
SHEF Decoder

Operations Guide
National Weather Service

Office of Hydrologic Development

April 12, 2007
Table of Contents
1.
INTRODUCTION

2.
INPUT/OUTPUT DATA

3.
APPLICATION CONTROLS

4.
OVERALL PROGRAM PROCESSING

5.
SHEF DATA POSTING PROCEDURE

6.
SHEF DECODER START/STOP MANAGER

APPENDIX A.
SHEF DECODER POSTING LOGIC DIAGRAM

APPENDIX B.
SHEF DECODER DATA FLOW DIAGRAM
APPENDIX C.
OPERATIONAL POSTING DESTINATIONS
APPENDIX D.
FORMAT OF PERFORMANCE LOG FILE

APPENDIX E.
NEW FEATURES SINCE AWIPS RELEASE 5.0

1. INTRODUCTION
The SHEF Decoder is the primary means by which hydrometeorologic data are inserted into the Integrated Hydrologic Forecast System (IHFS) database. The application can has three core components:

· A decoder/parser which reads the SHEF-encoded data and translates the data into a general form, where each data value has an associated set of attributes, such as the physical element it represents and the time of the value.

· A database poster which reads this general form and writes the data value to the proper tables within the IHFS database.

· A controlling function (i.e. driver) that controls the invocation and sequencing of these two activities.

This document describes the operational aspects of the poster and the driver operations of the SHEF Decoder implemented with the IHFS database; it does not discuss other versions of the SHEF Decoder which post their data to other destinations. Also, it does not discuss the actual parsing and decoding of the SHEF-encoded data. That is described in detail in the National Weather Service Directives Instruction 10-944.

First, a brief description of the input and output data sets is given in Section 2. The input data includes a set of switches and options in the form of application token variables. Each of the tokens is described in Section 3. The overall program processing is described in Section 4, while the detailed processing performed on each product is described in Section 5. Both the overall and product processing are controlled in part by the token settings described in Section 3.

The AWIPS version of the SHEF Decoder that this document applies to is AWIPS Release OB7.

2. INPUT/OUTPUT DATA
2.1 Input Data

The following data sets serve as input to the SHEF Decoder application:

1) SHEF-Encoded Products - Text files containing the actual SHEF-encoded data to be decoded, processed, and posted to the database. These files are contained in the directory defined by the application token shef_data_dir (tokens are discussed below). A special file, called a stop file, may also be located in this same directory. When present, this file directs the application to cease execution.

2) SHEF Application Settings - A collection of tokens and their settings, which are defined in text files referred to as application defaults (Apps_defaults) files. These token values are expected to change rarely once they are configured for a particular office. Tokens are described in a later section of this document.

3) SHEF Parameters - A text file containing the recognized values of the SHEF attributes associated with each value; e.g. the allowable SHEF physical element codes. This file is provided with the application and is not expected to change. Its name is SHEFPARM and it is contained in the directory defined by the application token shefdecode_input.

The units used for the physical element’s values that are encoded in the raw SHEF products are specified in the 10-944 Directive. The decoded data are stored in these same units for almost all physical elements, with a few exceptions, as discussed in the Data Adjustment operations section.
4) IHFS Database - The IHFS database is a relational database implemented in the Postgres database environment provided on AWIPS workstations. The database contains assorted switches associated with a given station or area that control how the decoded SHEF information should be processed by the SHEF Decoder.
Some examples of the input data from the database are: station location and area identifiers and definitions; data ingest switches indicating whether to process this specific data; thresholds used for quality control operations; factors used for numerically adjusting the values; and information on how to retain information on the products themselves. Details on the specific tables read from are presented later in this document.
2.2 Output Data

The following data sets are generated by the SHEF Decoder application:

1) IHFS Database - The IHFS database receives the decoded data and represents the primary output of the SHEF Decoder. The data are organized in the IHFS database based on the SHEF attributes of the data, i.e. the SHEF physical element, duration, type-source, duration, and extremum values, in addition to the station identifier and the time of the data, and possibly the forecast issuance time. Details on the specific tables written to are presented later in this document.
2) Decoded Output - A binary file, for temporary use, that contains the decoded general form of the SHEF data file. It is generated by the parser component of the application and is read by the posting component. After each product(s data are posted, this file is removed. This file is named SHEFOUT, and is stored in the same directory location as the SHEF-encoded data files.
3)
Hourly Precipitation Output – A text file containing any precipitation data that can be used to represent hourly precipitation data, 6 hour precipitation data, 24 hour precipitation data, and 7AM local time data, assuming this option is enabled.. Specifically, it contains data with a physical element of PP that is one-hour in duration, 6 hour duration or 24 hour duration or 7AM local time data, and data with a physical element of PC that is near the top-of-the-hour,

 These data are buffered as each product is processed and after processing the product, the file is forwarded to the directory designated for reading by the Gage Precipitation Processing (GPP) server.
4)
Daily Program Logs - A text file containing a running daily log that summarizes the application processing. For each product, about a dozen lines are written to the log file which summarize the product processing. Also, whenever the application is started, it writes the values of the control settings it has read to the log file. The log files are named shef_decode_log_MMDD, where MMDD is the month-day, and are contained in the directory defined by the application token shef_decode_log.

a. Product Logs - A text file containing a log that provides a detailed summary of the processing of a single product. This log contains a copy of the input SHEF-encoded data; any errors that may have occurred during the parsing process are written immediately after the line in the product that caused the error. It also includes information regarding the posting operations performed on the data and the same summary information that is logged to the daily log file. The log files are named PRODUCTID.MMDD.HHMMSS, where PRODUCTID is the product id and MMDD and HHMMSS, are the month-day, and hour-minute-seconds of the product as read from the product header. These files are contained in the directory defined by the application token shef_error_dir.

