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1. Introduction


While it has now been well demonstrated that distributed hydrologic models can provide as accurate streamflow simulations at basin outlets as high-quality lumped models (Reed et al. 2004, Smith et al. 2004), it is yet to be shown that distributed models can produce as accurate forecasts at basin outlets as the lumped models that are aided by automatic data assimilation (DA) or manual modification (MOD) of model states in real time. It is generally acknowledged that, to realize fully the potential benefits of distributed models in operational hydrologic forecasting, some form of real time data assimilation and/or manual MOD of model states is necessary. In this work, we describe a prototype data assimilator (DA) for the NOAA/NWS/Hydrology Laboratory’s (HL) Research Distributed Hydrologic Model (RDHM) toward developing an operational DA for distributed hydrologic models. While the ultimate objective is to develop and implement an operation-worthy DA for distributed models into NWS operations, this work aims at identifying, assessing and addressing significant scientific, computational, observational, and operational issues that are expected to require sustained effort. The work described herein represents a first step toward these goals.


RDHM is a research version of the operational Distributed Hydrologic Model (DHM) and a successor of the HL Research Modeling System (HL-RMS, Koren et al. 2004). Currently, RDHM includes gridded versions of the Sacramento soil moisture accounting model (SAC, Burnash et al. 1973), the Antecedent Precipitation Index (API) rainfall-runoff model (NWS 2005), and the SNOW-17 snow ablation model (Anderson 1973, 1976), and the kinematic wave hillslope and channel routing models (Koren et al. 2004). In this work, we use only the SAC and kinematic wave routing models.
2. Problem Description
In the context of real-time operational hydrologic forecasting, the assimilation problem dealt with in this work may be described as follows. Given the current observations and/or estimates of streamflow or stage, precipitation and potential evaporation (PE), update the state variables of the soil moisture accounting and routing models so that the uncertainties in the initial conditions may be reduced for forecasting and monitoring of streamflow and soil moisture at the space-time scale resolved by the models within the model domain. While we do not assimilate either in-situ or remote sensing-based soil moisture data in this work, we give considerations for assimilating such data in development of the methodology. Also, while the prototype described in this paper does not involve ensemble prediction, it is developed within the ensemble DA framework to be able to support ensemble prediction in the very near future. The motivation for giving priority to assimilating streamflow data, rather than soil moisture data, is at least two-fold. The first is that, being a quantity aggregated in space and time, streamflow data provide, measurement by measurement, arguably the most reliable information on the aggregate state of the hydrologic system. The second is that streamflow is arguably the most important variable in operational hydrology, and it hence behooves to assimilate its observations before improvements are sought from assimilation of other data.
While DA involving distributed hydrologic or land surface models are not necessarily new (Entekhabi et al. 1994, McLaughlin et al. 1995, Houser et al. 1998, Reichle 2000), relatively little attention has been paid to catchment-scale DA that includes streamflow data. From the viewpoint of developing assimilation methodology, streamflow data assimilation poses at least two significant additional challenges compared to assimilating, e.g., soil moisture data alone into land surface models as elaborated below. The first is that, because streamflow data reflect time integration of various runoff processes reaching the gauging station, they contain information about the state of the basin some time before the current time. As such, the DA process needs a sufficiently large assimilation window to account for this time lag, or memory of the basin. For this reason, smoothing techniques such as variational assimilation (Li and Navon 2001) and Kalman smoothing (Jazwinski 1970) are much more appealing that filtering techniques such as Kalman filtering (Jazwinski 1970). The second is that streamflow is highly nonlinearly related with soil moisture states, and hence the observation equation (i.e. the relationship between the observed streamflow and the modeled streamflow) is highly nonlinear. Accordingly, in the context of Kalman filter, one may not expect the Kalman gain to be optimal, and iterations are generally necessary to obtain useful solutions. Given these considerations, the strategy used here for DA of streamflow is to use variational assimilation (Li and Navon 2001, Seo et al. 2003), referred to as VAR herein, for deterministic DA, and maximum likelihood ensemble filter (Zupanski et al. 2005)-like procedure for ensemble DA. VAR has been used successfully used for assimilation of streamflow data into lumped hydrologic models (Seo et al. 2003, 2006).
3. Problem Formulation


