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Abstract: In operational hydrologic forecasting, in order to account for errors in the initial and boundary conditions, parameters, and structures of the hydrologic models, the forecasters routinely make adjustments in real time to the hydrometeorological input, hydrologic model states and, if necessary, model parameters based on streamflow observations. Though a great deal of effort has been made in recent years to automate such “run-time modifications” (MOD) made by human forecasters to a possible extent, automatic state updating of hydrologic models is yet to be widely accepted or routinely practiced in operational hydrology for a range of reasons. In this paper, we describe a state updating procedure intended specifically for operational streamflow forecasting for headwater basins, and compare its performance with human forecaster MOD through a real-time forecasting experiment. The procedure, which has been in experimental operation since 2003 at the National Weather Service’s (NWS) West Gulf River Forecast Center (WGRFC) in Fort Worth, TX, is based on variational assimilation (VAR) of streamflow, precipitation and potential evaporation data into lumped soil moisture accounting and routing models operating at 1-hr timestep. Also described in this paper is a novel parameter estimation and optimization tool, the Adjoint-Based OPTimizer (AB_OPT), used for lumped hydrologic modeling at 1-hr timestep necessary for VAR.
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1. Introduction

While tremendous advances have been made in recent years in hydrologic data assimilation (DA) for streamflow prediction (Kitanidis and Bras 1978, Sittner and Krause 1979, Georgakakos and Smith 1990, WMO 1992, Koren and Barrett 1994, Georgakakos and Sperflage 1995, Da Ros and Borga 1997, Refsgaard 1998, Seo et al. 2003, just to name several), they are yet to be fully taken advantage of in operational hydrologic forecasting for various reasons (see Seo et al. 2003 for details). Recently, Seo et al. (2003) developed a procedure based on variational assimilation (Jazwinski 1970, Li and Navon 2001), herein referred to as VAR, to update soil moisture states of the Sacramento soil moisture accounting model (SAC, Burnash et al. 1973) using streamflow, precipitation and potential evaporation (PE) data. From an operational perspective, the variational approach is very appealing because, unlike the filtering approach based on state-space reformulation of hydrologic and routing models (see e.g. Georgakakos and Sperflage 1995), no changes are necessary in the hydrologic models and hence the model parameters are completely transferable between calibration and forecasting with or without DA.
Seo et al. (2003) was first implemented in 2003 for experimental operation at WGRFC in Fort Worth, TX. Since, the procedure has undergone a number of enhancements based on routine monitoring and evaluation of its performance in an operational setting. The purpose of this paper is to describe the latest version of Seo et al. (2003) that currently runs at WGRFC and to present objective comparative evaluation results from a real-time forecasting experiment. Whereas intercomparison in a simulation mode among automatic state updating procedures for hydrologic models has been reported before (WMO 1992), quantitative intercomparison between an automatic procedure and forecaster MOD in an operational setting has, to the best of the authors’ knowledge, never been reported in the literature. As in Seo et al. (2003), the assimilation problem dealt with in this work is limited to updating of soil moisture states and adjustment of observed mean areal precipitation (MAP) and potential evaporation (MAPE) in a lumped hydrologic system for headwater basins, and the soil moisture accounting and routing models used are SAC and unit hydrograph (UH), respectively.
2. Description of Procedures

There are two main procedures used in this work: 1) the state updating procedure based on variational assimilation (VAR) and 2) the parameter estimation and optimization procedure using the Adjoint-Based OPTimizer (AB_OPT). The latter performs estimation of systematic biases in MAP and MAPE data, estimation of empirical UH, and local optimization of the SAC parameters, the results of which are used in VAR. Below we describe the two procedures in some detail.
2.1 Variational Data Assimilation


A variant of Seo et al. (2003), the VAR procedure solves the following minimization problem:
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Before describing the variables in the above expressions, it is necessary to define first the assimilation window. Given the current hour k, the assimilation window is defined as the time window of length 
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 (hrs), corresponding to the duration of the UH, beginning at hour 
[image: image5.wmf]l
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 and ending at hour k. In Eq.(1), Jk denotes the objective function to be minimized at the current hour k, Zq denotes the vector of streamflow observations valid in the assimilation window, Zp and Ze denote the vectors of hourly MAP and MAPE estimates valid over the assimilation window, Zw denotes the vector of a priori (i.e. background) estimates of the additive error to the hourly total channel inflow (TCI) from SAC over the assimilation window, and Zb denotes the vector of a priori (i.e. background) estimates of the 6 SAC states at the beginning of the assimilation window: the upper-zone tension water content (UZTWC), the upper-zone free water content (UZFWC), the lower-zone tension water content (LZTWC), the lower-zone supplemental free water content (LZFSC), the lower-zone primary free water content (LZFPC), and the lower-zone tension water content in the additional impervious area (ADIMC), Xs,k-l denotes the vector of the 6 SAC states at the beginning of the assimilation window, Xp and Xe denote the multiplicative adjustment factors to MAP and MAPE over the assimilation window, respectively, Xw denotes the vector of the additive errors to hourly TCI over the assimilation window, the Hqq matrix denotes the structure function that maps the control vectors, Xs,k-l, Xp, Xe and Xw, to simulated streamflow, the matrices, Hpp, Hee, Hww and Hbb, denote the structure functions that relate the control variables, Xp, Xe, Xw and Xb, to the observations, Zp, Ze, Zw and Zb, respectively, and Rqq, Rpp, Ree, Rww and Rbb denote the measurement or estimation error covariance matrices associated with Zq, Zp, Ze, Zw and Zb, respectively. In Eq.(2), F( ) denotes the soil moisture dynamics of SAC. In Eq.(3), Xs,jmin and Xs,jmax denote the lower and upper bounds of the states of SAC, respectively.

The above formulation differs most significantly from Seo et al. (2003) in that the additive error to TCI, Xw, has been added to the control variables. This addition is motivated by the experience at WGRFC in the early stages of the experimental operation that, for certain basins, adjustments to the SAC states, MAPX, and MAPE alone could not produce simulated flow valid at the forecast time that is sufficiently close to the observed due to large structural and/or parametric errors in the hydrologic models. Note that the addition of Xw to the control variables renders the SAC dynamics of Eq.(2) a weak constraint (Zupanski 1997) in the minimization, which in Kalman filter is equivalent to the random error term in the dynamical model (Jazwinski 1970).