3. APPLICATION CONTROLS
The SHEF Decoder application uses a set of application controls, referred to as tokens, to control the processing within the application. For each token, the program looks in up to four (places(to read the value of the token. The four places are the environment variable domain of the operating system shell and three sets of files, which contain a set of tokens and their values, and are referred to as application defaults files. The name and location of these three application defaults files are themselves defined by environment variables specified in the application(s start script. The SHEF Decoder application, like all applications that use tokens, determines each token(s value by looking in four places in the following hierarchal fashion.

1) First, a check is made to see if an environment variable matching the token name is defined in the shell environment. If so, then this gives the token(s value.
2) If not defined, the file defined by the environment variable APPS_DEFAULTS_USER is searched. If the file contains the token, then its value is used.
3) If not defined, then the file defined by APPS_DEFAULTS_SITE is searched. If the file contains the token, then its value is used.
4) If not defined, the file defined by APPS_DEFAULTS, which represents the nationally defined token values, is searched. If the file contains the token, then its value is used.

If the token value is still not found, then program uses a default value defined internally, if appropriate.

A description of each of the tokens used within the SHEF Decoder application is given below. The tokens are grouped by their general functional category. The default value shown is the program default; it is NOT the value specified in the national application tokens file! For a detailed presentation of how many of these tokens impact the processing in the SHEF Decoder, refer to Section 4.0 and Section 5.0.

Note that some of these tokens play a significant role in the speed of the SHEF Decoder. Specifically, the settings of the duplicate data processing tokens and posting destination tokens can greatly affect the performance of the application by possibly requiring more data to be posted than is necessary. For these tokens, consideration should be made when setting the token value. Where appropriate, a brief mention of performance impacts is given with the token description below.

3.1 Database Tokens
db_name
Name of the database to which the SHEF Decoder poster will write data. The name has the form: hd#_#xxx, where #_# is the database version number, and xxx is the office identifier.

Default = N/A

server_name
Name of the database server, typically set to ONLINE.

Default = N/A

3.2 Access Control Tokens
shefdecode_host
Indicates which machine the application is expected to run. This is normally defined as dx1f. Note that the shefdecode_host token is just (dx1f(, not dx1. When assigning a value to this token, it is important to consider failover mode. For instance dx1 will failover to dx1f. A value of (dx1f(for this token will allow the SHEF Decoder to be restarted from either machine. If this token were explicitly set to (dx1", then SHEF DECODER could not be easily restarted on dx1f if a failover occurred. The value of this token is checked by the scripts used to start and stop the application.

Default = dx1f
shefdecode_userid

Identity of user permitted to start and stop the application. This is normally defined as oper.

Default = oper

3.3 Directory location Tokens
shefdecode_input
Directory location of input SHEF parameter file. This is normally defined as /awips/hydroapps/shefdecode/input

Default = N/A

shef_data_dir
Directory location of the input SHEF-encoded products. This directory may also contain the special stop file. The location is normally defined as /data/fxa/ispan/hydro

Default = N/A

shefdecode_log

Directory location of the daily log files, which is normally set to /awips/hydroapps/shefdecode/logs/decoder

Default = N/A

shef_error_dir
Directory location of the product log files, which is normally set to /awips/hydroapps/shefdecode/logs/product

Default = N/A

shefdecode_bin
Directory location for the SHEF Decoder binary executable files, which is normally set to /awips/hydroapps/shefdecode/bin

Default = N/A

3.4 Logging Tokens
shef_keeperror
Controls the dispensation of the product log files.

ALWAYS =

Keep product log files always.

IF_ERROR =
Keep product log files only when errors or warnings occur.

Default = ALWAYS

dupmess
Specifies whether to log messages in the product log files about duplicate data, which can occur if a value is sent for a location, time, etc. for which a value already exists.

ON =

Log messages about duplicate data.

OFF =

Don(t log messages about duplicate data.

Default = ON

locmess
Specifies whether to write messages in the product log file about stations and areas not defined as either a location or as an area, such as a basin, county, or zone.

ON =

Log messages about undefined locations.

OFF =
Don(t log messages about undefined locations.

Default = ON

elgmess
Specifies whether to write messages in the product log files about the posting (eligibility(of a known location(s value. The (eligibility(refers to whether the specific type of data for the given location(s data should be posted.

ON =

Log messages about the station eligibility not being satisfied.

OFF =
Don(t log messages about the station eligibility.

Default = ON

shef_perflog
Controls whether the performance logging feature is enabled. When enabled, the decoder will create a separate log file that tracks the timing of selected operations within the decoder for the purpose of monitoring performance. The information is written to the file shef_perf.log which is located in the directory defined by the token shefdecode_log. This feature should be used only if necessary because the logging of the performance information itself has an effect on the performance. A line is written to the file for each record that is processed. Therefore, this file can grow to be quite large if the application is running for an extended period. When the application restarts, this file is overwritten, so remember to rename the file if later analysis is desired. This feature is intended for use by knowledgeable operators only. Appendix D gives the format of the performance log file.

ON =

Enable performance logging.

OFF =
Disable performance logging.

Default = OFF

3.5 Processing Tokens

shef_sleep
Specifies how long the application should wait, in seconds, after processing all the input SHEF-encoded data files, before looking to see if any new product files have arrived.

Default = 10

3.6 Data Time Window Tokens

shef_winpast
Specifies how many days in the past observed data will be accepted. Data for times before this number of days prior are rejected.

Default = 10
shef_winfuture
Specifies the number of minutes in the future, relative to the current time, that time stamp of observed data can have for the data to be posted.