The DA problem described above may be formulated as the following minimization:
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Before describing the variables in the above expressions, it is necessary to define first the assimilation window first. Given the current hour k, the assimilation window is defined to be the time window of length of 
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 (hrs), beginning at hour 
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 and ending at hour k. In Eq.(1), Jk denotes the objective function to be minimized at the current hour k, Zq denotes the vector of streamflow observations at the basin outlet or at any interior locations valid within the assimilation window, Zp and Ze denote the vectors of gridded hourly precipitation and PE estimates valid over the assimilation window, Zw denotes the vector of a priori (i.e. background) estimates of the grid cell-specific and time-varying additive error in the hillslope routing and channel routing models (see below), and Zb denotes the vector of a priori (i.e. background) grid cell-specific estimates of the 6 SAC states at the beginning of the assimilation window: the upper-zone tension water content (UZTWC), the upper-zone free water content (UZFWC), the lower-zone tension water content (LZTWC), the lower-zone supplemental free water content (LZFSC), the lower-zone primary free water content (LZFPC), and the lower-zone tension water content in the additional impervious area (ADIMC), Xs,k-l denotes the vector of the grid cell-specific 6 SAC states at the beginning of the assimilation window, Xp and Xe denote the time-varying but spatially-uniform multiplicative adjustment factors to precipitation and PE over the assimilation window, respectively, Xw denotes the vector of grid cell-specific and time-varying additive errors to the hillslope and channel routing models (see below) over the assimilation window, the Hqq matrix denotes the structure function that maps the control vectors, Xs,k-l, Xp, Xe and Xw, to simulated streamflow, the matrices, Hpp, Hee, Hww and Hbb, denote the structure functions that relate the control variables, Xp, Xe, Xw and Xb, to the observations, Zp, Ze, Zw and Zb, respectively, and Rqq, Rpp, Ree, Rww and Rbb denote the measurement or estimation error covariance matrices associated with Zq, Zp, Ze, Zw and Zb, respectively. In Eq.(2), F( ) denotes the soil moisture dynamics of SAC. In Eq.(3), Xs,jmin and Xs,jmax denote the lower and upper bounds of the states of SAC, respectively.

To account for parametric and structural errors in the soil moisture accounting and routing models, we introduce additive errors to the groundwater runoff and surface water runoff from SAC. The surface water runoff is the input to the hillsope routing model and the groundwater runoff is the input to channel routing model. The hillslope flow is modeled as (Koren et al. 2004):
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where h is the depth of the overland flow, q is the discharge per unit area of hillslope, Rs is the fast-responding (i.e. surface) runoff from the soil moisture accounting model, ws is the time-varying additive error to the surface runoff from SAC, Sh is the hillslope, nh is the roughness coefficient, D is the drainage density (1/[L]) and Lh is the hillslope length (=1/(2D)).  The three parameters, D, Sh and nh, in qs are specified for each grid cell.  A no-flow boundary condition is assumed at x=0 and Lh. The channel flow is modeled as (Koren et al. 2004):
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Where A is the (wetted) channel cross section, Q is the discharge, qLh is the lateral inflow per unit length of the channel, Rg is the slow-responding (i.e. groundwater) runoff from the soil moisture accounting model, fc is the area of the grid cell, Lc is the channel length within the grid cell, wg is the time-varying additive error to the input to channel routing, Qs is the channel specific discharge, and Mc is the exponent parameter.  The upstream boundary condition at each grid cell is the total discharge draining into it.  Assuming the power-law relationship of W=a Hb between the top width W and depth of the channel H, where a and b denote the width and shape parameters, respectively, the a priori estimates of Qs and Mc are given by (Koren et al. 2004):
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The parameters to be adjusted are then the specific hillslope discharge, qs, the exponent, Mc, and the channel specific discharge, Qs. To improve numerical precision in channel routing, the channel in each grid box is divided into three subsections. As such, there are three times as many state variables for channel routings as there are grid boxes.


