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Abstract

MEDIUM-RANGE ENSEMBLE PRECIPITATION AND STREAMFLOW FORECASTING
FOR THE UPPER TRINITY RIVER BASIN IN TEXAS VIA THE NWS HYDROLOGIC
ENSEMBLE FORECAST SERVICE

HOSSEIN SADEGHI, MS

The University of Texas at Arlington, 2015

Supervising Professor: Dong-Jun Seo

Compared to forecasts of short-term precipitation accumulations (daily or shorter)
at lead times larger than a few days, those of longer-term accumulations (3-daily or
longer) are significantly more skillful owing to the larger temporal scale of aggregation. If
one can utilize this skill present in medium-range precipitation forecast in hydrologic
prediction, it is very likely that the lead time of hydrologic forecasts, in particular, of
streamflow and soil moisture may be extended. Though forecasts of longer-term
accumulations of precipitation are more skillful than those of shorter-term accumulations,
precipitation forecasts in general are too uncertain to be used as deterministic, or single-
valued, input.

The main goal of this study is to increase forecast lead time of streamflow
forecasts by using medium range ensemble precipitation forecasts. A premise for this
study is that, in the ensemble paradigm, forecasting of precipitation and streamflow
provides extending forecast lead time with improved forecast skill. To utilize forecast skill
in medium range precipitation forecasts in the ensemble paradigm, this study uses
Hydrologic Ensemble Forecast Service (HEFS).

In the HEFS, the Meteorological Ensemble Forecast Processor (MEFP) was

used to generate ensemble precipitation hindcasts using the Global Ensemble Forecast



System (GEFS) reforecast data. Raw streamflow hindcasts were generated via the
Community Hydrologic Prediction System (CHPS) using the Sacramento Soil Moisture
Accounting model (SAC-SMA) and unit hydrograph. To reduce biases and uncertainties
in the hydrologic model results, raw streamflow ensembles were post-processed by the
Ensemble Postprocessor (EnsPost). The precipitation, raw and post-processed
streamflow ensembles were verified using the Ensemble Verification System (EVS) to
assess the quality of hindcasts. Ensemble hindcasts of precipitation and streamflow were
generated using the HEFS for a 26-year period between 1986 and 2011. The study area
consisted of five headwater basins located upstream of the Dallas-Fort Worth (DFW)
metropolitan area in the Upper Trinity River Basin in Texas.

The main findings of this study include: (1) adjusting modulation canonical events is a
very effective way to improve predictive skill in ensemble forecasts of precipitation, raw,
and post-processed streamflow forecasts: (2) GEFS-forced medium-range precipitation
hindcasts for the study area have valuable skill in 1-, 3-, 5-daily, weekly, and biweekly-
aggregated hindcasts; (3) in the ensemble paradigm, forecast skill in medium-range
precipitation forecasts can be effectively utilized to improve the quality of streamflow
forecasts in extended forecast lead time via HEFS.

This study used the HEFS successfully, demonstrating the HEFS's portability in the
Unix/Linux environment outside of National Weather Service (NWS). This study also
showed that the HEFS is an effective tool for generating skillful forecasts of precipitation
and streamflow ensembles. This study would provide water resources managers with
improved streamflow forecasts for the extended forecast lead time to effectively manage

water resources and to mitigate water-related hazards.
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Chapter 1
Introduction

Medium-range (~ 2 weeks) forecasting of precipitation is critical to meeting
different types of user needs for operational hydrology and water resources management
(Yuan et al., 2014). For example, some users in the Eastern US may be interested in
river forecasts with a lead time of three to seven days to manage and mitigate the impact
of flooding (Adams and Ostrowski, 2010) whereas those in the Western US may be
interested in weekly or longer-lead forecast of inflow into water supply reservoirs. Skillful
medium-range forecasting of precipitation is particularly important in areas that are prone
to extreme events such as floods and droughts. In Texas, for example, a severe drought
which lasted for four and a half years since 2011 ended with a historical flooding event in
May 2015 which resulted in 28 fatalities (https://www.climate.gov/news-features/event-
tracker/flood-disaster-texas-and-oklahoma).

For short-range forecasting of precipitation, the National Weather Service (NWS)
West Gulf River Forecast Center (WGRFC) produces and use quantitative precipitation
forecast (QPF) in the current practice. The WGRFC QPF is single-valued precipitation
forecasts with 72-hour forecast lead time. Operationally, only the first 6-hour of QPF is
used to generate river forecasts, although the entire 72-hour forecasts may be used,
depending on specific weather events (WGRFC, 2015). The reason for this practice is
that, due to the very limited predictive skill in QPF particularly for convective precipitation,
inputting longer-lead single-valued QPF generally results in longer-lead single-valued
river stage forecasts with unacceptably large errors (Regonda, 2013).

Compared to forecasts of short-term precipitation accumulations (daily or shorter)
at lead times larger than a few days, those of longer-term accumulations (3-daily or

longer) are significantly more skillful owing to the larger temporal scale of aggregation



(Brown at el., 2014b). If one can utilize this skill present in medium-range precipitation
forecast in hydrologic prediction, it is very likely that the lead time of hydrologic forecasts,
in particular, of streamflow and soil moisture may be extended. Though forecasts of
longer-term accumulations of precipitation are more skillful than those of shorter-term
accumulations, precipitation forecasts in general are too uncertain to be used as
deterministic, or single-valued, input. If, on the other hand, precipitation forecasts are
expressed as ensembles or in probabilistic terms, one may produce ensemble or
probabilistic hydrologic forecasts, with which the users can make risk-based decisions
(Demargne et al., 2014; Seo et al., 2010).

There are many sources of uncertainty in streamflow forecasts: errors in
meteorological input, structural errors in the hydrologic model, parametric errors in the
hydrologic model, errors in the hydrologic model initial conditions, and human control and
alternations of flow and the hydrologic cycle. The uncertainties arising from these sources
of error propagate through the modeling system to degrade the quality of hydrologic
forecasts (Brown and Heuvelink, 2005). Because such uncertainty information cannot be
conveyed in a deterministic, or single-valued, forecast, it is necessary to use probabilistic
forecasting methods. Toward that end, ensemble forecasting has gained great popularity
in many disciplines because it may the only practical methodology available today that is
general enough for operational hydrologic forecasting (Seo et al., 2006; Cloke and
Pappenberger, 2009; Nester et al., 2012; Demargne et al., 2014).