Default = 30

3.7 Duplicate Data Processing Tokens

 shef_duplicate

Specifies how the application should handle duplicate data. The values this token can accept are

 ALWAYS_OVERWRITE
overwrite value in database regardless of revision
 code and current value in the database
 USE_REVCODE
 If revision code is set, then overwrite value in
 database. If revision code not set, then do not

 overwrite.
 IF_DIFFERENT
 overwrite value in database if new value is different
 than current value in database regardless of revision
 code (default)

 IF_DIFFERENT_OR_REVCODE overwrite value in database if new value is
 different than current value in database OR if
 revision code is set

 IF_DIFFERENT_AND_REVCODE
overwrite value in database if new value is
 different than current value in database AND if
 revision code is set

Performance of the shefdecode is affected by how much data it reads and writes from/to the database. Cumulatively speaking, reading data is much faster than writing data. The settings for handling duplicate data directly impact the speed of the application by helping determining how many reads or writes are performed. To compare new data with existing data, as all the IF_DIFFERENT… options require, involves database reads of the existing data. The ALWAYS_OVERWRITE option, and to a less degree the …REVCODE options, result in more database writes, since the mere presence of a revision code in the new data will result in a database write.

If the current value in the database is MISSING, then if a new non-missing value arrives, it will automatically overwrite the missing value regardless of the shef_duplicate token value.

3.8 Posting Destination Tokens

shef_post_unk
Specifies how data for unknown, i.e. undefined, stations are processed.

NONE =

Do not post any information to the database regarding undefined stations. This setting results in the fastest performance.

IDS_ONLY =

Post only the location identifiers for undefined stations and only store basic information related to the latest product which contained the undefined station.

IDS_AND_DATA =
Post all data from unknown stations. This setting results in the f slowest performance but allows for full monitoring of data from undefined stations.

Default = NONE

shef_load_ingest
Specifies whether the application will automatically create a record in the IngestFilter database table containing the station-PEDTSE combinations of entries considered for processing. To be considered by the data poster component of SHEF Decoder, first it checks that the station is defined. If it is, then it checks that the SHEF physical-element, duration, type-source, and extremum attributes are defined (PEDTSE) in the IngestFilter table. If it is, then the value is processed. If not, then this token value can be used to automatically have the location-PEDTSE entry created, and have the station considered by the data poster.

ON =

Load the location-PEDTSE entry to the IngestFilter if needed.

OFF =
Don(t load the entry to the IngestFilter.

Default = ON

shef_storetext
Specifies whether the raw SHEF-encoded product should be written to the TextProduct table, which keeps only the latest number of products for a given product identifier, as controlled by the user.

ON =

Post raw encoded SHEF text products, which can be reviewed later.

OFF =

Don(t post the products. This setting results in the fastest performance.

Default = OFF

shef_post_baddata
Specifies how data which fails the certainty quality control checks should be posted. This control settings only effects data which has failed the certainty quality control check, not data which are tagged as questionable. A data which has failed a (certainty(check is considered to be (bad(with certainty, and some offices may prefer that this data be separated from data that is not considered bad. Data fails the certainty check if it fails the gross range check or if the SHEF qualifier code is set to R (rejected) or B (bad).

REJECT =
Post failed data to the RejectedData table. This has the effect of removing the data from future consideration, although rejected data can be manually returned to the applicable physical element tables.

PE =

Post failed data to appropriate physical element table. This results in the data being co-mingled with the valid data, although its quality code is still marked as bad.

Default = PE

shef_procobs
Specifies whether SHEF (processed(data is treated as observed data. SHEF processed data refers to data which has the first letter of the SHEF type-source code set to (P(.

ON =

Post SHEF processed data values to the observation physical element data tables and treat them in every way like they are observed data.

OFF =
Post to the ProcValue table, which is a table dedicated to storing SHEF processed data only. SHEF processed data are not further stored according to their physical element, as is the case with SHEF observed data.

Default = OFF

shef_post_latest
Specifies whether to check each observed value, and if it is the latest value for the given location and data attributes, store the value to the LatestObsvalue table.

ON =

Post data to the LatestObsValue table always, even if it failed the certainty quality control checks (i.e. valid check).

VALID_OR_MISSING =
Post data to the LatestObsValue table only if the value is valid, regardless of whether the value is a missing indicator value.

VALID_ONLY =

Post data to the LatestObsValue table only if the value passes the certainty quality control checks (i.e. the value is valid) and the value is not missing. The value of this token would be more descriptive if it was “VALID_AND_NOT_MISSING”.

OFF =

Don(t post data to the Latest ObsValue table. This setting results in the fastest performance.

Default = OFF

shef_post_link
Specifies whether to store information in the ProductLink table noting that the given location was contained within the associated product. The value and its associated data are not stored in the table, only information that denotes the linkage between the location and the particular product instance.

ON =
Post data to the ProductLink table.

OFF =
Don(t post data to the ProductLink table. This setting results in the fastest performance.

Default = ON

shef_alertalarm
Specifies whether the program should check whether the values exceed pre-defined upper alert limit, or lower alert limit , or upper alarm limit or lower alarm limit. Only single values are checked against the threshold values; no rate-of-change and diff checking is performed.

ON =
Perform alert and alarm checking on the data

OFF =
Don(t perform alert and alarm checking. This setting results in the fastest performance.

Default = OFF

shef_load_maxfcst
Specifies whether the program should update the RiverStatus table with the maximum forecast data at the conclusion of processing a product that contained at least one forecast stage or discharge value. This information is used in WHFS applications to monitor river conditions. The observed stage and discharge data are always maintained in the Riverstatus table – i.e. there is no switch to control this.
ON =
Update the forecast data in the RiverStatus table.

OFF =
Don(t update the forecast data in the RiverStatus table. This setting results in the fastest performance.