Eqs.(1) through (3) are written in vector notations to signify that one may assimilate multiple observations of streamflow valid within the assimilation window, and that the additive error to TCI and the adjustment factors to MAP and MAPE may vary from hour to hour within the assimilation window. Sensitivity analysis from hindcasting experiments, however, indicates that the added complexity above provides little improvement in streamflow forecast. As such, we use the simplest possible formulation throughout this work, in which only the single streamflow observation valid at the current hour 
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 is assimilated, and the additive error to TCI and the adjustment factors to MAP and MAPE are modeled as uniform over the entire assimilation window. This simplification reduces the number of control variables to only 9 (6 for Xs,k-l, and 1 each for Xp, Xe and Xw in Eqs.(1) and (2)) which significantly reduces the amount of computation.

In the experimental operation, the a priori model states 
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 in Eq.(1) are specified by a separate parallel run of the SAC model whose states or forcings are not adjusted either by human forecasters or VAR. Unlike Kalman filter, VAR does not propagate or update uncertainty and, as such, the uncertainty associated with the a priori model states 
[image: image8.wmf]l
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, i.e. Rbb in Eq.(1), must be specified externally. We note here  that work is under way to address the DA problem of Eqs.(1) through (3) via a maximum likelihood ensemble filter-like (MLEF, Zupanski 2005) approach, which would then enable propagation and updating of uncertainty similarly to ensemble Kalman filter (Evensen 1994) while allowing nonlinear iterative minimization similarly to VAR. Here, as in Seo et al. (2003), we assume that Zb is non-informative and drop the last term in Eq.(1) from the objective function. The above assumption is supported by the numerical experience that the background error term (i.e. the last term in Eq. (1)), in general, has relatively small influence on the accuracy of VAR-aided prediction of streamflow. The reason is that, due to the relatively large assimilation window, the error term associated with the boundary condition for precipitation (i.e. the second term Eq.(2)) tends to be much bigger than the error term associated with the initial condition (i.e. the last term in Eq.(1)) (Seo et al. 2003). Also assumed in this work is that the additive error to TCI and the errors associated with MAP and MAPE are not serially correlated over the assimilation window, which reduces Rpp, Ree and Rww in Eq.(1) to diagonal matrices (see Seo et al. 2003 for justification).

The above simplifications greatly reduce the dimensionality of the minimization problem as well as the complexity of the uncertainty modeling. We may now rewrite Eq.(1) as:
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(4)

In Eq.(4), (q2, (p2, (e2 and (w2 denote the variances of the measurement or estimation errors associated with the streamflow observation at hour k ((m3/s)2), the hourly MAP (mm2), the hourly MAPE (mm2) and the additive error to TCI ((mm/s)2), respectively, Zq,j, Zp,j, Ze,j and Zw,j denote the observations or estimates of the streamflow (m3/s), MAP (mm), MAPE (mm) and additive error to TCI (mm/s) valid at hour j, respectively, and Xp and Xe denote the adjustment factors (dimensionless) to MAP and MAPE, respectively, and Xw denote the additive error to TCI (mm/s) valid for each hour in the assimilation window.

In Seo et al. (2003), the four error variances in Eq.(4) were assumed homoscedastic, and specified based on variance estimates of the state variables and sensitivity analysis of the accuracy of VAR-aided streamflow forecast on the error variances (see Seo et al. 2003 for details). It was found in the experimental operation, however, that, while the homoscedastic approximation works very well in mid- to high flow situations, it tends to under-adjust the SAC states in periods of low flow, resulting in VAR-aided forecast that lacks persistence. In this work, we parameterize (w2 as follows to model heteroscedasticity of the additive error to TCI:
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In Eq.(5), ( and ( are adaptable parameters with settings of –10 and 10 (m3/s), respectively, as obtained from sensitivity analysis. Note that Eq.(5) specifies progressively smaller uncertainty in the additive error if the observed flow falls below the threshold, ( (m3/s). The net effect of Eq.(5) is that, in periods of low flow, VAR adjusts primarily the SAC states to bring simulated flow close to the observed whereas in other periods VAR adjusts the SAC states more conservatively recognizing that TCI is subject to larger errors.
2.2 Lumped SAC-UH Modeling at 1-hr Timestep
One of the objectives of the experimental operation of VAR at WGRFC is to expedite operational streamflow forecasting at 1-hr timestep for headwater basins whose response time is too short to be modeled at the traditional 6- or 3-hr timestep. For lumped modeling of SAC and UH at 1-hr timestep, it was then necessary first to address the following three issues. First, systematic biases in 1-hr precipitation data had to be estimated and corrected for so that UH and SAC parameters may be estimated accurately at 1-hr timestep. At WGRFC, 1-hr precipitation estimates are generated by the Multisensor Precipitation Estimator (MPE, Seo and Breidenbach 2002). Because they are based on radar and rain gauge data, the MPE estimates are subject to various sources of error associated with radar estimation of precipitation (see e.g. Smith et al. 1996). Ideally, biases in these estimates should be corrected for on an event-by-event basis. Such correction, however, is too labor-intensive to be carried out in this work. Here, we address only the systematic biases in the multisensor-based mean areal precipitation (referred to operationally as MAPX) data that may be considered uniform over the entire period of record. Second, UH at 1-hr time scale had to be estimated accurately. Currently, VAR does not explicitly account for timing errors based, e.g., on separation of amplitude and phase errors. As such, it is very important that UH be estimated as accurately as possible to minimize the detrimental effects of timing error on soil moisture state updating (see Section 3). Third, the SAC parameters had to be estimated for use at 1-hr timestep. It has been shown (see, e.g., Finnerty et al. 1997) that calibration of the SAC parameters depends on the timestep of choice. As such, it was necessary either to adjust the SAC parameters that are currently used operationally at 6- or 3-hr timestep to 1-hr timestep, or to optimize locally the a priori SAC parameters derived from the soil data (Koren et al. 2000, 2003, 2004). In this work, we used both approaches and made selections based on comparative evaluation of simulation results. Below, we describe in some detail how the above issues are addressed via the parameter estimation and optimization tool, the Adjoint-Based OPTimizer (AB_OPT).
2.2.1
Estimation of Systematic Biases in Precipitation and Potential Evaporation Data

For estimation of systematic biases in MAPX and MAPE data, AB_OPT solves the following constrained minimization problem:
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In the above, the control variables are the SAC states at the beginning of the simulation horizon, Xs,1, and the multiplicative adjustment factors to MAPX and MAPE, Xp and Xe, respectively. In Eq.(6), the minimization is with respect to the control variables, 
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 is the total number of hours in the simulation horizon, Zq,i is the observed streamflow at hour 
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 (m3/s), Hqq,i( ) is the structure function relating the control variables to the simulated flow at hour 
[image: image15.wmf]i

. The variables in Eqs.(7) and (8) are as defined in Eqs.(2) and (3), respectively. Note that, in Eq.(6), we are minimizing only the difference in cumulative flow over the entire simulation horizon and, as such, it is not necessary to know the shape of the UH.