To operationalize ensemble hydrologic forecasting, the U.S. National Weather
Service Office of the Hydrologic Development (NWS/OHD, now the NWS/National Water
Center) has recently developed the Hydrologic Ensemble Forecast Service (HEFS;
Demargne et al., 2014; Seo et al., 2010). The HEFS ensemble generation package

includes the Meteorological Ensemble Forecast Processor (MEFP), the MEFP Parameter



Estimator (MEFPPE), the Hydrologic Ensemble Processor (HEP), the Ensemble Post

Processor (EnsPost), and the EnsPost Parameter Estimator (EnsPostPE) (see Figure

1.2).
D = Forecast tool (real-time/hindcast) |:| = Supporting tool ==== = Future capability
| = ¢ Verification results
. MEFP: pre- > A EVS: |
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—— I ‘
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Figure 1.1 Schematic of the Hydrologic Ensemble Forecast Service (Demargne et al.,
2014)

The HEFS models meteorological, or input, uncertainty in precipitation and
temperature forecasts and hydrologic uncertainty in simulated streamflow separately and
integrates the two numerically to estimate the predictive uncertainty in the streamflow
forecast. The MEFPPE models input uncertainty to produce the MEFP parameters. The
MEFP generates precipitation and temperature ensemble forecasts that are bias-
corrected and account for input uncertainty (Krzysztofowicz, 1999; Schaake et al., 2007;

Wu et al., 2011) based on single-valued quantitative precipitation and temperature



forecasts (QPF, QTF). The HEFS also uses the ensemble post-processor, or EnsPost, to
bias-correct and account for hydrologic uncertainty (Krzysztofowicz, 1999; Seo et al.,
2010) in the raw ensemble streamflow forecast that reflects only the input uncertainty.
Because the quality of ensembles that the MEFP and the EnsPost produce depend
heavily on the goodness of the MEFP and the EnsPost parameters estimated by the
MEFPPE and the EnsPostPE, it is very important that the MEFP and the EnsPost
parameters are estimated carefully to maximize skill in the ensemble forecasts. Yet, this
relationship between the forecast accuracy and the parameter quality has not been fully
investigated.

For medium-range forecasting of precipitation and temperature, the HEFS
currently uses the forecasts from the Global Ensemble Forecast System (GEFS;
Demargne et al., 2014). While GEFS produces ensemble forecasts of precipitation and
temperature along with many other variables (Hamill at el., 2013), such “raw” ensemble
forecasts are generally biased in the mean and in higher-order moments (Wu et al.,
2011). As such, it is generally necessary to remove or reduce biases by statistical means
once the real-time forecasts become available. Also, it is well known that the ensemble
spread in these raw forecasts is not capable of capturing flow-dependent predictability
(Wu et al., 2011). Also, while generally skillful in capturing central tendencies, the
ensemble mean of raw forecast tends to be biased unconditionally and/or conditionally
(Hamill at el., 2013). For these reasons, significant efforts have been made in recent
years (Gneiting at el., 2007; Hamill et al., 2008; Hamill at el, 2013) to bias-correct GEFS
ensemble mean forecasts and to model the uncertainties associated with the resulting
single-valued forecasts statistically. For reliable statistical bias correction and uncertainty
modeling, however, a large amount of historical forecasts and verifying observations are

necessary. For this purpose, the GEFS reforecast dataset has been developed by



National Centers for Environmental Prediction (NCEP) which provides a consistent NWP
model output with a long period of record, from which statistical relationships for bias
correction and uncertainty modeling may be derived (Schaake et al., 2007; Wu et al.,
2010). The MEFP and the MEFPPE in the HEFS have been designhed and developed
with the above considerations in mind.

This study assesses the value of utilizing the HEFS by assessing short-range
ensemble forecasts generated by the HEFS MEFP using a single-valued WGRFC QPF.
The GEFS reforecast dataset is used to assess the value of medium-range ensemble
precipitation forecasts to ensemble streamflow forecasting, and to evaluate sensitivity of
the MEFP and the EnsPost parameters to the quality of ensemble precipitation and
streamflow hindcasts.

The above objectives require careful and rigorous forecast verification. According
to MetEd (https://www.meted.ucar.edu/), there are multiple reasons to verify forecasts:
1) Monitor forecast quality by measuring the agreement between forecasts and verifying

observations,
2) Improve forecast quality by learning the forecast system, and
3) Compare one forecast system with another.
In this study, the Ensemble Verification System (EVS; Brown et al., 2010) developed by
NWS/OHD is used to forecast verification.

The main goal of this study is to increase lead time of streamflow forecasts by
using medium range ensemble precipitation forecasts. A premise for this study is that, in
the ensemble paradigm, forecasting of precipitation and streamflow provides extended
forecast lead time with improved forecast skill. To utilize forecast skill in medium range
precipitation forecasts in the ensemble paradigm, the HEFS is used in this study.

The specific objectives of this study are as follows:



1) Evaluate the value of utilizing the HEFS for generating ensemble precipitation
forecasts by assessing the predictive skill of the WGRFC QPF-forced short-range
ensemble precipitation forecasts generated by the MEFP,

2) Assess the predictive skill of GEFS-forced medium-range ensemble precipitation
forecasts generated by the MEFP,

3) Advance understanding of the sensitivity of the MEFP and the EnsPost parameters to
the quality of ensemble precipitation and streamflow hindcasts,

4) Evaluate the impact, in terms of extending lead time and improving accuracy, of
utilizing GEFS-forced medium-range ensemble precipitation forecast in Objective 1
on the raw ensemble streamflow forecast from HEP, and

5) Assess the value of EnsPost in post-processing the raw streamflow ensemble forecast
in Objective 3.

This research makes the following new contributions:

1) It is the first time to utilize HEFS in CHPS outside of NWS.
2) It is the first time to evaluate the value of utilizing the HEFS as an ensemble
generator outside of NWS
3) It is the first time to demonstrate possible benefits for decision makers in the water
resource field by utilizing GEFS-forced medium-range ensemble forecasts of
precipitation and streamflow
The organization of this thesis is as follows. Chapter 1 describes the objectives of
the study. Chapter 2 describes the tools used. Chapter 3 describes the study area and
the methodology used. Chapter 4 presents the results. Chapter 5 summarizes the

conclusions and future research recommendations.



Chapter 2
Tools used

This study uses the HEFS for ensemble generation and verification. This chapter

describes the HEFS and its components as they pertain to this research.
2.1 Hydrologic Ensemble Forecast Service (HEFS)

The HEFS was developed to address a wide range of needs for risk-based
decision making in operational hydrology and water resources management (Hartman et
al., 2007). The HEFS operates on the Community Hydrologic Prediction System (CHPS)
which is a hydrologic forecasting shell that provides an open environment for
collaborative development and data sharing among diverse stakeholders and users
(Demargne et al., 2009; Demargne et al., 2014). The HEFS ensemble generation
package consists of statistical models to model and quantify input and hydrologic
uncertainties and to generate ensembles via conditional simulation (Deutsch and Journel,
1992). Hydrologic models, such as the Sacramento Soil Moisture Accounting (SAC-SMA)
model (Burnash et al., 1995) and unit hydrograph (UHG), are available to the HEFS as
CHPS operations. The statistical models in the HEFS require historical forecasts or
simulations as well as the verifying observations to model relationships and associated
uncertainties. Implicit in HEFS’s statistical modeling is the stationarity assumption; the
relationships do not change over time and hence may be applied to future events (Brown
et al., 2014b; NWS OHD, 2015b). The HEFS includes two statistical models and their
parameter estimation tools: the Meteorological Ensemble Forecast Processor (MEFP) for
bias correction and accounting of input uncertainty and the Ensemble Post-processor
(EnsPost) for bias correction of accounting of hydrologic uncertainty (Figure 1.1). The

MEFP generates precipitation and temperature ensembles which provide ensemble input



to hydrologic models to generate raw streamflow ensembles. EnsPost bias-corrects the
raw streamflow ensembles to produce post-processed streamflow ensembles.
2.1.1 Meteorological Ensemble Forecast Processor (MEFP)
The MEFP generates ensemble forecasts of precipitation and temperature given
the conditioning single-valued forecasts. The MEFP can use multiple sources of forcing
forecast over different lead times (short, medium-range and long) to produce a single

ensemble forecast (see Table 2.1).