Default = ON

3.9 Gage Precipitation Processing Tokens
gage_pp_enable

Specifies whether the program should send any hourly, 6 hour, 24 hour ,

7AM local time gage precipitation reports to the Gage Precipitation Processor (GPP) server. These gage data are then used by the Multi-sensor Precipitation Estimator (MPE) operations. This token should be set ON if MPE is operating at your office.
ON = Enable buffer and send of hourly precipitation reports to GPP server.

OFF = Disable option

Default = ON

gage_pp_data

Directory location of the hourly precipitation files, which is normally set to /awips/hydroapps/precip_proc/local/data/gpp_input
Default = N/A
Intpc

Minutes around the top-of-the-hour to define the time window for which PP precipitation data are assumed to be near the top-of-the-hour. This value is applied to both before and after the hour, so the total window is actually twice the duration of this value.

Default = 10

 intlppp, intuppp
Minutes before and after, respectively, the top-of-the-hour to define the time window for which PP precipitation data are assumed to be near the top-of-the-hour.
Default = 10
4. PROGRAM PROCESSING
This section summarizes the high-level operations of the SHEF Decoder, described in a sequential manner. The operations are listed in an ordered fashion.

1) Retrieve values of the application environment variables from the .Apps_defaults file(s). The token values control major aspects of the data posting process and also control the impact on the SHEF Decoder operations is also discussed later. A list of these tokens is given earlier in Section 3., with a description and their default value, if one exists.

2) Open the SHEF parameter input file. This file contains information used by the parser to identify the valid SHEF attribute codes. It is named SHEFPARM and is located in the directory specified by the token shefdecode_input.

3) Open the SHEF daily log file. This file is located in the directory specified by the token shefdecode_log.

4) Open the Postgres database. This opens a database on a database server, both of which are specified in the .Apps_defaults file by the token db_name and server_name, respectively. The database is opened once and is expected to remain accessible by the application.

5) Check for any SHEF encoded files in the input directory defined by the token shef_data_dir. Any file in the directory, except for a few special named files, are assumed to be SHEF encoded. The files in the input directory need not follow any special naming convention. Only regular files are considered, i.e. directory files are not considered.

When assembling the list, certain files are ignored, namely the SHEF parser output file (SHEFOUT), the SHEF stop file (stop_shefdecode), the file list file (files.list), which contains the list of files to consider from the previous directory query, and the SHEF process identifier file (shef_pid.dat), which is used by the start script to try and prevent multiple instances of the SHEF decoder from operating on the same directory.

A list of files to process is assembled. Up to 2500 products are assembled in the list. If there are more than this limit, they will be considered after the previous full list is processed. For each item in this list, the following processing occurs.

5.1)
Open the input file and open the SHEFOUT output file. If either open fails, discontinue processing on the file.

5.2)
Read the header information in the SHEF input file. This includes the product identifier and the product date and time. The product identifier is assembled by concatenating the (CCCC(of the WMO header of the product, with the (NNNXXX(in the AWIPS Identifier for the product. If the product identifier is missing, the value of MSGPRODID is assigned.

The date and time read from the product gives only the day‑of‑the‑month, and the hour and minute. The year and month are assigned from the system clock. If the date and time cannot be read from the product, the values from the system clock are assigned.

5.3)
Open the product log file associated with the particular product. The name of this log file is based on the product identifier and time and is located in the directory specified by the token shef_error_dir.

5.4)
Parse the encoded information in the SHEF input file. The decoded information is written to the SHEFOUT output file.

5.5)
The first time the parser is invoked, read and then close the SHEF parameter input file. This task is only performed once even though it is an item within Step 5, and Step 5 is repeated.

5.6)
Read the decoded information that is stored in the SHEFOUT file and post the information into Postgres database. The posting process follows a detailed sequence of steps that are described in Section 5.
5.9)
Depending on the token settings, after the product data are posted, update the performance log file, update the maximum forecast settings for any forecast height/discharge data, and/or send any data in the buffered precipitation file to the Gage Precipitation Processor (GPP) server.
5.8)
Close and remove the SHEF input file.

5.9)
Close and remove the SHEFOUT output file.

5.10)
Close the product log output file.

5.11)
Check for existence of a stop file. If one exists then abort application. This closes the database and daily log output file.

Repeat step 5) operations to process any additional SHEF input files.

6) Check for existence of a stop file even if no files were just processed. If one exists then abort application. This closes the database and the daily log output file.

7) Suspend program execution for duration specified by the token shef_sleep. After this pause, continue.

8) Check the current time and if the date has changed in reference to the date of the daily log file, then close the existing log file, and open a new daily log file.

Return to step 5) and processes any files in the input directory. Repeat steps 5-8 indefinitely.

The daily log files and the product log files are eventually purged from the file system by a purging process that is scheduled to run on a regular basis. In the WFO Hydrologic Forecast System (WHFS) implementation, this task is part of the purges performed by the purge_files script, which typically runs every 4 hours using the UNIX crontab feature.

The IHFS data tables that contain the large volume of data posted by the SHEF Decoder are purged by the db_purge application, which typically runs every 24 hours, and deletes all data older than a specified time from the appropriate tables.

The SHEF Decoder application is started using a start script, called start_shefdecode. This script is normally located in the directory: /awips/hydroapps/shefdecode/bin. The SHEF Decoder is automatically started when the AWIPS data ingest processes are started, and is expected to run continuously. After times when database maintenance operations are performed, the start script is used to restart the SHEF Decoder application. Note that the start script prevents non-designated users from starting the application. Typically, the application can only be started by the user (oper(.

When the SHEF Decoder first starts, it creates a file called shef_pid.dat in the input directory defined by the token shef_data_dir and which contains the process id of the application. This file is read by the start script and the script checks if there is a process currently running that matches the process identifier read in the file. If so, then the SHEF Decoder is considered to be currently running, so a new instance of the SHEF Decoder is not started. If not, then the process id file is assumed to contain a process id that was for a terminated instance of the SHEF Decoder, so the new instance is permitted to be started. Note that a limitation of this method is that it will only look on the current machine for a process id match; multiple instances can be invoked if they are running on different machines. This is a very unstable situation for the SHEF Decoder and should not be permitted under any circumstances. The classic symptom of having two decoders processing the same input directory is the occurrence of numerous file open, file close, and file delete errors.