Because the simulation horizon is typically several years or longer, the objective function in Eq.(6) is much more sensitive to the adjustment factors to MAPX and MAPE than to the initial SAC states at the beginning of the assimilation window. As such, even though the initial SAC states were included as control variables in the formulation, it was necessary to allow a period of model warm-up and exclude the associated simulation from the optimization. Throughout this work, we used the first 10,000 hours for that purpose. We would have liked a longer period for semi-arid basins, but a compromise was necessary in order to increase the number of significant events included in the estimation.
2.2.2 Estimation of Empirical Unit Hydrograph at 1-hr Scale

For estimation of empirical UH at 1-hr timestep, AB_OPT solves the following constrained minimization problem:
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In Eq.(9), Xuh denotes the vector of the UH ordinates (m3/s/mm), ( denotes the non-negative weight given to the mass balance component of the objective function, and the minimization is with respect to Xuh. Note that, because the control variables are made only of the UH ordinates, the structure function, Hqq,i( ), is reduced to the convolution operation of UH. Accordingly, the objective function in Eq.(9) is convex with respect to Xuh and the global optimum may be found via gradient-based minimization. In Eq.(10), Xuh,j denotes the j-th ordinate of the UH (m3/s/mm) and 
[image: image18.wmf]nv

 denotes the total number of ordinates in the UH. Eqs.(9) and (10) differ from an earlier formulation in Seo et al. (2003) in that a penalty term has been added to the objective function to improve mass balance. In general, empirical UH’s obtained from the above minimization require only very minor, often no more than cosmetic, adjustments to the tail ends of the UH to ensure monotonicity.

2.2.3 Local Optimization of Hydrologic Model Parameters

For local optimization of the SAC parameters, AB_OPT solves the following constrained minimization problem via the Stepwise Line Search (SLS, Kuzmin et al. 2006):
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In Eq.(11), Zq,k,i and Hqq,k,i( ) denote the observed and simulated flows (m3/s), respectively, averaged over time interval 
[image: image24.wmf]k

 corresponding to the 
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-th time scale of aggregation, 
[image: image26.wmf]k

s

 denotes the standard deviation of observed flow (m3/s) at the 
[image: image27.wmf]k

-th time scale, K denotes the total number of time scales used, 
[image: image28.wmf]k

n

denotes the number of hourly observations at the 
[image: image29.wmf]k

-th time scale, and Xpar denotes the vector of the SAC parameters to be locally optimized. In this work, we used hourly, daily, weekly and monthly scales of aggregation corresponding to 
[image: image30.wmf]k

=1, 2, 3 and 4, respectively. In Eq.(14), Xpar,jmin and Xpar,jmax denote the lower and upper bounds of the j-th SAC parameter, and 
[image: image31.wmf]m

 denotes the total number of SAC parameters to be locally optimized.

The optimization technique used, SLS (Kuzmin et al. 2006), is a heuristic line-by-line gradient minimization procedure with empirically determined step size and search rules to deal with premature stoppage from small-scale local minima (see also Kavetski et al. 2006a,b for an alternative approach). SLS is used here to adjust the operationally used SAC parameters for 6- or 3-hr timestep to 1-hr timestep and to optimize locally the soil-based a priori SAC parameters (Koren et al. 2000, 2003, 2004) for use at 1-hr timestep. SLS replaced an adjoint-based parameter optimizer in an earlier version of AB_OPT (hence now a misnomer for SLS). Below we provide a brief algorithmic description of SLS (for further details, see Kuzmin et al. 2006); 1) start with the a priori (i.e. multi-hourly or soil-based) estimates of the hydrologic model parameters, 2) with the rest of the parameter values set to the a priori, increase or decrease the value of the first parameter by one step to the direction of decreasing objective function value in Eq.(11), 3) with the first parameter value now set to the new (or old, if the objective function value did not decrease), decrease or increase the value of the second parameter by one step to the direction of decreasing objective function value, 4) repeat Step 3 until the objective function is minimized with respect to each of all remaining parameters, 5) repeat Steps 2 through 4 until no further reduction in the objective function is realized. Based on extensive testing and analysis of the SAC response function surface, a simplification has been added later to the above algorithm; if a given parameter value remains the same in three consecutive loops, where a loop represents an iteration of stepwise line search for all parameters being optimized as described above, the parameter is eliminated from further consideration. Kuzmin et al. (2006) shows that, for optimization of SAC parameters, SLS performs comparably to the Shuffled Complex Evolution (SCE) algorithm (Duan et al. 1992), a widely used genetic algorithm for global optimization of hydrologic and other models, but at a greatly reduced computational cost.
3. Evaluation Experiments and Results

To evaluate VAR, two types of experiments were carried out, hindcasting and forecasting, for 23 basins in the WGRFC’s service area in TX. This section describes the study basins and the data used, the hindcasting experiment and its result, and the forecasting experiment and its result.

3.1 Study Basins and Data Used

Chosen for the experimental operation of VAR are the 23 headwater basins in Texas shown in Fig 1 (see also Table 1). The region is hydrogeologically and hydrometeorologically diverse, ranging from semi-arid in the west, humid in the east, and subtropical along the coast. As such, the basins offer collectively a very stringent test for VAR as well as for AB_OPT. The precipitation data used are the operationally-produced Multisensor Precipitation Estimator (MPE, Seo and Breidenbach 2002) estimates. They are based on real-time radar precipitation estimates and rain gauge observations at hourly scale as quality-controlled by the Hydrometeorological Analysis and Service (HAS) forecasters at the RFC. Through graphical user interface (GUI), the HAS forecasters may also make changes to the automatically-generated precipitation estimates to improve quality. The climatological MAPE is based on point PE climatology derived from the Penman equation (Penman 1948), which is then adjusted by the Normalized Vegetation Difference Index (NDVI) climatology (Koren et al. 1998). The hourly streamflow observations used are the provisional data from the United States Geological Survey (USGS). The streamflow data underwent additional quality control at the RFC for use in this work. The period of record for the precipitation and streamflow data is from January 1996 through March 2005 for most basins. To test and to evaluate AB_OPT as a parameter estimation and optimization tool in an operational environment, it was installed and run at WGRFC by the 4th author. All intercomparison results involving VAR presented in the paper are based on the AB_OPT results obtained at WGRFC, which are summarized below.