Table 2.1 Forecast data used in the MEFPPE (NWS OHD, 2015b)

Forecasting range Forecast data Generator/Developer
agency
Short Upto5days | Single-valued quantitative NWS River Forecast
range precipitation forecasts (QPF) | Centers (RFC)
Single-valued quantitative NWS Weather Prediction
precipitation forecasts Center (WPC)
Medium Up to 15 days | Ensemble forecasts of the National Centers for
range Global Ensemble Forecast Environmental Prediction
System (GEFS) (NCEP)
Long Upto9 Single-valued forecasts of National Centers for
range months the Climate Forecast Environmental Prediction
System version 2 (CFSv2)
Up to 1 year Climatology ensembles Re-sampled by MEFP

The MEFP models the bivariate distribution of the forecast and verifying

observation. The bivariate distribution model is used to generate ensemble members

given the single-valued forcing forecast. The final ensemble forecast is generated based

on the above conditional simulation and Schaake shuffle (Wu et al., 2011; NWS OHD,

2015b) which “shuffles” the ensemble members generated specifically for each time step

into the naturally occurring patterns of temporal variability (Clark et al., 2004). Figure

2.1shows the schematic of the MEFP methodology.




Modeling of bivariate
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Historical Parameters
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Figure 2.1 Schematic of the MEFP methodology

The MEFP Parameter Estimator, MEFPPE, estimates the MEFP parameters. To
reduce sampling uncertainty, the MEFP pools the pairs of forecast and verifying
observation over the user-defined time window centered on each Julian day, referred as
the sampling window. Sampling uncertainty decreases as the sampling window increases
but at the expense of reduced temporal specificity of the parameters in capturing
seasonality. Another factor affecting the MEFP parameter estimation is the canonical
event set. Canonical events are the time scales for bivariate modeling that vary over the
forecast horizon (Brown et al., 2014). A canonical event set may include base and
modulation events. The base events are non-overlapping events that fill the entire
forecast horizon. The modulation events contain some base events, can overlap, and
may cover part of or the entire forecast horizon (NWS OHD, 2015h). The combination of
base and modulation events defines temporal windows within which a statistical model is
formed from the forecast-observation pairs available. According to Brown (personal
communication, 2015), the statistical models are applied in sequence according to the

lowest-through-highest correlation/regression coefficients in normal space. For example,



when the overall model comprises a sequence of 6-hour base events and 3-day
modulation events, each 6-hour period within the forecast horizon is adjusted by the
statistical model formulated based on samples pooled from the corresponding 6-hour
base events. Then, the statistical model from the 3-day modulation events adjusts each
3-day period.

2.1.2 Ensemble Post-Processor (EnsPost)

The EnsPost removes or reduces hiases in streamflow simulated by a suite of
hydrologic models called Hydrologic Ensemble Processor (HEP) in the HEFS and models
hydrologic uncertainty. Figure 2.2 illustrates how the input and hydrologic uncertainties
are numerically integrated under the assumption that each ensemble member is equally
likely to yield an estimate of predictive uncertainty in ensemble streamflow forecast. The
EnsPostPE estimates the EnsPost parameters. The EnsPost uses the autoregressive-1
model with a single exogenous variable, or ARX (1, 1), in the bivariate normal space (Seo
et al. 2006). Because streamflow is non-normal, the simulated and observed streamflow
are normal quantile-transformed (NQT) (Bogner et al., 2012) before ARX (1, 1) modeling.
Once ARX (1, 1) is applied, the predictand is back-transformed into the original space.
Figure 2.3 illustrates the EnsPost methodology. For details, the reader is referred to Seo

et al. (2006).
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2.2 Ensemble Verification System (EVS)

The EVS (Brown et al., 2010) is a Java-based tool for verification of forcing and
hydrologic ensembles. The EVS includes a comprehensive set of metrics for verification
of both single-valued and ensemble forecasts. The EVS can evaluate probabilistic
forecast attributes such as reliability, resolution, sharpness and discrimination. In this
study, the ensemble mean results are first verified using correlation, which measures the
strength of linear association between the ensemble mean forecast and the verifying
observation. To verify ensemble forecasts, this study uses box plots, Continuous Ranked
Probability Skill Score (CRPSS) and Relative Operating Characteristic (ROC) Score to
examine distribution of forecast errors visually, lumped errors, and discrimination,
respectively. Below the EVS metrics used in this study are briefly described. For further
details, the reader is referred to Brown et al. (2014a&b).

The Continuous Ranked Probability Score (CRPS) represents the integral
squared difference between the cumulative distribution functions (CDF) of the predicted

variable, Fy(q), and the corresponding CDF of the observed variable, Fx(q),
CRPS = [{(Fy(q) — Fx()}* dy (2-1)
CRPS = % Y CRPS (2-2)

where n denotes the number of pairs of forecasts and observations. The Mean CRPSS
measures the performance of a forecast system relative to climatology. Because a
perfect forecast has a CRPS of zero, the perfect value for CRPSS is unity:

CRPS(1im.— CRPS
CRPSclim,

CRPSS = (2-3)

The ROC Score estimates the ability of a forecast system to predict that an event

will occur (Probability of Detection or PoD) while avoiding predicting an incorrect event
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that does not occur (False Alarm Rate or FAR). The area enclosed by the diagonal line
and the ROC curve generated by (FAR, PoD) is known as the ROC area. The ROC
Score is obtained by multiplying the ROC area by two. The ROC area for a perfect
forecast system is 0.5. The ROC score of a perfect system is therefore 1.