To stop the SHEF Decoder application, the stop_shefdecode script, located in the same directory, can be used. Note that if the decoder is processing a file when the stop script is invoked, it will finish processing the file before shutting down. If the file being processed is large, this may take a short moment before the program is actually stopped. Stopping the SHEF Decoder application is necessary before performing certain database maintenance operations. It is generally only done by system administrators or knowledgeable operators. As with the start script, the stop script prevents non-designated users from stopping the application.

5. SHEF DATA POSTING PROCEDURE
Each product, and the individual data elements within each product, is processed in a manner discussed in this section. Most of this discussion is in the form of a detailed four-page logic diagram given in Appendix A. Although the brief summary below is informative, only the diagrams provide the complete detail necessary to appreciate all the aspects of the posting procedure.

In summary, a product has two components:

1) The header information which applies to the product as a whole, and

2) The multiple, individual data records which are each for a given location, valid time, and SHEF attributes including the physical element, duration, type-source, extremum. In the case of forecast data, there is also a forecast basis time and probability code. These SHEF attributes uniquely define the data record and serve as the (key(for the record in the physical element database tables.

5.1 Product Header Processing

Information derived from the product header, such as the product identifier and product time, are associated with each record posted into the physical elements tables.

Product header information can also be stored independent of the data records, such as storing the text product itself, and storing information about the time the product was last received. The number of versions to keep for a given product identifier is specified in the PurgeProduct database able, along with the time the product was last received and the time of the product itself. These latter fields in the PurgeProduct table are updated by the shefdecode application.
Furthermore, if the number of versions to keep for an identifier is greater than zero, then the product itself is posted to the TextProduct table and any older versions are purged as needed to limit the number retained to the specified number. The user can specify whether to save the products using a control token.

The ProductLink database table stores the association between location identifiers and product instances, defined by the product identifier and product time. This information can be maintained for all instances of a product, not just the most recent. For this reason, this table is regularly purged. Posting to this table is controlled via a control token.

5.2 Data Record Processing

After the product header based information is processed, the individual data records are then processed. Each record is uniquely defined by certain key fields, which include the location or area identifier, the SHEF physical element, duration, type-source, and extremum fields, and the valid time of the data. For forecast data, the basis time and probability fields are also key fields. The SHEF revision flag and external data qualifier code are also defined for each data value, although they are not part of the key field.

5.2.1 Data Filtering

Products are sent to the SHEF decoder only if they pass product filters external to the SHEF decoder. These external filters are not discussed here. Even records from products which passed external product filters are not necessarily processed by SHEF decoder and stored in the database. Data records are filtered by Location/Area Filtering, Data Element Filtering, and Time Window Filtering.

Location/Area filtering involves the checking of each individual data record to determine whether the location/area(s data it should be posted to the database. This is done bye checking the Location and GeoArea tables, respectively. Data for undefined stations (or areas) can be ignored, or posted in an abbreviated form in the UnkStn table, or can be posted in their entirety in the UnkStnValue table. Alternatively, a location/area can be defined, but in a way that specifies that the posting of its data is explicitly turned off. Data for areas are only considered if they do not represent observed data.

Assuming a location/area is specified to be decoded, then a more detailed filter is applied against the data record(s data elements. Specifically, these are the SHEF attributes such as physical element, duration, type-source, and extremum. If they are specified to be ingested via the IngestFilter table entries, then the data are processed.
If the station is defined but the specific SHEF attributes for the station are not defined, the data is ignored, unless the token shef_load_ingest instructs the SHEF Decoder to permanently define and recognize the SHEF attributes, in which case the current data are posted. This self-population of the IngestFilter can be a significant aid in accepting new data for existing stations.

An additional IngestFilter setting is used for processing precipitation data, as discussed in the section on post-processing or precipitation data.

Time window filtering involves filters on the limits on old or future observed data. These limits are controlled via use-editable tokens.

5.2.2 Data Adjustment Function

Assuming that the data record is to be posted, the data record is checked in multiple ways. First, a set of adjustment factors may be specified for the data key of the record; the value is adjusted numerically if record has adjustment criteria previously specified for it, stored in the IHFS database. The adjustment logic is as follows. Any SHEF message processed by the new SHEF Decoder which matches (location ID, Physical Element, Duration, Type Source and Extremum) an entry in the AdjustFactor table will be processed using the following formula and the raw SHEF value will be "adjusted" to create an adjusted value which is then posted into the IHFS database:

Adjusted Value = (((Raw Value / Divisor) + Base) * Multiplier) + Adder

To use this logic, create an entry in the AdjustFactor table using the HydroBase application mentioned above, then stop and start the SHEF Decoder so that this entry is recognized in by SHEF Decoder.
Independent of this optional adjustment, a small subset of SHEF physical element data always has their value adjusted. Specifically, the value for the discharge elements QB, QE, QF, and the freezing level element HZ is multiplied to 1000. This adjusts the kcfs and kft units in the original encoded value to be represented as cfs and ft, respectively. These four elements are the only elements adjusted automatically.
5.2.3 Quality Control and Alert/Alarm Processing

After any adjustments are made, the value is then checked for quality control purposes, and if instructed, can be checked for alert/alarm purposes. The SHEF decoder performs those checks which are single-value checks; i.e. which check a value against pre-defined limits and which do not require other values in the same time series or other similar neighboring values in the same time domain. This includes the gross range check and reasonable range check. If the value fails certain quality control tests, then other user instructions control how the value is posted.
If the user instructs alert/alarm checking to be performed, via a token, then if the value exceeds alert/alarm thresholds, the data record is posted to the AlertAlarmValue database table containing only the alert and alarm data, in addition to being posted to the physical element tables. Alert/alarm checking can be performed on all data types except contingency value data.
The quality control operations of the IHFS data processing, including those operations performed by the SHEF Decoder, are described in detail in a separate document. A separate document also describes the IHFS alert/alarm operations, including those operations performed by the SHEF Decoder.

