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Aim: reduce forecast bias

Many types of bias. For example:

« Over-or under-forecasting (e.g. ensemble
mean consistently too low or high).

« Too little spread in an ensemble forecast to
capture observations (“underspread”).

 Bias that increases under specific conditions,
(“conditional bias”) e.g. under flood flows.

 Bias resulting from poor model assumptions
(“unreliable™) or resolution (“indiscriminate”).
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1. Types of ensemble
verification metric
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Types of ensemble metric

Many types of metrics

1.

Reflects many different types of bias
Four-dimensions reviewed here

Treat ensemble as deterministic

Convert ensemble forecast to single-valued
forecast by choosing “best guess” (mean).

Apply single-valued metrics (RMSE etc.)
Easy to understand, but inadequate.
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Types of ensemble metrics

2.

Simple vs. detailled ensemble metrics

From summary “scores” (one number)...
...to detailed visualizations of raw data (pairs)
Somewhat application dependent

. Absolute quality vs. skill

Absolute: metric for one forecast model
Relative: skill of one model over another
Skill needs a metric and reference
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Types of ensemble metric

4. Types or attributes of quality

A) When Y was forecast, what was observed?
‘Our forecast predicts a 90% chance of flooding.”

RELIABLE if observed 9/10 times issued.

B) When X was observed, what was forecast?

“When we observe Action Stage only, our model
predicts a 100% chawnce of Flood Stage.”

Cannot DISCRIMINATE between AS and FS.




2. Examples of ensemble
metrics (available in EVS)



o ATHOSs,,
R 3

> &
) "
gy o ©

Summarized vs. detailled



Correlation of ensemble mean

Correlation coefficient
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Forecast (F)

CRPS = [(F-0)2

 Then average across
multiple forecasts
 Small scores = better
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Forecast errors (forecast - observed)

GFS-EPP precipitation ensembles (1 day ahead total) ‘Errors’ for 1 forecast
4 T Zero error line ___ Largest +ve error
(Largest member)
-+ 90 percent.
80 percent.

Very detailed (box plot)

— 50 percent.

| _ 1 20 percent.
i -+ 10 percent.
l \
I

I

Lowest forecast always ~0 Largest -ve error

-3 —
(smallest member)
4 A ‘conditional bias’, i.e. a bias that depends upon
the observed precipitation value.
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Reliability vs.
discrimination
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GFS-EPP precipitation ensembles _
(w/o zero observed) “Hit rate” = 90%

60% of time, observation should fall in window
covering middle 60% (i.e. median +30%)

“Underspread”
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Observed probability (of flooding)
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Reliability diagram

Unlike the Talagrand diagram, the reliability diagram
takes one discrete event at a time (e.g. flooding)

“When flooding is forecast with
probability 0.5, it should occur 50% of
the time.” Actually occurs 37% of time.

From sample data,
flooding forecast 48

“Sharpness plot”
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~ROC (event discrimination
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Probability of Detection [TP/(TP+FN)]
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Forecast errors (forecast - observed)

Very detailed (box plot)

> | GFS-EPP temperature ensembles (1 day-ahead total) ‘Errors’ for 1 forecast
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