The box plot is a widely used tool for visual inspection of data distribution. In this
study, the box plot is used to plot box-and-whisker at various quantiles of the forecast
error as a function of ascending order of observed values. The plot readily shows the

conditional bias of the ensemble mean forecasts, if any.
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Chapter 3
Methodology
3.1 Study Area

The area selected for this study is the five headwater basins located upstream of
the Dallas-Fort Worth (DFW) Metroplex in the Upper Trinity River Basin. They are the Big
Sandy Creek near Bridgeport (BRPT2), Denton Creek near Justin (DCJT2), EIm Fork of
the Trinity River near Gainesville (GLLTZ2), West Fork of the Trinity River near Jacksboro
(JAKT?2), and Clear Creek near Sanger (SGET2). Figure 3.1 and
Table 3.1 show the locations and physiographic and fluvial characteristics of the basins,
respectively. According to the Texas Water Development Board (TWDB), more than 95%
of the water used in the Upper Trinity River Basin is surface water and yet Dallas has the
highest per-capita water use in Texas. DFW is the largest inland population center and
one of the fastest growing urban areas in the U.S. and hence is under a great stress for
water resources. The DFW region is very vulnerable to the impacts of urbanization on
water sustainability due to the warmer climate conditions, rapid land conversion, high
degree of impervious surfaces, and dependence on surface water. Therefore, skillful
precipitation and streamflow forecasts for these basins are of great value to flood

warning, water supply, reservoir operations, and water quality management.
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Table 3.1 Characteristics of the five headwater basins in the Upper Trinity River

Basin (Saharia, 2013)

Characteristics BRPT2 DCJT2 GLLT2 JAKT2 SGET2

Latitude 33.23 33.12 33.62 33.29 33.34

Longitude -97.69 -97.29 -97.15 -98.08 -97.18

Area (km?) 862.47 1036.00 450.66 1769.00 764.05
Mean Elev. (m) 229 197 227 279 193
Action Stage (m) 3.35 2.74 6.10 5.49 7.01
Flood Stage (m) 3.65 3.05 6.71 6.10 7.62
Time to Peak (hours) 24 12 12 24 12

3.2 Data used in this study
Several data sets were used to generate precipitation and streamflow hindcasts
for the five headwater basins (Table 3.2). As showed in Figure 2.1, the historical mean
areal precipitation (MAP) time series and the GEFS reforecast dataset are used as input
to the MEFPPE to estimate the MEFP parameters, and to generate ensemble
precipitation forecasts from the MEFP. The observed mean daily flow (QME) and the
simulated mean 6-hr flow (SQIN) are used for the EnsPostPE to estimate the EnsPost

parameters (Figure 2.3).
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Table 3.2 Data sets used in this study

Name Period of Description
record

Quantitative Mar 2004 to 6-hourly Single-valued forecasts

precipitation Oct 2014 Provided by WGRFC

forecasts (QPF)

Mean Areal Oct1959 to Observed 6-hour accumulated

Precipitation (MAP) | Apr 2015 Provided by WGRFC

Mean daily Oct1959 to Observed mean daily produced by USGS

streamflow (QME) Apr 2015 Provided by WGRFC

GEFS Jan1985 to Jul | Mean ensemble precipitation forecasts
2012 Provided by NWS

SQIN Oct1959 to Simulated mean 6-hour streamflow
Apr 2015 Provided by WGRFC

The GEFS forecasts are 6-hourly precipitation amounts generated at 0Z for
forecast horizons of 1 to 16 days (Hamill at el, 2013). Because an ensemble mean of a
GEFS reforecast is estimated to be valid at 127, the GEFS precipitation reforecasts are
available up to 15 days into the future for hindcasting experiments.

3.3 Hindcasting experiments

To address the research questions posed in Chapter 1, hindcasting experiments
using the HEFS were designed and carried out (see Figure 3.2). Using ensemble mean
of the GEFS reforecast and the verifying observed MAP, the MEFP parameters were
estimated by the MEFPPE, which were then used to generate ensemble precipitation
hindcasts conditional on the GEFS ensemble mean hindcast via the MEFP. Using the
MEFP-generated precipitation ensemble forecasts, raw ensemble streamflow hindcasts
are then generated using hydrologic models built in CHPS.

The EnsPostPE uses simulated streamflow (SQIN) from the hydrologic models
and the verifying observed streamflow (QME) to estimate the EnsPost parameters. The
EnsPost is then used to produce post-processed streamflow hindcasts from the raw

streamflow hindcasts using the parameters estimated by the EnsPostPE. The hindcasts
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are generated every day for 26 years (1986-2011). The resulting large-sample ensemble
precipitation, raw, and post-processed streamflow hindcasts are verified using the EVS.
For the sensitivity analysis of the MEFP and the EnsPost parameters to the
guality of ensemble precipitation and streamflow hindcasts, the ensemble hindcasts
generated by the MEFP and the EnsPost are verified using various the MEFPPE- and the
EnsPostPE-estimated parameters. In the HEFS, parameter estimation is controlled by
user-defined environmental variables such as the sampling window. In this study, five
different combinations of user-defined environmental variables were compared (see
Table 3.3). The user-defined environmental variables for MEFPPE include the canonical
events and sampling window. Those for EnsPostPE include the sampling period (e.g.,

monthly, semi-annual, or annual).

MEFP
parameters

MEFPPE

/7
\) Ensemble

precipitation
hindcasts

Ensemble
raw streamflow
hindcasts

Hydrology

Ensemble
Post-processed
streamflow hindcasts

~

EnsPost
parameters

EnsPostPE
A

Figure 3.2 Schematic of the hindcasting processes
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Table 3.3 Different combinations of environmental variables

. MEFPPE EnsPostPE
Envwo_nmental Canonical Sampling
variable events window (days) Sampling period (months)
Case 1 monthly
61 semi-annual
(Default value | wet period: Mar, Apr, May, Jun,
Case 2 CE1l recommended Sep, and Oct
by NWS) dry period: Jan, Feb, Jul, Aug,
Nov, and Dec
Case 3 1
Case 4 CE2 o1 monthly
Case 5 CE3

Note 1: The choice of 91 days is based on the practice at the River Forecast Centers
(RFC) when the default window does not produce large enough sample size.

Four hindcasting experiments (see Table 3.5) were designed and carried out

using the five different combinations of the MEFPPE and the EnsPostPE environmental

variables (see Table 3.3). Depending on the combination of the environmental variables,

the MEFPPE and the EnsPostPE generate different sets of parameters for the MEFP and

the EnsPost for use in producing ensemble precipitation and post-processed forecasts,

respectively. For all experiments, the study period was 26 years (1986 — 2011). The

number of ensemble members generated was 55 corresponding to the number of

historical years available for Shaake Shuffle. Each experiment evaluates the effect of

different environmental variable-controlled parameters on predictive skill in ensemble

forecasts.
Table 3.4 Hindcasting experiments
Comparison Parameter
Experiment (from TF;bIe 3.3) Estimator Assessment
' in HEFS
1 Case 1 vs Case 2 | EnsPostPE aggregation time
2 Case 1vs Case 3| MEFPPE sampling windows
3 Case 3vs Case5 | MEFPPE canonical events (base)
4 Case 4vs Case5 | MEFPPE canonical events (modulation)
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Table 3.5 Different combinations of canonical events

lead time (hour)

CE1l

CE2

base

336

342

360
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The ensemble precipitation and streamflow hindcasts produced from the above
experiments are verified at the daily scale via EVS. The EVS pairs streamflow forecasts
and verifying daily observations with consideration of local timing of streamflow
observation (Brown, 2014). For precipitation forecasts, the pairing process is rather
straightforward. As illustrated in Figure 3.3, daily accumulation for the first pair of
precipitation forecast and MAP occurs between 0 and 24 hours of forecast lead time
(Figure 3.3 (a)) whereas the first daily pair of streamflow forecast and QME occurs

between 18 and 42 hours of forecast lead time (Figure 3.3 (b)).

