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Requirements:
- an ensemble daily sequences of weather
- preserve inter-site correlations, temporal persistence, and
correlations between variables
- minimize abrupt changes when a new model is introduced
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The CDC Re-forecast experiment

0 Jeff Whittaker and Tom Hamill at the NOAA-CIRES Climate Diagnostics
Center have used the 1998 NCEP MRF to generate medium-range forecasts
for the period 1979 to the present.

0 CDC are continuing to run the 1998 NCEP MREF in real time.

0 The NWP hindcast (1979-2001) is used to develop regression models
between MRF output and precipitation and temperature at individual
stations, and apply the regression coefficients to the CDC experimental
forecasts in real-time.

0 The resultant local-scale precipitation and temperature forecasts are
used as input to the CBRFC hydrologic modeling system to provide real-
time forecasts of streamflow.



Downscaling approach

For hydrologic applications we need to:
— Obtain reliable local-scale forecasts of precipitation and temperature

— Preserve the spatial variability and temporal persistence in the
predicted temperature and precipitation fields

— Preserve consistency between variables

Multiple linear Regression with forward selection
Y=a,+a,X1+a,X2+a,X3...+a Xn+e

A separate equation is developed for each station, each forecast lead
time, and each month.

Use cross-validation procedures for variable selection — typically less
than 8 variables are selected for a given equation

Stochastic modeling of the residuals in the regression equation to provide
ensemble time series

Shuffling of the ensemble output to preserve the observed spatial
variability, temporal persistence, and consistency between variables.
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Alapaha River Basin (Southern Georgia)
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Animas River Basin (Southwest Colorado)
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Cle Elum River Basin (Central Washington)
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Seasonal predictions... the weather generator model

(1) Identify a subset of years from the historical record, such
that the CDF from the selected years matches the CDF
from the probabilistic forecast

(2) Re-sample data from the subset of years nens times

(3) Re-order the ensembles to preserve observed inter-site
correlations, observed temporal persistence, and
observed correlations between variables
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Schaake Shuffle

A method for reconstructing space-time
variability in forecasted precipitation and
temperature fields
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The Schaake Shuffle
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The Schaake Shuffle

ENSEMBLE OUTPUT (RANKED)

(ACTUAL VALUES)

(RANKING)

(ACTUAL VALUES)

(ENSEMBLE MEMBER)

x%$(q) = x(r), r=1,...,N (e.g., ens 97 is taken as the lowest value)



Cumulative Pracipitotion

Cumulotive Precipibation

Conditioning on CPC forecasts
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Model-based streamflow forecasting method...

Historical Data >

v Historical Simulation —
(NWSRFS)
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Uncertainty in basin initial conditions...

(1) Stochastic input forcings
- regression techniques used to estimate spatial fields of model forcings
(precipitation, temperature)
- topographic characteristics (lat, lon, elev) used as predictiors; a
different regression equation is developed for each day
residuals in the regression equations are modeled stochastically to
produce ensemble time series

GRIZZLY PEAK Accumulated Water Year Precipitation {mm)
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Stochastic Forcings
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State Updating...

(1) Screened ensembles
- restrict attention to ensemble members that are closest to (the model
equivalent of observations) at the start of the forecast period

GRIZZLY PEAK Standard — Total Water Equiv [mm)
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State Updating...

(1) Screened ensembles

- restrict attention to ensemble members that are closest to (the model
equivalent of observations) at the start of the forecast period

(2) State updating

- Use of data assimilation methods (e.g., the ensemble Kalman filter) to
update model estimates of snow water equivalent
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Model issues...

(1) Perturbed parameters

development of methods to estimate parameter uncertainty, and use
perturbed parameters to estimate uncertainty in basin initial conditions
and model simulations of streamflow

(2) Model Structure / Complexity — (the Regional Reanalysis Conundrum)

desire to match the complexity of the model to available data

often do not have forcing data to use physically-based methods to
simulate the land-surface energy balance

Regional Reanalysis to the rescue—but model likely contains biases
do not have data to evaluate model biases

research is needed to determine the model complexity that can be
supported in light of the availability and quality of forcing data

(3) Diagnosis of model errors

evaluate model errors to understand which processes dominate in
different river basins and which methods can be used effectively to
improve streamflow forecasts.