5.2.4 Physical Element Table Posting

The data are then posted to the appropriate table associated with the SHEF physical element and type-source code of the data. Appendix A gives a detailed diagram of the destination locations for physical element data, while Appendix C provides a summary of the posting database destinations.

The type-source attribute indicates whether the data is for an observation, forecast, processed, or contingency data. Additionally, the type-source code indicates whether the data are explicitly defined as being for areal data, as opposed to the traditional point-based data values. If the data are areal, as specified by designated type-source codes, they are posted in either the ArealObs or ArealFcst database tables.
The processed data (type code is “P”) are stored in the ProcValue database table, unless a user token indicates that all processed data should be treated as observed data. For type-source codes which begin with a number, the data are assumed to be processed data. ContingencyValue data (type code is “C”) are always stored in the ContingencyValue database table.
The observed and forecast data (type code is “R” or “F”, respectively) are processed in tables which are further segregated by the specific class of observed or forecast data represented by the physical element attribute. The precise table for posting observed and forecast data depends on the physical element.
Data of any type-source can have (comments(in the SHEF format; these data are posted in the normal fashion, but the associated comments are stored in a separate CommentValue table.

5.2.5 Duplicate Value Processing

If the value is a duplicate value, user specified token values control how the duplicate value is handled. The SHEF revision code, which may be present with the original value, is also used to manage the duplicate value processing.
5.2.6 Paired Value Processing

Values for certain physical elements are actually two values encoded into one. This

HQ (distance to river's edge from stake)
MD (dielectric constant at depth)

MN (soil salinity at depth)
MS (soil moisture at various depths)
MV (water volume at depth)
NO (gate opening)

ST (snow temperature at various depths)

TB (temperature at depth under bare soil)

TE (air temperature at various elevations)

TV (temperature at depth under vegetated soil)

These physical elements are special in that they require an additional independent variable for the primary key. This independent variable is required because these data are composed of several values at the same station, for the same physical element, and for the same time. Paired values can be either of any data type, such as observed, forecast, etc.
The NO physical element gives gate number and gate opening; the TB and TV physical elements give soil depth and soil temperature; the HQ physical element gives stake number and distance to river; the Mx physical elements give a soil depth and another value; the ST physical element gives depth in the snow pack measured from the ground and snow temperature; the TE physical element gives elevation above the ground and the air temperature.

The PairedValue table structure is similar to all other dynamic forecast PE data tables such as FcstHeight so as to make this new table totally general in case some new forecast data types appear in the future that are structured like as forecast data. Thee structure is: "lid", "pe", "dur", "ts", "extremum", "probability", "validtime", "basistime", "ref_value", "value", "shef_qual_code", "quality_code", "revision", "product_id", "producttime", and "postingtime". The primary key is composed of the first 9 columns; the only new column (apart from a standard forecast data table) is "ref_value" defined as an Postgres integer.
If a paired data value is encoded as missing (-9999.), then both the values are stored as missing. Also, if only the dependent value is missing, which is the more meaningful case, then the value is expected to be set as -#.999, so that the independent value still gets a valid number (such as 2 feet) and the dependent is missing (such as a missing soil temp at 2 feet).
5.2.7 Latest Observed Value Processing

The SHEF Decoder also has options to post the latest observed data to the LatestObsValue table. User instructions control whether and how the latest observed data are posted. The user may or may not want data that is specified as missing or has failed quality control checks to be posted to this table.
5.3 Post Processing Functions

Posting data to certain tables can result in subsequent operations performed on the data value(s).

For individual values, this post processing is done by procedures defined within the Postgres database definition, outside of the SHEF Decoder. Database procedures are initiated by pre-defined triggers specified for observed height, discharge, and precipitation data. The trigger (triggers(the procedure anytime a record is inserted or updated to one of these tables. There is no token available for turning these triggers off.

5.3.1 Load Maximum Forecast Data

Other post-processing is performed after the product is completely processed. If the product contains forecast height or discharge data, then after all the records in the product are processed, the token shef_load_maxfcst may instruct the SHEF Decoder to perform some post-processing to determine the maximum values for the station forecast data. This is done for only those locations which had at least one forecast height or discharge time-series in the product. When determining the maximum forecast values, probabilistic values are not considered.
5.3.2 Send Hourly, 6 Hour, 24 Hour, 7AM local time Precipitation Data

Also, if the gage_pp_enable token is set to ON, and the data value has passed not only the standard IngestFilter checks, but also is designated for ingest for precipitation processing, then the data report is checked further. If the data report is a PC report that is near the top-of-the-hour, or is a PP report and is either top-of-the-hour hourly report,
or 6 hour report or 24 hour report or 7AM local time report then the report is buffered for later use. For hourly report the top-of-the-hour check is performed using token values that define a time window which in specifies the number of minutes around the top of the hour. If a product has any reports buffered, then after the product is processed, the file that contains these buffered reports is sent to the Gage Precipitation Processor (GPP) server. The GPP server is documented in a separate document.
5.3.3 Purging Old Forecast Alerts
If the alert/alarm feature is enabled, and if a given product had forecast values, then it is possible that new forecast values were received that supercede those values in the AlertAlarmVal database table, because the new forecast time series has a later basis time than those in the database table. Therefore, the shefdecode application attempts to purge “old” basis times from the AlertAlarmVal database table. It only removes those values that exceed the value limits; it does not clean out the rate-of-change and diff checks since those are managed by different applications.
5.3.4 SHEF Decode Logging

Throughout the entire posting process diagramed, errors can occur which may result in messages written to the product log files. To avoid unnecessary clutter, the linkages between the log files and respective processes are not show in the diagram. Also, often when a value is written to a table, it checks for an existing duplicate. The linkage between the table and the process which checks for the duplicate is not shown in order to reduce clutter. Only the linkage indicating the actual insert or update of a value to a table is shown.