MAP (6-hour precipitation cbservation)
% % X % X % % X
0z 6z 12z 18z 00z 6z 12z 18z 00z 6z 12z 18z

. Forcing input

Precipitation forecast
@® & @ @ =] @ @ @
valid: Day-1 forecast-MAP pair Valid: Day-2 forecast-MAP pair

Forecast time O-hour 6-hour 12-hour 18-hour 24-hour 30-hour 36-hour 42-hour 48-hour

(a)
! QME(daily average streamflow observation)
X X
0z 6z 122 182 00z 62 122 18z 00z 62 122 18z
Forcing input
Streamflow forecast
L ] ® @ ® ® ® ® @
Not valid: forecast-QME pair Valid: Day-1 forecast-QME pair

Forecast time O-hour 6-hour  12-hour 18-hour 24-hour 30-hour 36-hour 42-hour 48-hour

(b)

Figure 3.3 Daily aggregation for forecasts evaluation in the EVS
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Chapter 4
Results

The ensemble precipitation and streamflow hindcasts generated for the 26-year
period (1986 - 2011) were verified against MAP and QME, respectively. The results are
presented as a function of forecast lead time with respect to different thresholds chosen
based on observed precipitation and streamflow for the entire hindcast period of 26
years. To evaluate the value of utilizing the HEFS for generating ensemble precipitation
forecasts, this study assessed forecast skill in short-range ensemble precipitation
hindcasts generated using WGRFC QPF during 2004-2011 for JAKT2 via HEFS. For the
assessment of medium range GEFS-forced precipitation hindcasts, the hindcasts were
pooled over all five basins to increase the sample size. All the results from the four
experiments are presented at a daily scale unless specified otherwise. Throughout this
chapter, precipitation hindcasts are in millimeters, and streamflow hindcasts are in cubic
meters per second.

4.1 WGRFC QPF-forced short-range ensemble precipitation hindcasts

In order to evaluate in a single-valued forecast sense, the correlation coefficient
is used. Figure 4.1 shows correlation coefficients between the ensembles mean QPF and
observed precipitation as a function of lead time for JAKT2. As expected, a significant
correlation coefficient for Day-1 decreases slowly up to Day-3 and abruptly drops off to
negligible levels after that, showing no skill. The plot indicates that ensemble hindcasts
generated via HEFS allows forecast skill to last longer than the first 6 hours offered by a
single-valued QPF for general use as mentioned in Chapter 1. Each curve represents a
different threshold of precipitation value expressed as percentiles of observed

precipitation in the 26-yr period (25", 70", 90", 95", and 99" percentiles). For higher
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thresholds, the sample size is rather small and sampling uncertainties exist in the

verification statistics.

2 —— > 0.0 (Pr=0.25)
—— >0.11243 (Pr=0.75)
o = 4.8132 (Pr=0.9)
2 - > 13.60888 (Pr=0.95)
> 39.57512 (Pr=0.99)
«© _
=
s [
= S T
2
2 @
"a-) =
o
o w0
s °
-
e S 7]
=]
(2 ]
o 2 4
o i
= - :
=
=R

I I I | 1 I I I I | I | I | I
24 48 72 96 120 144 168 192 216 240 264 288 312 336 360

Lead time (hour)
Figure 4.1 Correlation Coefficient of ensemble mean precipitation forecasts generated by

MEFP using a single-valued WGRFC QPF and corresponding observations for JAKT2

Figure 4.2 and 4.3 show the CRPSS and ROC score of ensemble precipitation
hindcasts as a function of forecast lead time, respectively. The pattern of change in
forecast skill as a function of forecast lead time is the same as that shown in Figure 4.1
for correlation coefficient: CRPSS and ROC scores for Day-1 gradually declines as lead
time increases up to Day-3, indicating that forecast skill in ensemble precipitation
hindcasts forced by WGRFC QPF via MEFP exists for longer forecast lead time than a

single-valued WGRFC QPF.
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Due to lack of forecast skill in WGRFC QPF-forced ensemble precipitation
hindcasts after Day-3, the assessment has not been carried out further. The value of
utilizing HEFS is obviously seen when this study presents that forecast skill in ensemble
QPF generated using the single-valued WGRFC QPF via HEFS shows for the extended
forecast lead time (6 hour vs Day-3). To assess ensemble precipitation and streamflow

hindcasts, the GEFS data were used.

4.2 Medium-range GEFS-forced ensemble precipitation hindcasts

4.2.1 Sample size

In this study, a sample refers to a pair between an ensemble mean hindcast and
the verifying observation. Sampling uncertainty increases as the sample size decreases
with increasing thresholds (Table 4.1). For the 97.5" and 99" percentile thresholds, the
sample size is 238 and 95 for each basin, respectively. When the hindcasts are pooled
over all 5 basins, the sample size increases to 1187 and 476 for the same thresholds. To
reduce sampling uncertainty, verification was carried out by pooling hindcasts over all 5

basins. The EVS metrics for individual basins are presented in Appendix A.

Table 4.1 Sample size corresponding to various thresholds of observed precipitation at

Day-1
Basi hreshold | At | g o4 75% | 90% | 95% | 97.5% | 99%
BRPT2 9484 | 3013 | 2373 | 951 | 475 | 238 | 95
DCJT2 9484 | 3230 | 2374 | 949 | 475 | 238 | 95
GLLT2 9484 | 2600 | 2373 | 950 | 476 | 238 | 95
JAKT?2 9484 | 3014 | 2384 | 950 | 475 | 238 | 95
SGET?2 9484 | 3022 | 2395 | 950 | 475 | 238 | 95
All 47420 | 14879 | 11863 | 4747 | 2376 | 1187 | 476

Note 1: “All” includes “no-rain”
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4.2.2  Correlation Coefficient

Figure 4.4 shows the correlation coefficient of ensemble mean of daily
precipitation hindcasts and the verifying observations as a function of forecast lead time
for different thresholds. The correlation for Day-1 is as high as 0.6 and decreases with
increasing lead time and precipitation thresholds. Forecast skill exists for longer lead
time, when compared to the skill in WGRFC QPF-forced ensemble precipitation
hindcasts. Since no forecast skill shows after Day-8, the assessment throughout this
section is up to Day-8. For high thresholds, correlations are very small to negligible,
indicating little skill in predicting large precipitation amounts in the single-valued sense.

