RFC Archive Database Management Discussion
May 2, 2012
Information provided by Julie Meyer/MBRFC, March 2012
(edited by Mark Glaudemans)

Background

This document discusses actions to take if the RFC Archive Database becomes full. The focus is on dealing with the following two data stores under the /data partition:
1) /data/pgdata directory (RAXDB) used by PostGres. This requires reduction in the storage required for the PostGres archive database. Most of the subsequent discussion addresses this situation.
2) /data/flatfiles archive directory. The archive can require the storage of many files and even with large files gzipped, they take up a lot of space. One solution is to add an external drive that stores the "static" past year’s files and keeps the previous year and current year only. This issue can also be resolved with in-house solutions.
The below methods were developed by MBRFC and have been shared with MARFC, OHRFC, LMRFC and WGRFC.

===
a) To see the disk usage for directories and their filess:
cd /data
du -h ./pgdata
du -h ./flatfiles

b) To query the database and see how much space various db tables are taking up:
 Here is the command provided by MARFC to show a true table size...and the associated output:

 SELECT nspname || '.' || relname AS "relation",
 pg_size_pretty(pg_total_relation_size(C.oid)) AS "total_size"
 FROM pg_class C
 LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)
 WHERE nspname NOT IN ('pg_catalog', 'information_schema')
 AND C.relkind<> 'i'
 AND nspname !~ '^pg_toast'
 ORDER BY pg_total_relation_size(C.oid) DESC
 LIMIT 20;

Sample output:
 relation | total_size
 ------------------------+------------
 public.pecrsep | 275 GB
 public.pehpsep | 11 GB
 public.peqpsep | 8975 MB
 public.pedfsep | 6857 MB
 public.pedrsep | 2135 MB
 public.peqfsep | 1355 MB
 public.peoosep | 1298 MB
 public.vfypairs | 731 MB
 public.pedpsep | 370 MB
 public.unkstnvalue | 118 MB
 public.ingestfilter | 40 MB
 public.vfyprocpairs | 8008 kB
 public.statessacsma | 2000 kB
 public.statessnow17 | 1848 kB
 public.avg | 1512 kB
 public.location | 1472 kB
 public.pairedvalues | 1408 kB
 public.pehfsep | 1184 kB
 public.counties | 432 kB
 public.pemrsep | 424 kB
 (20 rows)

c) If enough space is still available in /data, a vacuumdb -full can be done. A vacuumdb on the entire database or a single table can take several hours, even over 1 day if a vacuumdb -full has not been done in a long time.

Before doing any of this, make sure you have a recent backups of the database saved off somewhere.
To do this, shut down the cron on the RAX, and shut off the shefdecoders. Make sure no one else is using the RAX; this is needed so vacuumdb -full and reindexing will run faster, and to avoid lock issues since vacuumdb -full does lock tables.

For the entire database, the cmd is:

dbvacuumdb -U postgres -full -d database-name -v

Or to do just one table in the database, the cmd is:

dbvacuumdb -U postgres -full -d database-name -t tablename -v

d) If there is not enough space for vacuumdb - full to be performed, then one reload the data using the following steps:

1) Find enough space in a place the RAX box has access and unload all the data from the table where bloat is suspected. In psql, do the following query:
\copy tablename to filename with delimiter as '|' null as ''

2) Once the data from that db table is unloaded, the RFC should then empty the table out, this can be done quickly by the following cmd in psql; the truncate command is a delete function that executes quickly:
truncate table tablename;

3) Once the table is emptied out, then reload the data back in. In psql, do the following query:

\copy tablename from filename with delimiter as '|' null as ''

[bookmark: _GoBack]
In addition to reclaiming space with vacuumdb -full, it is recommended that the RFC also run reindexing. A script to do this is appended to this document. Like vacuumdb –full, the reindexing can take several hours.

Note that until the RFC RAXDB postgres engine gets to a newer version of the engine, a "best practice" would be to 2-3 times a year do a vacuumdb -full on the RAXDB and to reindex as well.
Discovered at one of the RFCs, that it was not running the "day-of-week" version of the cron)PGbkups script... and this script had been failing because of the partition fullness issue.

Reindex Script:

#!/bin/ksh

script to reindex the RAX database tables
provided by MBRFC/Julie March 2012
removed bozo, num definitions from original script

#. /rfc_arc/lib/rax.profile

logfile=runtime-reindex.log

echo "run,query,start,end" > $logfile

echo "start "`date -u` > $logfile

assemble list of tables

psql -U postgres ${1} >> db-tbl-list.out << !
 \dt
	\q
!

grep table db-tbl-list.out | while read line
do
	strTableName=`echo ${line} | cut -f2 -d '|'`
	echo ${strTableName} >> db-tbl-list2.out
done

for each table, perform the reindex

for table in `cat db-tbl-list2.out`
do
	echo -e "Reindexing Table:\t${table}"
	psql -U postgres -d ${1} -c "REINDEX TABLE ${table};" | while read line
	do
		echo -e "\t${line}"
	done
done

echo "end "`date -u` >> $logfile

exit
1