Additional information on the IHFS database structure, including a data dictionary and assorted entity-relationship diagrams are also available as separate documents. The data flow diagram for the SHEF Decoder is a part of this separate documentation. To allow this document to be as complete as possible, it is included in Appendix B.
6. SHEF DECODER START/STOP MANAGER
Traditionally, the SHEF Decoder could only be started and stopped via two scripts: start_shefdecode and stop_shefdecode. This was done on the data server (ds) machine under the oper account. Because of the importance of the SHEF Decoder as the primary source of data for Hydrologic software, the ability to start and stop it was restricted to a few select user accounts.

When SHEF Decoder is started, it loads some of the information contained within the IHFS database into memory. Specifically, data from the AdjustFactor, AlertAlarmVal, Location, DataLimits, and LocDataLimits tables are cached in program memory. This minimizes the number of times SHEF Decoder needs to access the database while running, which increases its speed and efficiency. However, if a change is made to any of these tables while SHEF Decoder is running, it will not become evident to SHEF Decoder until it has been restarted. Note that SHEF Decoder does not buffer the contents of the IngestFilter table in memory.

The Hydrobase application allows data in these cached tables to be modified. In the past, when any of these tables were changed, it was necessary to manually stop and start SHEF Decoder from the command prompt. The ability to restart SHEF Decoder is integrated into Hydrobase. This functionality is described below.
6.1 Start/Stop SHEF Decoder Interfacetc \l1 "6.1 The Start/Stop SHEF Decoder GUI
HydroBase contains the Start/Stop SHEF Decoder interface window. This graphical user interface (GUI) window is accessible in Hydrobase through the (Start/Stop SHEF Decoder...(option under the Data Ingest menu. From top to bottom and left to right, the major components of this GUI are a text field indicating which computer SHEF Decoder will be run on, a Start button, a Stop button, a Check button, a message window, and a Close button. Each of these is described in more detail below.

6.1.1 Host System for SHEF Decoder Operations

Since SHEF Decoder is run as a background process, it is possible to have more than one SHEF Decoder running at time. This could be very problematic if multiple SHEF decoders are sharing the same environment, log files, and data files. Contention for system resources and data, lead to unpredictable results.

In order to prevent this from happening, the token shefdecode_host is used. This token specifies the computer system that the SHEF Decoder is allowed to run on. The value of this token is displayed on the Start/Stop SHEF Decoder GUI in the text box at the end of the message (SHEFdecoder operations will be performed on the following system:(.

Hydrobase itself does not have to be running on the system shown in the text box. When the user performs a start, stop, or check SHEF Decoder operation from the Start/Stop SHEFdecoder GUI, Hydrobase will log in to the designated system for SHEF Decoder operations, perform the requested action, and log out.

For example, if the shefdecode host token is set to (dx1f(, then the SHEF Decoder will be run on the data server, normally the machine designated dx1. Hydrobase may be run from any workstation. When a SHEF Decoder operation is selected from the Start/Stop SHEFdecoder GUI, that operation will be executed on dx1normally and on dx1f in failover mode.

6.1.2 Start SHEF Decoder Option
The Start button on the Start/Stop SHEF Decoder GUI allows the SHEF Decoder to be started. It calls the start_shefdecode script to do this. The success of this operation is contingent on two conditions:

1)
There must not already be a running SHEF Decoder.

2) The SHEF Decoder data, log, error, and executable directories must all be defined.

If either of these conditions are not met, then an error will be displayed in the Start/Stop SHEF Decoder(s message box and logged to the SHEF Decoder log file (if possible).

6.1.3 Stop SHEF Decoder Option
The Stop button on the Start/Stop SHEF Decoder GUI allows the SHEF Decoder to be stopped. It calls the stop_shefdecode script. The success of this operation hinges on two conditions:

1)
There must be a running version of SHEF Decoder.

2) The SHEF Decoder data, log, and error executable directories must all be defined.

If either of these conditions are not met, then an error will be displayed in the Start/Stop SHEF Decoder(s message box and logged to the SHEF Decoder log file (if possible).

6.1.4 Check SHEF Decoder Buttontc \l2 "6.1.4 Check SHEF Decoder Button
The Check button on the Start/Stop SHEF Decoder GUI displays the status of the SHEF Decoder in the message window. It does this by calling the check_shefdecode script. First, a check is made to determine if the SHEF Decoder is running. Then the SHEF Decoder log file is searched for all occurrences of the SHEF Decoder being started and stopped for the current day. Lastly, the process information specific to the SHEF Decoder application is displayed.
In summary, the following three pieces of information are displayed in the message window:

1) A statement indicating whether or not SHEF Decoder is running.

2) A listing of recent SHEF Decoder start/stop activities.

3) A listing of system information relating to the SHEF Decoder process.

The success of this operation depends on the following two conditions:

1)
The directories for the SHEF Decoder log and data files must exist.

2) The state of the SHEF Decoder can be determined. The PID must be in the SHEF Decoder PID file.

6.1.5 Start/Stop SHEF Decoder Message Windowtc \l2 "6.1.5 Start/Stop SHEF Decoder Message Window
All messages resulting from the operations of the Start, Stop, and Check buttons are displayed in this message window. These messages are also written to the SHEF Decoder log file.