Figures 4.5, 4.6, 4.7, 4.8, and 4.9 show the correlation coefficients of ensemble
mean precipitation hindcasts and verifying observations for BRPT2, DCJT2, GLLT2,
JAKT2, and SGET2, respectively. The correlation coefficients for the individual basins are
similar among themselves in that the correlation for Day 1 is approximately 0.6 and
decreases as lead time increases. Again, the correlation coefficients are very low for high
thresholds. The consistent pattern among all basins indicates that pooling hindcasts from
all five basins for verification is reasonable.

Figure 4.10 shows the correlation coefficient between the mean of raw (upper
panel) and post-processed (lower panel) streamflow ensembles forced by GEFS-based
ensembles and the verifying observations as a function of lead time for different
thresholds. In the upper panel, the correlation starts at approximately 0.8 and decreases
as forecast lead time increases. The lower panel shows the same correlation pattern,
indicating that no improvement in correlation occurs through post-processing. This is not

surprising in that post-processing addresses biases, to which correlation is immune.
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4.2.3 Boxplot

Boxplots of forecast errors against observed precipitations for up to Day-8 of
forecast lead time are presented in Figure 4.11 and 4.12. GEFS-forced ensemble
precipitation hindcasts are under-forecasting high precipitation events. Considering that
the 99" observed precipitation threshold is less than 40 millimeters for this study area,
GEFS-forced ensemble precipitation hindcasts has forecast skill up to Day-8. Figure 4.13
and 4.14 show the box plots of forecast errors of raw streamflow against observed values
up to Hour-210. Post-processed ensemble streamflow hindcasts tend to under-forecast
high streamflow events, but forecast skill exists up to 50 cfs, 99" percentile observed
streamflow events in the study area up to about Day-8 (Figure 4.15 and 4.16). Post-
processing raw streamflow hindcasts improves forecast skill for the entire forecast
horizon. In general, it can be said that medium-range ensemble streamflow forecasts
generated for the 5 headwater basins of the Upper Trinity River Basin has reasonable

skill to predict precipitation and streamflow events up to a week.
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Figure 4.12 Box plot of forecast errors of the ensemble precipitation hindcasts against observed precipitations for the all 5

headwater basins up to Day-8
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4.2.4  Continuous Ranked Probability Skill Score (CRPSS)

Figure 4.17 shows the CRPSS of ensemble precipitation hindcasts as a function
of forecast lead time. CRPSS for all thresholds is approximately 0.3 for Day 1 and
gradually declines as lead time increases. While not very high, but the CRPSS is

significantly positive out to several days.
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Figure 4.17 CRPSS of ensemble precipitation hindcasts

The CRPSS decreases with increasing lead time and increasing threshold for both raw
and post-processed streamflow hindcasts (Figure 4.18). The post-processed streamflow
hindcasts show consistently larger predictive skill up to 70%, from 0.28 to 0.48, for Day 1.
Figure 4.19 shows that the improvement from post-processing is significant for all
thresholds. This is a reflection that the EnsPost is generally successful in reducing biases

and capturing hydrologic uncertainty. That the improvement is larger for short lead times

is a reflection of the relatively short hydrologic memory in these basins that controls fast

runoff.
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Figure 4.18 CRPSS for ensemble raw streamflow hindcasts (upper panel) and for

ensemble post-processed streamflow hindcasts (lower panel)
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Figure 4.19 CRPSS improvement due to post-processing raw streamflow hindcasts

4.2.5 Relative Operating Characteristics Score (ROC score)

ROC score measures discrimination, i.e., the forecast's ability to tell apart a user-
defined event from a non-event. For all thresholds, the ROC score of ensemble
precipitation hindcasts exceeds 0.7 for Day 1 and declines over the course of Week 1 as
lead time increases (Figure 4.20). Figure 4.21 shows the ROC score of raw (upper panel)
and post-processed streamflow hindcasts (lower panel). This figure suggests that post-
processing generally improves ROC score. Figure 4.22 shows that the improvement is

very large for low flows (as high as 120%) but remains significant for high flows as well.
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The large improvement in low flow conditions is a reflection that the EnsPost is

successful in removing systematic biases in such conditions.
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Figure 4.20 ROC Score of ensemble precipitation hindcasts
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42



1.0

> 0.0 (Pr=0.01)
> 0.01481 (Pr=0.25)

> 0.22918 (Pr=0.5)

> 1.27357 (Pr=0.75)

> 5.29868 (Pr=0.9)

> 12,97053 (Pr=0.95)
> 26.51572 (Pr=0.975)
> 52,03032 (Pr=0.99)

0.9

SE00O0OEN

0.6

ROC Score improvement (post-processed — raw)

42 66 90 114 138 162 186 210 234 258 282 306 330 354

Lead time (hour)

Figure 4.22 ROC Score improvement due to post-processing raw streamflow hindcasts

4.3 Sensitivity analysis

The four hindcast experiments carried out in this study (Table 3.4) to assess the
effect of different aspects of the user-defined environmental variables in the MEFPPE
and the EnsPostPE on the quality of ensemble forecasts from the MEFP and the
EnsPost. Experiment 1 assesses the effect of the sampling period in the EnsPostPE.
Experiment 2 assesses the effect of the sampling window in the MEFPPE. Experiments 3
and 4 assess the effect of canonical event definitions in the MEFPPE. For assessing the
results from the sensitivity analysis, CRPSS is used throughout in this subsection to
provide error statistics which is analogous to the mean absolute error in the single-value

sense.
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4.3.1 Experiment 1: sampling period for EnsPost parameters

The EnsPost parameters are estimated based on the historical pairs of simulated
and observed streamflow values for the user-defined sampling period. In this experiment,
monthly (Case 1) and semi-annual (Case 2) periods were used. Figure 4.23 shows
differences in CRPSS of post-processed streamflow forecasts generated in Case 1 vs.
those in Case 2 by subtracting the CRPSS of Case 2 from that of Case 1. A positive
difference hence indicates that the monthly EnsPost parameters generate more skillful
hindcasts than the semi-annual parameters. Since the precipitation hindcasts used in
both Case 1 and Case 2 are the same, gain in forecast skill results from the EnsPost
sampling period only. Although the gain is small (see Figure 4.23), the monthly
parameters improve skill up to 10%. This improvement is not surprising in that a high-

resolution in seasonality definition in dependent validation amounts to higher-order fit.
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Figure 4.23 Improvement in CRPSS of post-processed streamflow hindcasts generated

using Case 1-based and Case 2-based parameters
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4.3.2 Experiment 2: sampling window for MEFP parameters

In general, sampling uncertainty decreases as a sampling window increases but
at the expense of less day-of-the-year-specific parameters as a wider window can include
samples with different seasonality. In this experiment, sampling windows of 61 (Case 1)
and 91 days (Case 3) are considered. The results show that the differences in CRPSS
between the two cases are negligible in precipitation hindcasts as well as in raw or post-
processed streamflow hindcasts (see Figure 4.24, 4.25, and 4.26). Expanding the
sampling window does not improve forecast skill because the 26-year period of the GEFS
record is long enough to meet the minimum sample size within the sampling window of