3.2 Estimation of Long-Term Biases in Hydrometeorological Data

Systematic biases in MAPX data and MAPE climatology were estimated via the variational assimilation technique described in Section 2. The results are summarized in Table 1. It is important to note that the estimation procedure used in AB_OPT assumes complete closure of water balance by the hydrologic model. As such, if there are significant sources or sinks that are not accounted for by the model, such as diversion for irrigation, groundwater recharge through deep percolation (Slade et al. 2002) and infiltration into dry streambeds, the bias estimates may not be representative of the reality. Overall, the multiplicative bias estimates hover around unity, suggesting that there is little bias in MAPX and MAPE at the regional scale. From basin to basin, however, there are significant variations in the adjustment factor, particularly for MAPX. The standard deviation of the multiplicative factor for MAPX is about 0.19 (i.e. 19%) and 0.14 for the soil-based and operational SAC parameters, respectively, and that for MAPE is about 0.08 for both parameters. In addition to the natural variability, a number of factors contribute to the basin-to-basin variability in the adjustment factor for MAPX: inter-radar calibration differences (Smith et al. 1996), range-dependent biases in radar precipitation estimates (Seo et al. 2000), less than accurate microphysical and statistical parameters used in the WSR-88D Precipitation Processing Subsystem (PPS, Fulton et al. 1998) and in MPE (Seo and Breidenbach 2002), and others. Because the soil moisture accounting model closes water balance completely in the long term, one may not expect the adjustment factors to be very sensitive to the choice of the model parameters (i.e. as long as they are of reasonably good quality) over a sufficiently long simulation horizon relative to the memory of the soil moisture dynamics of the model. It was found, however, that the standard deviation of the difference in the adjustment factor between the soil-based and the operational SAC parameters is relatively large at about 0.11 and 0.06 for MAPX and MAPE, respectively. By far the biggest difference is for MAPX at SDAT2 (see Table 1). Examination of the operational and soil-based SAC parameters suggests that it is due most likely to the large difference in the maximum rate of percolation, ZPERC, for which the soil-based parameter value is less than one-third of the operational for SDAT2. It is suspected that the lack of groundwater reservoir accounting in the lower-zone free water storages of the soil-based parameters (Koren et al. 2000) may be the primary reason for the apparent underestimation in soil-based ZPERC. Without SDAT2, the above standard deviation is reduced to about 0.07 and 0.03 for MAPX and MAPE, respectively. The above observations suggest that, for most basins, the period of record is acceptably long for estimation of the adjustment factors.
3.3 Estimation of Empirical Unit Hydrograph

Because the current version of VAR does not distinguish phase errors from amplitude errors, it is important that UH be estimated as accurately as possible to minimize timing errors. Too early or late a rise in UH would result in under- or over-adjustment of SAC states, resulting in inflation of errors in the initial conditions. To assess possible nonlinear reservoir effects (Chow et al. 1988), we also examined the sensitivity of the estimated UH to the magnitude of peak discharge by estimating multiple UH’s using different sizes of events. In one extreme, the entire streamflow time series was included in the estimation. In the other extreme, only the biggest events were included. The resulting empirical UH’s showed little sensitivity to the size of the event and, as such, we did not consider flow magnitude-dependent modeling of UH. Throughout this work, we then used the entire streamflow data for UH estimation. Fig 2 shows examples of the estimated UH for a number of basins (for more examples, see Seo et al. 2003 and Kuzmin et al. 2006). In general, the empirical UH’s estimated by AB_OPT capture fine-scale details very well. Note, e.g., in Figs 2 that the UH for DCJT2 has a clear secondary peak, suggesting that the basin is probably better-suited for distributed modeling. Lastly, we note here that, very often, empirical UH’s estimated using AB_OPT differ very significantly from widely used UH models such as the two-parameter Gamma (Chow et al. 1988) or Geographic Information System (GIS)-based UH’s (Maidment 1993). It points out that greater attention must be paid to estimation of UH before embarking on calibration of soil moisture accounting models.
3.4 Local Optimization of SAC Parameters

To obtain SAC parameters suitable for 1-hr timestep, we locally optimized for 1-hr timestep 1) the existing, operationally used SAC parameters calibrated for 6- or 3-hr timestep and 2) the soil-based a priori SAC parameters (Koren et al. 2000, 2003, 2004). In both approaches, the Stepwise Line Search (SLS, Kuzmin et al. 2006) described in Section 2 was used for automatic optimization. The results from the two approaches were then compared both qualitatively and quantitatively, by examining the resulting model simulations with the observed and the summary statistics of a number of widely used performance measures. The results for all 23 basins indicate that local optimization via SLS consistently improves the quality of SAC parameters and that, in general, the locally-optimized operational parameters are somewhat better than the locally-optimized soil-based parameters. For details, the reader is referred to Kuzmin et al. (2006). For the hind- and forecasting experiments, we used the locally-optimized soil-based parameters for DCJT2, GETT2, JTBT2, KNLT2, PICT2, and REFT2, and the locally-optimized operational parameters for the other 17 basins as estimated by the 4th author using AB_OPT.
3.5 Hindcasting Experiment