The above formulation includes the following control variables where ncell denotes the number of grid cells in the basin and nwin denotes the length of the assimilation window in hours: 6*ncell for the SAC states, ncell for the hillsope routing states, 3*ncell for the channel routing states, nwin for the adjustment factor for precipitation, nwin for the adjustment factor for PE, nwin*ncell for the additive error to groundwater runoff from SAC, and nwin*ncell for the additive error to surface water runoff from SAC (see Eqs.(4) and (6)). The total number of control variables hence is (10+2*nwin)*ncell+2*nwin. The inclusion of additive errors above is equivalent in Kalman filter to the random error term in the dynamical models. In addition to the above choice of control variables, we tried different formulations in an attempt to reduce the number of control variables, and hence the dimensionality of the system. In the most parsimonious formulation, rather than adjusting soil moisture and routing states for each grid cell, we tried time-varying but spatially uniform multiplicative adjustment factors. The results indicated, however, that the simplified formulation very often could not reproduce the shape of the observed hydrographs and was not pursued further.

Ideally, the space-time structure of the errors introduced in the above formulation need to be modeled based on rigorous error analysis. Here, we make a set of simplifying assumptions to reduce complexity of the uncertainty modeling and the computational requirements. The additive errors to the inputs to the routing models are assumed to be white in space and time. The measurement errors associated with gridded precipitation and PE estimates in the observation equation are assumed to be white in space and time. The measurement errors associated with streamflow data are assumed to be white in time. With these simplifications (see also Seo et al. 2003a,b), the uncertainty parameters that need to be specified for the minimization in Eq.(1) are:
σq2 – variance of the streamflow measurement error,
σp2 – variance of the estimation error associated with hourly precipitation at HRAP scale,
σe2 – variance of the estimation error associated with hourly PE,
σs12 through σs62 – variances of the initially guessed 6 SAC states,
σh2 – variance of the initially guessed hillsope routing state,
σc12 through σc32 – variances of the initially guessed 3 channel  routing states, and
σw12 – variance of the initially guessed additive error to the input of the hillslope routing model.

Because VAR does not propagate or update uncertainty, the above uncertainty parameters must be specified externally. In this work, σp2, σe2, σs2, σh2, and σc2 were specified by the sample variances of the corresponding variables in the simulation period, and σq2 and σw2 were specified via sensitivity analysis. Generally speaking, the procedure is most sensitive to σq2. A large value of σq2 produces DA results that are close to the model simulation without DA. A small value of σq2, on the other hand, results in DA-aided simulation tracking the observed streamflow very closely except when the model error is very large. Significant departure of DA-aided simulation from the observed hence is an indication of large parametric and/or structural errors, or errors in the initial conditions that could not be resolved by the model and/or DA due, e.g., to lack of physics and/or under-determination of the minimization problem.

4.  Study Basin and Data Used

This work leverages the Distributed Model Intercomparison Project (DMIP, Smith et al. 2004, Reed et al. 2004) extensively. The study basin used in this work is WTTO2 in the Illinois River basin in the northeastern Oklahoma. The basin has been modeled extensively for the Distributed Model Intercomparison Project (DMIP, Smith et al. 2004, Reed et al. 2004).  It is a particularly challenging basin for our study in that it has two main tributaries that result in bi-modal unit hydrograph (UH) response (see Fig 1 for the channel network and Fig A1 of Seo et al. 2003 for empirical UH). As such, it is likely that the assimilation problem is underdetermined, and hence serves to identify significant science issues that may not surface in other basins. While not dealt with in this work, we plan to assess the value of streamflow data at interior locations in the DA framework developed in this work. It may be expected that the additional streamflow data significantly reduce the degree of under-determination of the assimilation problem.

The streamflow data used are the provisional hourly data from the United States Geological Survey as additional quality-controlled at NWS/HL for DMIP. The precipitation data used are the operationally produced Stage III data. The potential evaporation (PE) estimates come from climatology of point PE as estimated via the Penman equation (Penman 1948) and modified by NDVI (Koren et al. 1998). The particular time period chosen for this study is about a 2-month period in June and July of 2000 (see Fig 2 for the observed hydrograph). The first half of this period includes three very significant flood events and the second half is a drying period. As will be seen, the quality of RDHM streamflow simulation over this period is extremely high and, as such, offers an extremely stringent test for the DA procedure.