61 days to estimate MEFP parameters.
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Figure 4.24 Improvement in CRPSS of precipitation hindcasts generated using Case 1-

based and Case 3-based parameters
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Figure 4.26 Improvement in CRPSS of post-processed streamflow hindcasts generated

using Case 1-based and Case 3-based parameters
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4.3.3  Experiment 3: Canonical events (base) for MEFP parameters

The main difference in this experiment relative to the default lies in the base
events in terms of the number of 6-hour events employed. Case 3 includes only two 6-
hour base events at the beginning of the forecast horizon and shifts to 12-hour events up
to Day 5, whereas Case 5 includes twenty 6-hour events up to Day-5. Figure 4.27 shows
that the CRPSS of Case 3 for precipitation is about 5% higher than that for Case 5 for
Day 1 and 10% for Days 2 to 5. There is no gain in Days 6 to 8 because the temporal
aggregation scheme in the canonical event definitions is the same over this part of the
forecast horizon for both Cases 3 and 5. Starting Day 9, however, gain appears again
due to larger temporal aggregation in the canonical event definitions in Case 3 (48 hour-
vs. 24 hour-aggregated canonical events). It indicates that aggregating 6-hour events
generates more skillful daily precipitation hindcasts. Such a gain, however, does not

improve skill in raw or post-processed streamflow hindcasts (see Figure 4.29and 4.31)
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Figure 4.27 Improvement in CRPSS values of precipitation hindcasts generated using

Case 3-based and Case 5-based parameters
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Figure 4.29 Improvement in CRPSS of raw streamflow hindcasts generated using Case

3-based and Case 5-based parameters
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Figure 4.31 Improvement in CRPSS of post-processed streamflow hindcasts generated

using Case 3-based and Case 5-based parameters
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Figure 4.32 CRPSS of post-processed streamflow hindcasts generated using Case 3-

based parameters

4.3.4 Experiment 4: Canonical events (modulation) for MEFP parameters

The effect of adding modulation canonical events on MEFP parameters is
assessed in this experiment. By adding modulation events (Case 4), the skill
improvement in precipitation hindcasts ranges from 5 to 20% for low thresholds (< 90"
percentile) and from 15 to 35% for high thresholds (> 90" percentile) (see Figure 4.33). It
suggests that, by adjusting modulation canonical events, MEFP can capture the
underlying skill of GEFS for larger temporal aggregation period, which may be important
in medium range forecasts. Such gains hold up to Day 5 and improve skill in both raw
and post-processed streamflow hindcasts past Day 5 (see Figure 4.34 and 4.35).
Because the EnsPost parameters were the same for both Cases 3 and 5, the improved
skill in the post-processed streamflow hindcasts came from the improved skill in the raw
streamflow hindcasts. The above results suggest that the improved skill in precipitation

hindcasts improves raw and post-processed streamflow hindcasts more for high flow
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conditions, a reflection of the fact that significant improvement in skill in precipitation

forecast occurs over larger amounts.
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Figure 4.33 CRPSS improvement in of precipitation hindcasts generated using Case 4-

based and Case 5-based parameters

8 - Al data
-— — | = 0.0 (Pr=0.01)
8 = B > 0.01481 (Pr=025)
< — | > 0.22918 (Pr=0.5)
O o B > 1.27357 (Pr=0.75)
; — B = 5.29868 (Pr=09)
| W = 1297053 (Pr=0.95)
< — W = 2651572 (Pr=0.975)
o = B = 52.03032 (Pr=0.99)
%) =
o —
O
N 8 —
= =]
o -
o
E 8 _
q’ =1
> _
o
s = -
E E=J
(7]
=
& ‘J_IJ.I_]_‘.A R S
o 8 -

42 90 114 162 186 210 234 258 282 306 330 354

Lead time (hour)

Figure 4.34 Improvement in CRPSS of raw streamflow hindcasts generated using Case

4-based and Case 5-based parameters
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Figure 4.35 Improvement in CRPSS of post-processed streamflow hindcasts generated
using Case 4-based and Case 5-based parameters
4.4 Interpretation of ensemble forecasts in a single-valued sense
Various probabilistic attributes existing in ensemble hindcasts are selected and
converted into readily useful information to decision makers. Ensemble hindcasts used in
this section are the ensemble precipitation, raw streamflow, and post-processed
streamflow hindcasts generated using Case 4-based parameters based on the sensitivity
analysis in Section 4.3.
4.4.1 Probability of detection at a given false alarm rate
As explained in Chapter 2, ROC expresses PoD and FAR at different levels of

exceedance probability. Depending on the risk tolerance of the user, he/she may choose
a level which may result in a lower FAR with a lower PoD or a higher PoD with a higher
FAR. For example, if an FAR of 3-5% is acceptable for 90" percentile precipitation to the

user, the PoD of precipitation for Day 1 is 50% and decreases as lead time increases
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(Figure 4.36). For 90" percentile streamflow, PoD of raw streamflow is 50% whereas PoD
of post-processed streamflow is 65% for Day 1 (Figure 4.37), which illustrates the value

of post-processing in the single-valued sense as well.
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Figure 4.36 PoD vs FAR for precipitation hindcasts
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Figure 4.37 PoD vs FAR for streamflow hindcasts
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4.4.2 Temporal aggregation in forecasts

Figure 4.38 shows that correlation coefficient between precipitation hindcasts
and observed precipitation increases as the temporal aggregation period increases up to
14 days. They indicate that GEFS-forced medium-range precipitation forecast for the
study area have valuable skill in 1-, 3-, 5-daily, weekly, and biweekly-aggregated

forecasts.
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Figure 4.38 Correlation coefficient of precipitation hindcasts and corresponding

observations with different temporal aggregation periods

Finally, Figure 4.39 shows the correlation coefficient between post-processed
streamflow and observed flow. Note that, with temporal aggregation, there exists very
significant skill up to 14 days. They indicate that, with ensemble forecasting, it is possible
to effectively utilize the skill in medium-range forecast of precipitation to improve the

quality and to increase the lead time of streamflow forecast.
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Figure 4.39 Correlation coefficient of post-processed streamflow hindcasts and
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Chapter 5
Conclusions and future research recommendations

Compared to forecasts of short-term precipitation accumulations (daily or shorter)
at lead times larger than a few days, those of longer-term accumulations (3-daily or
longer) are significantly more skillful owing to the larger temporal scale of aggregation. If
one can utilize this skill present in medium-range precipitation forecast in hydrologic
prediction, it is very likely that the lead time of hydrologic forecasts, in particular, of
streamflow and soil moisture may be extended. Though forecasts of longer-term
accumulations of precipitation are more skillful than those of shorter-term accumulations,
precipitation forecasts in general are too uncertain to be used as deterministic, or single-
valued, input.