As seen in Seo et al. (2003), one may expect that DA-aided model forecast perform better than, or at least as well as, the better of the DA-less model forecast and the persistence forecast in the mean square error sense. To verify this, VAR was run for all 23 basins over the period of record in the simulation mode, i.e. under clairvoyantly known Quantitative Precipitation Forecast (QPF). The results indicate that, for most basins, VAR performed as expected (Figs 3b,c,e,f) but there were a few aberrations (Figs 3a,d). Further analysis suggests two explanations for the latter. The first is that the combination of structural and parametric errors in the hydrologic and routing models is too large for VAR to overcome (Fig 3d). It points out that the underlying hydrologic models must be of reasonably good quality to realize fully the expected benefits of VAR. The second is that, for certain fast-responding basins, VAR-aided forecast tends to have larger errors than raw model forecast over some range of forecast lead time (Fig 3a). Close examination of the forecast hydrographs suggests that the lack of performance for these basins is due primarily to lack of goodness of fit in the rising limb of the hydrograph and the resulting phase error, as explained below. Too late or slow (early or fast) a rise in the simulated streamflow tends to result in VAR over- (under-)forecasting streamflow over a range of forecast lead time due to the initial over-adjustment of SAC states or precipitation input to the high (low) side. For fast-responding basins, such over-correction tends to result in VAR-aided forecast being out of phase with the observed, resulting in increased error over a range of forecast lead time. A possible remedy for the situation within the current VAR formulation is to prescribe the uncertainty parameters in Eq.(4) in a basin-specific manner, so that VAR adjustments for these basins may be made more conservatively. A more fundamental solution, however, would be to account for timing errors in the DA formulation explicitly so that phase errors and their uncertainties may be accounted for explicitly in the DA process. Development of such a solution, however, is well beyond the scope of this work and is left as a future endeavor.
3.6 Real-Time Forecasting Experiment
For an objective evaluation of VAR in an operational environment, a real-time intercomparison experiment was carried out at WGRFC from July 1, 2005, through July 31, 2006. Included in the experiment are the seven different types of forecasts listed in Table 2. Because generation of these forecasts was not necessarily synchronized, it is rather rare that more than three types of forecasts share the exact same time at which they are generated and the exact same time for which they are valid. For this reason, rather than a single intercomparison of all types of forecasts, we carried out a set of pairwise intercomparisons. In this way, each pairwise evaluation represents a strict head-to-head intercomparison under the same conditions. As such, one may intercompare any two types of forecasts quantitatively for the specific events occurred during the experiment period, even though the performance measures for individual types of forecasts may be subject to significant uncertainties due to limited sample size (and hence, by themselves, may not lend to quantitative evaluation in the absolute sense). For forecast precipitation, we used throughout the forecasting experiment the operationally produced QPF with a maximum forecast lead time of 5 days. The operational QPF is based on guidance from the numerical weather prediction (NWP) models at the NOAA/NWS/National Centers for Environmental Prediction (NCEP) and human forecasters at NCEP/Hydrometeorological Prediction Center (HPC), and any adjustment of them by the Hydrometeorological Analysis and Service (HAS) forecasters at the RFC.
It is not possible to present a large number of pairwise intercomparisons in a journal article. Here, we present only the following five that are directly relevant to the comparative evaluation of VAR: 1) experimental 1-hr timestep VAR-aided simulation vs. operational 6-hr timestep MOD-aided simulation (i.e. FW vs. FX), 2) experimental 1-hr timestep MOD-aided forecast vs. experimental 1-hr timestep raw model forecast (i.e. FC vs. FU), 3) experimental 1-hr timestep VAR-aided forecast vs. experimental 1-hr timestep MOD-aided forecast (i.e. FA vs. FC), 4) experimental 1-hr timestep VAR-aided forecast vs. experimental 1-hr timestep raw model forecast (i.e. FA vs. FU), and 5) experimental 1-hr timestep VAR-aided forecast vs. operational 6-hr timestep MOD-aided forecast (i.e. FA vs. FD).
To intercompare any two types of forecasts qualitatively and quantitatively, we examined for each basin the time series plots of forecast and observed stages, the scatter plots of forecast error, defined as (forecast stage – observed stage), as a function of forecast lead time, the scatter plots of stage between the forecast and the observed at all forecast lead times, and plots of mean error (ME), root mean square error (RMSE), correlation coefficient (CORR) and maximum errors of under- and overestimation (MAXE) of forecast stage as functions of forecast lead time. Fig 4 shows examples of the first three types of these plots for high stages (see below for explanation) for MTPT2. Examples of the summary statistics are shown in Figs 6 through 9 below. The following comments pertain only to the particular example shown in Fig 4 and may not be generalized. Fig 4a shows the forecast hydrographs generated 6 hours apart by FA (upper) and FC (lower), and the verifying observed hydrographs. The upper and the lower plots in the figure illustrate the effects of VAR and MOD, respectively, on forecast hydrographs. It may be seen that, in general, the VAR-aided forecasts are closer to the observed than the MOD-aided. Fig4b shows that the VAR-aided forecasts generally have smaller errors than the MOD-aided, but not in terms of maximum error of underestimation (MAXEU). Fig 4c shows that VAR has more positive impact on the forecast (i.e. tighter scatter along the diagonal) than MOD for the most part, but not for all events. Further examination of forecast hydrographs for all stages (not shown) indicates that that the smaller MAXEU by FC seen in Figs 4b and 4c is largely fortuitous; it results from overforecasts of low stages that extend into the fast-rising limb of the ensuing high-stage events.