5. Description of the Procedure


With the control variables specified above, the adjoint code for the gridded SAC and kinematic wave routing was generated via Tapenade (http://tapenade.inria.fr:8080/tapenade/index.jsp). The integrity of the adjoint code was verified against the tangent linear code, obtained also via Tapenade. Our experience suggests that the automatically generated adjoint and tangent linear codes usually require some debugging and manual modifications. The minimization algorithm used in this work is the Fletcher–Reeves–Polak–Ribiere minimization (FRPRMN, Press et al. 1986). This algorithm has been used successfully in DA applications involving lumped models (Seo et al. 2003, Seo et al. 2006) as well as for parameter estimation involving distributed models (Seo et al. 2003c).


Choosing the length of the assimilation window requires some sensitivity analysis. In this work, we started with a length of 72 hours based on the duration of the unit hydrograph (UH) (Seo et al. 2003a). We then reduced the length and compared performance. The results indicate that the performance, in terms of streamflow prediction, based on a length of 36 hours is comparable to that of 72 hours. As such, we used a length of 36 hours throughout in this work. Given the window size, there are at least two ways to operate VAR. One may run RDHM in the background and use the resulting model states to initialize the DA run. Or, one may initialize the DA run only once with the RDHM run only for the very first hour and use the DA-adjusted states for the subsequent hours. A distinct advantage of the 1st, or the non-sequential, approach is that one does not need to run DA at all times, but only when needed. Also, the resulting DA solution has a simple interpretation of being an optimized model forecast based on adjustment of model states within the assimilation window. A disadvantage of the 1st approach is that, if the raw model simulation is of poor quality, it may require many iterations to produce a convergent solution. The expected advantage of the 2nd, or the sequential, approach is that, because it updates the model states constantly forward (thus making use of the information contained in the data assimilated in all preceding periods), one may expect improved performance. A disadvantage of the 2nd approach is that, because the DA run is based on internally updated stated variables, it may not be straightforward to relate to the raw model states. Also, in the 2nd approach one needs to run the DA procedure at all times to update the information. In this work, we tested both approaches. The results show that, over a month period that includes very significant flood events, the non-sequential approach requires about 2.86 times more function evaluations than the sequential approach, where a function evaluation amounts to running RDHM once over the assimilation window (see Fig 3). Performance in terms of streamflow prediction at the outlet, on the other hand, is similar (see Figs 4 and 5). As such, we use the sequential approach as the baseline in this work, and tested and preliminarily evaluated its performance.
6. Testing and Preliminary Evaluation

Ideally, the performance of the DA procedure should be evaluated by comparing 1) streamflow simulation or forecast at the basin outlet with and without DA, 2) streamflow simulation or forecast at interior streamflow gauging locations with and without DA, 3) soil moisture simulation or forecast where soil moisture observation is available with and without DA. In this preliminary work, we limit the scope of evaluation to 1). As such, while the results shown in this work reflect the performance in the basin-wide aggregate sense, they do not shed light on the accuracy of spatially-varying adjustment of model states.

The integrity of the adjoint code and the minimization algorithm was tested by carrying out assimilation experiments in which observed flow was replaced by model-simulated flow. Due to a large number of possible combinations in perturbing the control variables, the above experiment was limited in scope. While we were able to verify the performance of the algorithm under the limited number of experiments that were carried out, additional experiments are necessary to verify the goodness of preconditioning and to understand the practical limits of model errors and the degrees of freedom that the DA may be able to bear.

Fig 7 shows 1 hr-ahead forecast under perfect quantitative precipitation forecast (QPF) without (upper) and with (lower) DA for the 1st half of the study period. Any significant departures of the VAR-aided forecast from the observed is an indication that the DA procedure could not overcome the large model errors due to a combination of parametric and structural errors and uncertainties in the initial conditions. From the figure, the following observations are noteworthy. The first is that, with the bimodality in the basin streamflow response at the outlet, VAR tends to overshoot in the early part of the rising limb of the hydrograph where the rise is very fast. In the absence of additional information (e.g., from streamflow observation at interior points), this behavior of DA is unavoidable given that the underlying model does not capture the bimodality. The second is that, presumably because the underlying model is not able to capture the bimodality of outlet streamflow, VAR misses the peak flow and starts to recede prematurely. It is not clear how much of this lack of goodness of fit is due to parametric and/or structural errors of the model, rather than to uncertainties in the space-time distribution of initial conditions. Additional experiments and analyses are necessary to ascertain this.