The main goal of this study was to increase forecast lead time of streamflow
forecasts by using medium range ensemble precipitation forecasts. A premise for this
study is that, in the ensemble paradigm, forecasting of precipitation and streamflow
provides extending forecast lead time with improved forecast skill. To utilize forecast skill
in medium range precipitation forecasts in the ensemble paradigm, this study used
Hydrologic Ensemble Forecast Service (HEFS) developed by the IU.S. National Weather
Service Office of the Hydrologic Development (NWS/OHD, now the NWS/National Water
Center).

In the HEFS, the Meteorological Ensemble Forecast Processor (MEFP) was
used to generate ensemble precipitation hindcasts using the Global Ensemble Forecast
System (GEFS) reforecast data. Raw streamflow hindcasts were generated via the
Community Hydrologic Prediction System (CHPS) using the Sacramento Soil Moisture
Accounting model (SAC-SMA) and unit hydrograph. To reduce biases and uncertainties

in the hydrologic model results, raw streamflow ensembles were post-processed by the
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Ensemble Postprocessor (EnsPost). The precipitation, raw and post-processed

streamflow ensembles were verified using the Ensemble Verification System (EVS) to

assess the quality of hindcasts.

Ensemble hindcasts of precipitation and streamflow were generated using the

HEFS for a 26-year period between 1986 and 2011. The study area consisted of five

headwater basins located upstream of the Dallas-Fort Worth (DFW) metropolitan area in

the Upper Trinity River Basin in Texas. These study basins offer a tough test for the

HEFS, because precipitation is dominated by convection which has very limited

predictability. The basins are flashy with fast-rising streamflow when they respond to

rainfall but also with periods of no streamflow.

The main findings of this study include:

(1)

(2)

3)

The ensemble QPF generated from the single-valued WGRFC QPF using the
MEFP in the HEFS has forecast skill for long forecast lead time (up to Day-3),
when compared to the lead time provided by the single-valued WGRFC QPF
used in current practice (6-hour in general).

Medium range GEFS-forced ensemble precipitation hindcasts generated with the
MEFP in the HEFS has forecast skill up to more than a week, longer forecast
lead time than that offered by the short-range ensemble QPF generated with the
MEFP (up to Day-3).

Having monthly sampling period for estimating EnsPost parameters improves
forecast skill in post-processed streamflow hindcasts, when compared to semi-
annual sampling period. This improvement is not surprising in that a high-
resolution in seasonality definition in dependent validation amounts to higher-

order fit.
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(4) Controlling sampling window (61 vs 91 days) for estimating MEFP parameters
does not affect forecast skill in GEFS-forced ensemble precipitation forecasts.
Expanding the sampling window does not improve forecast skill because the 26-
year period of the GEFS record is long enough to meet the minimum sample size
within the sampling window of 61 days to estimate MEFP parameters.

(5) Aggregating 6-hour base canonical events generates more skillful daily
precipitation hindcasts. Such a gain, however, does not improve skill in raw or
post-processed streamflow hindcasts. The gain in precipitation hindcasts is
probably too small to dominate hydrologic uncertainty occurred during the
hydrologic process via hydrologic models.

(6) Adjusting modulation canonical events is a very effective way to improve
predictive skill in ensemble forecasts of precipitation, raw, and post-processed
streamflow forecasts. The skill improvement in precipitation hindcasts ranges
from 5% to 35%, holding up to Day 5. It suggests that, by adjusting modulation
canonical events, MEFP can capture the underlying skill of GEFS for larger
temporal aggregation period, which may be important in medium range forecasts.
Such improvement enhances skill in both raw and post-processed streamflow
hindcasts past Day 5, more effectively for high flow condition. This indicates that
significant improvement in skill in precipitation forecasts occurs over larger
amounts. The improved skill in the post-processed streamflow hindcasts came
from the improved skill in the raw streamflow hindcasts.

(7) Correlation coefficients between precipitation hindcasts and observed
precipitation increase as the temporal aggregation period increases up to 14

days. They indicate that GEFS-forced medium-range precipitation hindcasts for
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the study area have valuable skill in 1-, 3-, 5-daily, weekly, and biweekly-

aggregated hindcasts.

(8) With temporal aggregation, there exists very significant skill in post-processed
streamflow up to 14 days. They suggest that, with ensemble forecasting, it is
possible to effectively utilize the skill in medium-range forecast of precipitation to
improve the quality and to increase the lead time of streamflow forecasts.

This study used the HEFS successfully, demonstrating the HEFS's portability in
the Unix/Linux environment outside of NWS. This study also showed that the HEFS is an
effective tool for generating skillful forecasts of precipitation and streamflow ensembles.
In the ensemble paradigm, forecast skill in medium-range precipitation forecasts can be
effectively utilized to improve the quality of streamflow forecasts in extended forecast
lead time via HEFS. This study contributed to the knowledge of providing water resources
managers with improved streamflow forecasts for the extended forecast lead time for
effective both management of water resource and mitigation of water-related hazards.

The main recommendations for future research are as follows:

(1) Extend the study to a large number of basins for large-sample verification,
especially for large events.

(2) Develop and implement the parametric uncertainty processor and the ensemble
data assimilator (DA). The current statistical techniques for modeling and
reducing hydrologic uncertainty should be upgraded to take account of the

dynamics of urbanization and possibly climate change.
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Appendix A

Hindcast results of individual headwater basins
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Figure A. 13 CRPSS of daily precipitation ensemble hindcasts for the GLLT2 basin
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Figure A. 14 CRPSS of daily precipitation ensemble hindcasts for the JAKT2 basin
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Figure A. 16 CRPSS of daily streamflow ensemble hindcasts for the BRPT2 basin
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Figure A. 17 CRPSS of daily streamflow ensemble hindcasts for the DCJT2 basin
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Figure A. 18 CRPSS of daily streamflow ensemble hindcasts for the GLLT2 basin
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Figure A. 19 CRPSS of daily streamflow ensemble hindcasts for the JAKT2 basin
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Figure A. 20 CRPSS of daily streamflow ensemble hindcasts for the SGET2 basin
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Figure A. 21 ROC Score of daily precipitation ensemble hindcasts for the BRPT2 basin
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Figure A. 22 ROC Score of daily precipitation ensemble hindcasts for the DCJT2 basin
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Figure A. 23 ROC Score of daily precipitation ensemble hindcasts for the GLLT2 basin
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Figure A. 24 ROC Score of daily precipitation ensemble hindcasts for the JAKT2 basin
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Figure A. 25 ROC Score of daily precipitation ensemble hindcasts for the SGET2 basin
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Figure A. 26 ROC Score of daily streamflow ensemble hindcasts for the BRPT2 basin
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Figure A. 27 ROC Score of daily streamflow ensemble hindcasts for the DCJT2 basin
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Figure A. 28 ROC Score of daily streamflow ensemble hindcasts for the GLLT2 basin
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Figure A. 29 ROC Score of daily streamflow ensemble hindcasts for the JAKT2 basin
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Figure A. 30 ROC Score of daily streamflow ensemble hindcasts for the SGET2 basin
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