It is not possible to show many figures in a journal article. In the following, we present only the summary statistics averaged over multiple basins according to the basin response time and as stratified according to the range of observed stage. For multi-basin averaging, the basins were divided into three groups, the fast-, the intermediate- and the slow-responding, corresponding to the time-to-peak of less than 12, between 12 and 24 and over 24 (hrs), respectively, as estimated from UH’s (see Table 1). Examination of the likes of Fig 4 and the summary statistics for each of the 23 basins indicated that both FQ (experimental 1-hr timestep raw SAC-UH simulation) and FW (experimental 1-hr timestep MOD-aided SAC-UH simulation) for REFT2 have little or no skill in the forecasting experiment period, in contrast to reasonably good skill in FQ in the hindcasting experiment period. The cause for this lack of skill is unclear and additional investigation is needed to explain this unexpected result. Because inclusion of no-skill cases only dilutes comparative evaluation results, we excluded REFT2 from multi-basin averaging. All results presented below are thus based on 22 basins, i.e. the 23 in Table 1 sans REFT2, of which 12, 8 and 2 are fast-, intermediate- and slow-responding, respectively. For stratification according to observed stage, the verifying stage observations were divided into two groups, the high and the low, using the 85-th percentile of all stage observations in the forecasting experiment period as the threshold. The corresponding stage forecasts were then verified for each group as well as for the entire range of observed stage. 
Fig 5 shows the summary statistics for FW (i.e. experimental 1-hr timestep VAR-aided simulation) vs. FX (i.e. operational 6-hr timestep MOD-aided simulation) for all stages for each basin. Note in the figure that we purposefully connected performance measures across all basins for ease of visual comparison. One might expect that, due to the smoothing effects from a larger timestep, FX is likely to produce smaller and larger maximum errors of over- and underestimation, respectively, than FW. Such a pattern, however, is not apparent in the figure, suggesting that one may discount the timestep difference in these intercomparisons. Fig 5 indicates that, in general, FW is somewhat better than FX. The improvement by FW over FX is larger for low stages than for high stages (not shown). These results suggest that, irrespective of VAR, 1-hr SAC-UH modeling as carried out in this work using AB_OPT is likely to provide some improvement, in addition to increasing the temporal resolution of the forecast, over the existing operational 6-hr timestep SAC-UH models. Fig 6 shows the summary statistics for FC (i.e. experimental 1-hr timestep MOD-aided forecast) vs. FU (i.e. experimental 1-hr timestep raw model forecast) for all stages for the fast-responding basins. The pattern of improvement by FC over FU is similar for the intermediate- and slow-responding basins (not shown). These results confirm that, in general, the forecaster MOD improves stage forecasts significantly. The relative margin of improvement of FC over FU is greater for low stages than for high stages for all ranges of basin response time (not shown). Fig 7 shows the summary statistics for FA (i.e. experimental 1-hr timestep VAR-aided forecast) vs. FC (i.e. experimental 1-hr timestep MOD-aided forecast) for each range of basin response time for high and low stages. The figure indicates that, in general, VAR improves, often significantly, over forecaster MOD for all ranges of stage and basin response time. The only possible exception is for low stages of fast-responding basins, for which FA improves over FC only over short forecast lead times (Fig 7b); it suggests that uncertainty modeling in VAR may need further improvement. Fig 8 shows the summary statistics for FA (i.e. experimental 1-hr timestep VAR-aided forecast) vs. FU (i.e. experimental 1-hr timestep raw model forecast) for all stages for each range of basin response time. The figure shows the margin of improvement that may be expected from VAR over the SAC-UH model operating at 1-hr timestep without forecaster MOD. Note the very significant improvement in the overall performance at all lead times even for fast-responding basins, and the significantly greater margin of improvement by VAR for slower-responding basins. These results indicate that VAR may be expected to provide very significant benefits to real-time streamflow forecasting where human forecasters are not available or may not be afforded. Finally, Fig 9 shows the summary statistics for FA (i.e. experimental 1-hr timestep VAR-aided forecast) vs. FD (i.e. operational 6-hr timestep MOD-aided forecast) for all stages for each range of basin response time. The saw-tooth pattern seen in Fig 9a is due to lack of sample size in FD at 6-hr timestep. Recall that FD represents the primary model output used currently for generation of operational forecast. These results indicate that, in general, FA improves over FD for all ranges of basin response time, and that the improvement is generally larger for low stages than for high stages (not shown). They suggest that VAR as supported by AB_OPT may be expected to improve the accuracy of operational stage forecasts often significantly while obviating routine forecaster MOD and increasing the temporal resolution of forecast.
4. Summary, Conclusions and Recommendations

A variational data assimilation (DA) procedure for real-time automatic updating of soil moisture states of the Sacramento model (SAC, Burnash et al. 1973) has been implemented for experimental operation for 23 headwater basins at the National Weather Service’s West Gulf River Forecast Center (WGRFC) in Fort Worth, TX. The procedure, referred to herein as VAR, assimilates hourly streamflow, precipitation and potential evaporation data into the SAC and unit hydrograph (UH) models. It is an enhancement of Seo et al. (2003) in that errors in the soil moisture accounting model are explicitly accounted for by an additive error to the total channel inflow (TCI) from SAC to deal with possible large structural and/or parametric errors in the soil moisture accounting model. The variance of the additive error is parameterized heteroscedastically for improved performance in low flow conditions. To evaluate the procedure in an operational environment, an intercomparison experiment was designed and carried out from July 1, 2005, through July 31, 2006, at WGRFC. To support lumped hydrologic modeling at 1-hr timestep necessary for VAR, we used a novel parameter estimation and optimization tool, the Adjoint-Based OPTimizer (AB_OPT). It estimates systematic biases in radar-based mean areal precipitation (MAPX) and mean areal potential evaporation (MAPE) data, derives empirical unit hydrograph (UH), and locally optimizes the SAC parameters via a heuristic line-by-line gradient minimization algorithm, the Stepwise Line Search (SLS, Kuzmin et al. 2006).
The main conclusions from this work are as follows. 1) Automatic state updating of SAC via VAR provides often significant improvement in stage forecast over interactive state updating by human forecasters via run-time modification (MOD). The improvement is generally greater for low stages than for high stages, and for slow-responding basins than for fast-responding basins. 2) In situations where human forecaster is not available or may not be afforded, VAR provides very significant improvement over raw stage forecast from SAC-UH for all ranges of basin response time and stages. 3) The most important factors limiting the performance of VAR include large structural and/or parametric errors in soil moisture accounting and routing models and lack of flow-dependent modeling of uncertainty. 4) AB_OPT is an operationally viable tool for parameter estimation and optimization for lumped hydrologic modeling at 1-hr timestep; experimental 1-hr timestep SAC-UH simulation based on AB_OPT compares favorably with operational 6-hr timestep SAC-UH simulation.
The main recommendations from this work are as follows. 1) Experience from the experimental operation indicates that DA-aided forecasts and verifying observations must be visualized effectively to support real-time decision-making, error analysis and uncertainty assessment by the forecasters. It is recommended that DA-aided forecast be visualized as time-lagged ensembles (see Fig 4a). 2) Beyond reducing parametric and structural errors of the soil moisture accounting and routing models, improvements are needed in the following areas to make VAR more operation-worthy: modeling of uncertainty in the data, particularly in streamflow, and in the model, explicit accounting of phase and amplitude errors in the soil moisture accounting and routing models, and the use of a priori information on the initial model soil moisture states and their uncertainties. 3) Operational implementation of VAR must consider strengths and weaknesses of automatic DA and human forecaster MOD, and exploit fully the complementarities between them. It is recommended that automatic DA operate in a continuous mode to produce baseline DA-aided forecast, and human forecasters analyze both DA-less and DA-aided forecasts, and accept, reject or, if necessary, apply additional MOD to produce the final value-added forecast.
With respect to the second recommendation, the following comments may be added. Real-time streamflow data used in operational forecasting are obtained typically from stage observations via rating curves. As such, they are subject not only to the errors in the measurement of stage itself, but also to the potentially significant uncertainties in the rating curves. It is hence necessary to account for these uncertainties in the DA as well as in the verification process. In NWS, flood forecasts are currently issued and verified in terms of stage. For water resources monitoring and prediction, however, it is necessary to forecast flow also. The operational hydrologic models used in NWS are calibrated, in general, for high flows for flood prediction. For water resources monitoring and prediction, including of droughts, however, accurate forecasts are needed for low flows also. For that, improvements are needed in flow-dependent uncertainty modeling. Being able to differentiate phase and amplitude errors and to account for them explicitly in DA is one of the long-standing issues in hydrologic prediction. Very often, by the time enough observations become available so that one may ascertain presence or absence of phase and amplitude errors, much of the lead time is lost. A possible approach to dealing with phase errors more effectively may be through ensemble DA in which perturbations are introduced to phase errors in routing, and DA is carried out for an ensemble of perturbations. Because there are no soil moisture observations available in the study area, it was assumed in this work that no a priori information exists for the SAC initial states. In VAR, this amounts to specifying very large error variances for the background SAC states at all times (see Eq.(1) and (4)). There are, however, periods when uncertainty-assessed model initial conditions can be very helpful. For example, visual examination indicates that VAR sometimes has difficulty producing realistic solutions on the falling limb of the hydrograph where streamflow generation transitions from the lower-zone supplemental free water content (LZFSC) to the lower-zone primary free water content (LZFPC). In such situations, VAR may benefit from informative a priori estimates of the model initial states from additional, in-situ and/or remotely sensed, data sources to constrain the adjustment of SAC initial states at the beginning of the assimilation window.
Finally, in real-time operational forecasting, it is not realistic to expect that automatic techniques will work well under all circumstances. As such, it is very important that VAR allow interfaces with and admit input from human forecasters, and that the operational procedure fully exploit the strengths of automatic DA and human forecaster MOD, and complementarities between them.
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6. Notation