Fig 8 shows 1 hr-ahead forecast under perfect QPF without (upper) and with (lower) DA for the 2st half of the study period.  Note around the 600th hour that the model simulation tends to rise at a significantly slower rate than the observed, which results in VAR overshooting the peak flow. This behavior is also widely observed in lumped model application of VAR (Seo et al. 2006) and points out the importance of reducing phase errors, and being able to account for uncertainties associated with them. Also in Fig 8, the non-negligible size of the departure of the 1 hr-ahead DA-aided forecast from the observed suggests that the uncertainty parameters for VAR are not of high quality and points to accounting of heteroscedasticity of them (Seo et al. 2006).

Figs 8 through 20 show examples of comparisons between streamflow simulations with and without DA (upper) and the corresponding state variables (lower) at selected hours in the study period. The figures may be summarized as follows. The procedure is capable of adjusting the control variables to produce well-behaving outlet streamflow forecasts under widely varying conditions. When the underlying model does not capture bimodal outlet streamflow response of the basin, however, VAR does not improve the raw model forecast. That DA-adjusted streamflow can match the observed in the assimilation under some situations (see, e.g., Figs 14 and 18) suggests that additional information such as streamflow observations at interior points or, to a lesser degree, soil moisture observations may be necessary for basins such as WTTO2.
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Fig 1. WTTO2 channel network as modeled in RDHM (courtesy of Seann Reed).
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Fig 2. Observed hourly streamflow at the basin outlet over the study period.
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Fig 3. Number of function evaluations by non-sequential and sequential VAR (see text for explanation).
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Fig 4. Root mean square error (RMSE) of DA-aided streamflow simulation by non-sequential and sequential VAR (see text for explanation).
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Fig 5. 6 hr-ahead streamflow forecast by non-sequential (upper) and sequential (lower) VAR (see text for explanation).
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Fig 6. 1 hr-ahead streamflow forecast without (upper) and with (lower) DA over the 1st half of the study period.
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Fig 7. 1 hr-ahead streamflow forecast without (upper) and with (lower) DA over the 2nd half of the study period.
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Fig 8a. Example streamflow simulation with and without DA.
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Fig 8b. Model states with and without FA corresponding to Fig 8a.
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Fig 9a. Same as Fig 8a, but for a different hour.
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Fig 9b. Same as Fig 8b, but for a different hour.
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Fig 10a. Same as Fig 8a, but for a different hour.
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Fig 10b. Same as Fig 8b, but for a different hour.
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Fig 11a. Same as Fig 8a, but for a different hour.
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Fig 11b. Same as Fig 8b, but for a different hour.
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Fig 12a. Same as Fig 8a, but for a different hour.
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Fig 12b. Same as Fig 8b, but for a different hour.
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Fig 13a. Same as Fig 8a, but for a different hour.
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Fig 13b. Same as Fig 8b, but for a different hour.
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Fig 14a. Same as Fig 8a, but for a different hour.
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Fig 14b. Same as Fig 8b, but for a different hour.


[image: image33.emf]
Fig 15a. Same as Fig 8a, but for a different hour.
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Fig 15b. Same as Fig 8b, but for a different hour.
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Fig 16a. Same as Fig 8a, but for a different hour.
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Fig 16b. Same as Fig 8b, but for a different hour.


[image: image37.emf]
Fig 17a. Same as Fig 8a, but for a different hour.
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Fig 17b. Same as Fig 8b, but for a different hour.
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Fig 18a. Same as Fig 8a, but for a different hour.
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Fig 18b. Same as Fig 8b, but for a different hour.
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Fig 19a. Same as Fig 8a, but for a different hour.

[image: image42.emf]
Fig 19b. Same as Fig 8b, but for a different hour.


[image: image43.emf]
Fig 20a. Same as Fig 8a, but for a different hour.


[image: image44.emf]
Fig 20b. Same as Fig 8b, but for a different hour.
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