS (CRPSS): GFS-based flow generated by EPP-ESP-EnsPost compared to GFS-based flow (EPP-ESP) and climatology-based flows (climatological ESP)

- Very large improvement by EPP-ESP over climatological ESP

- Significant improvement by EPP-ESP-EnsPost over EPP-ESP
Operational hydrologic ensemble forecasting - Challenges

- Appropriately model and integrate uncertainties introduced from data, model, and human sources
- Combine ensemble forcing for short, medium, and long ranges from multiple sources
- Maintain spatiotemporal relationships across different scales
- Include forecaster skill in short-term inputs (QPF, temperature, etc.)
- Include forecaster guidance of hydrologic model operation
- Maintain coherence between deterministic and ensemble forecasts
- Provide uncertainty information in a form and context that is easily understandable and useful to the customers
- Reduce the cone of uncertainty for effective decision support
 - Improve accuracy of meteorological and hydrologic models
- Improve uncertainty modeling and observations of rare and extreme events (e.g. record flooding, drought)
 - Extreme conditions may be outside of model limits and without historical analog
- Greatly improve computing, database and data storage capabilities

Adapted from Hartman (2007)
Collaborative R&D and RTO in the CHPS environment
Thank you

For more information:

julie.demargne@noaa.gov
Hyperlinked slides
Provide an actionable estimate of the forecast (i.e. predictive) uncertainty

With ensemble forecasting

Current product
In single-valued forecast process, “hydrologic error-tolerable” lead time for QPF is very limited.
Uncertainties in hydrologic forecast

- Quantify meteorological/input uncertainty
- Quantify parametric uncertainty
- Quantify uncertainty in initial conditions
- Reduced uncertainty due to pre-processing
- Reduced uncertainty due to calibration
- Reduced uncertainty due to data assimilation

Structural uncertainty, residual uncertainty

Flow regulations - A large challenge

Forecaster role

Ensemble pre-processor

Parametric uncertainty processor

Data assimilator

Ensemble post-processor, multimodel ensemble
Hydrologic Ensemble Forecast System (HEFS)

HEFS will enable seamless hydrologic ensemble prediction from weather to climate scales and translate weather and climate prediction into uncertainty-quantified water information.
EPP-generated precipitation ensembles

Reliability diagrams for ensemble hindcasts of 6-hr precipitation for all 6-hr periods in Day 1 for Huntingdon in central PA. The vertical bars denote 95% confidence interval.

From Wu et al. (2010)
EPP-generated precipitation ensembles (cont.)

Mean CRPS for ensemble hindcasts of 6-hr precipitation for all 6-hr periods in Day 1 for Nov through Apr. The results are for the North Fork of the American River in CA, with upper and lower areas combined. The vertical bars denote the 95% confidence intervals.

From Wu et al. (2010)
In general, the post-processed ensemble members consistently encompass the verifying observation, and the ensemble mean closely resembles the single-valued forecast.
Verification of post-processed streamflow ensembles – daily flow
Verification of post-processed streamflow ensembles – monthly flow

In general, post-processed streamflow ensembles are reliable and as skillful, in the mean sense, as the operational single-valued forecast over a range of temporal scale of aggregation.
Errors in Climatological ESP Forecast (Day 1)

The diagram shows the forecast errors in the observed daily flow in CMS. The vertical axis represents the forecast error (forecast - observed) in CMS, while the horizontal axis shows the observed daily flow in CMS. The zero error line indicates the observed values, with error bars showing the 75%, median, 25%, and minimum values. The graph illustrates the distribution of forecast errors across the observed daily flow range.
Errors in GFS-based EPP-ESP-EnsPost Flow Forecast (Day 1)
End of slides