F( )
=
Sacramento soil moisture accounting model (SAC) dynamics;

Hbb
=
structure function for a priori SAC soil moisture states;

Hee
=
structure function for mean areal potential evaporation (MAPE);

Hpp
=
structure function for mean areal precipitation (MAP);

Hqq
=
structure function for streamflow at the basin outlet;

Hww
=
structure function for additive error to total channel inflow (TCI) from 

SAC;

Jβ
=
objective function for estimation of multiplicative biases in MAP and 

MAPE data;

Jk
=
objective function for variational data assimilation at hour k;

Jpar
=
objective function for local optimization of SAC parameters;

Juk
=
objective function for estimation of empirical unit hydrograph (UH);

K
=
number of time scales of aggregations used in Jpar;

n
=
number of hours in Jβ;

nv
=
number of ordinates in UH;

m
=
number of SAC parameters in Jpar;

Rbb
=
error covariance matrix for Zb (see below); 

Ree
=
error covariance matrix for Ze (see below);

Rpp
=
error covariance matrix for Zp (see below);

Rqq
=
error covariance matrix for Zq (see below);

Rww
=
error covariance matrix for Zw (see below);

Xe
=
multiplicative adjustment factor to MAPE;

Xp
=
multiplicative adjustment factor to MAP;

Xpar
=
SAC parameters to be locally optimized;

Xpar,j
=
j-th entry in Xpar;

Xpar,jmin
=
lower bound for Xpar,j;

Xpar,jmax=
upper bound for Xpar,j;

Xs,k
=
SAC soil moisture states valid at hour k;

Xs,kmin
=
lower bound for Xs,k;

Xs,kmax
=
upper bound for Xs,k;

Xuh
=
ordinates in UH;

Xuh,j
=
j-th entry in Xuh;

Xw
=
additive error to TCI;

Zb
=
a priori SAC soil moisture states;

Ze
=
MAPE data;

Zp
=
MAP data;

Zq
=
streamflow data;

Zw
=
a priori additive error to TCI;

α
=
amplitude parameter in nonlinear parameterization of σq (see below);
β
=
shape parameter in nonlinear parameterization of σq (see below);

γ
=
multiplicative weight given to the mass balance component in Juh;

σe
=
standard deviation of the error in Ze;

σp
=
standard deviation of the error in Zp;

σq
=
standard deviation of the error in Zq;

σw
=
standard deviation of the error in Zw; and

σk
=
standard deviation of time-aggregated flow at the k-th scale.
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Table 1. Study basins
	No
	Basin name
	USGS ID
	Area (km2)
	Tpa (hrs)
	
[image: image32.wmf]soil

p

X

,

b
	
[image: image33.wmf]soil

e

X

,

c
	
[image: image34.wmf]oper

p

X

,

d
	
[image: image35.wmf]oper

e

X

,

e

	1
	ATIT2
	08159000
	844
	9
	0.91
	1.04
	0.97
	1.01

	2
	BDAT2
	12100302
	849
	2
	0.84
	1.00
	1.05
	0.98

	3
	DCJT2
	08053500
	1039
	6
	0.86
	1.05
	0.88
	1.06

	4
	GBHT2
	08076000
	137
	5
	1.11
	0.95
	1.08
	0.96

	5
	GETT2
	08104900
	334
	10
	1.04
	0.98
	1.12
	0.91

	6
	GNVT2
	08017200
	212
	16
	1.04
	0.98
	1.05
	0.98

	7
	HBMT2
	08075000
	246
	3
	1.56
	0.75
	1.51
	0.66

	8
	HNTT2
	08165500
	769
	3
	0.78
	1.05
	0.96
	0.96

	9
	JTBT2
	08079600
	945
	9
	1.09
	0.97
	1.11
	0.94

	10
	KNLT2
	08152000
	904
	7
	0.87
	1.05
	1.03
	0.99

	11
	LYNT2
	08110100
	508
	18
	0.89
	1.04
	0.95
	1.03

	12
	MCKT2
	08058900
	427
	14
	1.05
	0.98
	1.07
	0.96

	13
	MDST2
	08065800
	870
	21
	1.02
	0.99
	1.04
	0.97

	14
	MTPT2
	08162600
	435
	17
	0.92
	1.03
	0.86
	1.04

	15
	PICT2
	08101000
	1178
	6
	0.92
	1.03
	0.95
	1.03

	16
	QLAT2
	08017300
	197
	12
	1.14
	0.93
	1.15
	0.92

	17
	REFT2
	08189500
	1787
	39
	0.79
	1.08
	0.87
	1.05

	18
	SBMT2
	08164300
	896
	26
	0.86
	1.04
	0.91
	1.02

	19
	SCDT2
	08176900
	932
	14
	0.79
	1.07
	0.84
	1.03

	20
	SDAT2
	12040103
	272
	17
	1.34
	0.79
	0.99
	1.01

	21
	SKMT2
	12100407
	639
	12
	0.71
	1.08
	0.84
	1.06

	22
	SOLT2
	08041700
	1746
	57
	0.95
	1.02
	0.96
	1.02

	23
	UVAT2
	08190000
	1981
	13
	0.89
	1.02
	1.03
	0.99

	Average
	
	
	
	
	0.97
	1.00
	1.01
	0.98


a Time to peak as estimated from the empirical unit hydrograph.

b,d Multiplicative adjustment factor for precipitation estimated using soil-based and operational, respectively, SAC parameters.

c,e Multiplicative adjustment factor for potential evaporation estimated using soil-based and operational, respectively, SAC parameters.

Table 2. Types of forecasts and simulations of river stage intercompared
	Forecast type
	Timestep (hr)
	Explanation

	FA
	1
	VAR-aided SAC-UH forecast

	FC
	1
	MODa-aided SAC-UH forecast

	FD
	6
	MODa-aided SAC-UH forecast with Adjust-Qb

	FQ
	1
	Raw SAC-UH simulation

	FU
	1
	Raw SAC-UH forecast

	FW
	1
	VAR-aided SAC-UH simulation

	FX
	6
	MODa-aided SAC-UH simulation


a Run-time modification by human forecaster.
b Weighted interpolation of flow between the model forecast and the observations over a time window such that the model forecast matches the observed over very short lead times and remains unchanged over long lead times.

Figure Captions

Fig 1. Map of the experimental basins in the WGRFC’s service area.
Fig 2. Examples of the empirical unit hydrographs at 1-hr timestep estimated using 
AB_OPT; OPER and SOIL indicate that the SAC parameters used are the RFC-
operational and the soil-based, respectively.
Fig 3. Examples of RMSE as a function of forecast lead time for raw model, persistent 
and VAR-aided streamflow forecasts from the hindcasting experiment under 
clairvoyant QPF.
Fig 4a. Experimental 1-hr timestep VAR- (FA, upper) and MOD- (FC, lower) aided 
forecast hydrographs against the observed for high stages for MTPT2.
Fig 4b. Stage errors as a function of lead time for experimental 1-hr timestep VAR- (FA, 
left) and MOD- (FC, right) aided forecast for high stages for MTPT2.
Fig 4c. Scatter plots of experimental 1-hr timestep VAR- (FA, left) and MOD- (FC, 
right) aided stage forecasts against the observed for high stages for MTPT2.
Fig 5. Summary statistics of experimental 1-hr timestep VAR- and MOD-aided stage 
simulations, FW and FX, respectively, for high stages for all basins.
Fig 6. Summary statistics of experimental 1-hr timestep MOD-aided (FC) and raw model 
(FU) stage forecasts for all stages for basins with time-to-peak of less than 12 
hours.
Fig 7a. Summary statistics of experimental 1-hr timestep VAR- (FA) and MOD- (FC) 
aided stage forecasts for high stages for basins with time-to-peak of less than 12 
hours.
Fig 7b. Same as Fig 7a, but for low stages.
Fig 7c. Same as Fig 7a, but for basins with time-to-peak between 12 and 24 hours.
Fig 7d. Same as Fig 7c, but for low stages.
Fig 7e. Same as Fig 7a, but for basins with time-to-peak greater than 24 hours.
Fig 7f. Same as Fig 7e, but for low stages.
Fig 8a. Summary statistics of experimental 1-hr timestep VAR-aided (FA) and raw 
model stage forecasts for all stages for basins with time-to-peak less than 12 
hours.
Fig 8b. Same as Fig 8a, but for basins with time-to-peak between 12 and 24 hours.
Fig 8c. Same as Fig 8a, but for basins with time-to-peak greater than 24 hours.
Fig 9a. Summary statistics of experimental 1-hr timestep VAR-aided (FA) and 
operational 6-hr timestep MOD-aided (FD) stage forecasts for all stages for 
basins with time-to-peak less than 12 hours.

Fig 9b. Same as Fig 9a, but for basins with time-to-peak between 12 and 24 hours.
Fig 9c. Same as Fig 9a, but for basins with time-to-peak greater than 24 hours.
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Fig 1.
Map of the experimental basins in the WGRFC’s service area.
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Fig 2.
Examples of the empirical unit hydrographs at 1-hr timestep estimated using AB_OPT; OPER and SOIL indicate that the SAC parameters used are the RFC-operational and the soil-based, respectively.
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Fig 3. Examples of RMSE as a function of forecast lead time for raw model, persistent and VAR-aided streamflow forecasts from the hindcasting experiment under clairvoyant QPF.
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Fig 4a. Experimental 1-hr timestep VAR- (FA, upper) and MOD- (FC, lower) aided forecast hydrographs against the observed for high stages for MTPT2.
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Fig 4b. Stage errors as a function of lead time for experimental 1-hr timestep VAR- (FA, left) and MOD- (FC, right) aided forecast for high stages for MTPT2.
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Fig 4c. Scatter plots of experimental 1-hr timestep VAR- (FA, left) and MOD- (FC, right) aided stage forecasts against the observed for high stages for MTPT2.
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Fig 5. Summary statistics of experimental 1-hr timestep VAR- (FW) and MOD- (FX) aided stage simulations for high stages for all basins.
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Fig 6. Summary statistics of experimental 1-hr timestep MOD-aided (FC) and raw model (FU) stage forecasts for all stages for basins with time-to-peak of less than 12 hours.
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Fig 7a. Summary statistics of experimental 1-hr timestep VAR- (FA) and MOD- (FC) aided stage forecasts for high stages for basins with time-to-peak of less than 12 hours.
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Fig 7b. Same as Fig 7a, but for low stages.
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Fig 7c. Same as Fig 7a, but for basins with time-to-peak between 12 and 24 hours.
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Fig 7d. Same as Fig 7c, but for low stages.
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Fig 7e. Same as Fig 7a, but for basins with time-to-peak greater than 24 hours.
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Fig 7f. Same as Fig 7e, but for low stages.
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Fig 8a. Summary statistics of experimental 1-hr timestep VAR-aided (FA) and raw model stage forecasts for all stages for basins with time-to-peak less than 12 hours.
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Fig 8b. Same as Fig 8a, but for basins with time-to-peak between 12 and 24 hours.
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Fig 8c. Same as Fig 8a, but for basins with time-to-peak greater than 24 hours.
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Fig 9a. Summary statistics of experimental 1-hr timestep VAR-aided (FA) and operational 6-hr timestep MOD-aided (FD) stage forecasts for all stages for basins with time-to-peak less than 12 hours.
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Fig 9b. Same as Fig 9a, but for basins with time-to-peak between 12 and 24 hours.
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Fig 9c. Same as Fig 9a, but for basins with time-to-peak greater than 24 hours.
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