6.2. Summary of Rules of Operationtc \l1 "6.2. Summary of Rules of Operation
In order for the Start/Stop SHEF Decoder GUI to work correctly, the following conditions must be met:

1) The SHEF Decoder data directory must exist.
2) The SHEF Decoder bin directory, executable, and supporting scripts must exist. The executable is named shefdecode.LX on Linux. The supporting scripts are check_shefdecode, start_shefdecode, and stop_shefdecode.

3) The SHEF Decoder error directory must exist.

4) The SHEF Decoder log directory must exist.

6.3 Calling the SHEF Decoder Start and Stop Scripts Directlytc \l1 "6.3 Calling the SHEF Decoder Start and Stop Scripts Directly
The start_shefdecode and stop_shefdecode scripts may be used to control the SHEF Decoder from the command prompt. The same conditions which apply to the Start/Stop SHEF Decoder GUI also apply to these scripts. An additional constraint when manually running these scripts is that the id of the user must match the value of the token shefdecode_userid. The value of this token is (oper(by default.

APPENDIX A. SHEF DECODER POSTING LOGIC DIAGRAM
[document available separately as a PDF Adobe document]

APPENDIX B. SHEFDECODER DATA FLOW DIAGRAM
APPENDIX C. OPERATIONAL DATA POSTING DESTINATIONS
Table C-1. Primary Tables Updated By ShefDecode Application
	TypeSource

(TS)
	PE
	Description of Physical Element (PE)
	Table Name

	N/A

	HQ
	Distance from ground reference point to the river’s edge to estimate stage
	pairedvalue

	
	MD
	Dielectric constant at depth
	

	
	MN
	Soil salinity at depth
	

	
	MS
	Soil moisture amount at depth
	

	
	MV
	Percent water volume at depth
	

	
	NO
	Gate opening for a specific gate
	

	
	ST
	Snow temperature at depth measured from ground
	

	
	TB

	Temperature in bare soil at depth
	

	
	TE

	Air temperature at elevation above MSL
	

	
	TV
	Temperature in vegetated soil at depth
	

	TS
	PE
	Description of PE
	Table Name

	R*- Reading
	A*
	Agricultural data
	agricultural

	
	E*
	Evaporation
	evaporation

	
	F*
	Fish count data
	fishcount

	
	G*
	Ground frost and ground state
	ground

	
	H*
	Height
	height

	
	I*
	Ice codes
	ice

	
	L*
	Lake data
	lake

	
	M*
	Moisture and fire/fuel parameters
	moisture

	
	N*
	Gate and dam data
	gatedam

	
	PA

PD

PE
PL
	Pressure
	pressure

	
	PC
	Precipitation, accumulator
	rawpc, curpc

	
	PP
	Precipitation, actual increment
	rawpp, curpp

	
	P*
	Precipitation, other
	rawpother

	
	Q*
	Discharge
	discharge

	
	R*
	Radiation
	radiation

	
	S*
	Snow data
	snow

	
	T*
	Temperature
	temperature

	
	U*
	Wind data
	wind

	
	V*
	Generation and generator data
	power

	
	W*
	Water quality
	waterquality

	
	X*
	Weather codes
	weather

	
	Y*
	Reserved for unique, station specific type codes
	yunique

	FL- Areal Forecast
	N/A
	N/A
	arealfcst

	F*- Forecast
	H*
	Height
	fcstheight

	
	P*
	Precipitation
	fcstprecip

	
	Q*
	Discharge
	fcstdischarge

	
	T*
	Temperature
	fcsttemperature

	
	*
	Forecast other data
	fcstother

	C*- Contingency
	N/A
	contingencyvalue

	PM- Areal Processed
	N/A
	arealobs

	P*,M*,
H*-Processed
	If shef_procobs = ON, then any TS = P* or M* or H* is treated as R* and posted in appropriate tables depending upon PE.

Else, they are posted in procvalue table.

Table C-2. Secondary Tables Updated By ShefDecode Application

	Table Name
	Description

	alertalarmval
	Data is considered for storage when shef_alertalarm = ON and value > limits

	Commentvalue
	Data is considered for storage when comment is in shef message

	Ingestfilter
	Data is considered for storage when shef_load_ingest = ON

	Latestobsvalue
	Data is considered for storage when shef_post_latest = ON

	Productlink
	Data is considered for storage when shef_post_link = ON

	Purgeproduct
	Data is considered for storage when product id is valid

	Rejecteddata
	Data is considered for storage when shef_post_baddata = REJECT and the value failed the QC check

	Riverstatus
	Data is considered for storage when physical element is H* or Q*

	Stnclass
	Data is considered for storage when shef_load_ingest = ON

	Textproduct
	Data is considered for storage when shef_storetext=ON & Num of versions to keep > 0

	Unkstn
	Data is considered for storage when shef_post_unk = IDS_ONLY

	Unkstnvalue
	Data is considered for storage when shef_post_unk = IDS_AND_DATA

 SEQ CHAPTER \h \r 1APPENDIX D. FORMAT OF PERFORMANCE LOG FILE
The performance log file feature is described in the discussion of the token shef_perflog. This appendix describes the format of the file. The performance log contains one line per product and is designed to be both machine readable (it uses comma-separated value [CSV] format) and human readable (it has character field descriptors strategically placed within the record). Each record has the following 35 fields:

1. product identifier

2. product time -

in mmddhhmmss format

3. number of records -
total number of records in product

4. posting time -

total clock time spent posting

5. EW -

this literal string identifies the next four fields as being the number of errors and warnings in the parser and poster components

6. Number of parser errors

7. Number of parser warnings

8. Number of poster errors

9. Number of poster warnings

10. LGI -

this literal string identifies the next three fields as being the time spent accessing the Location, GeoArea, and IngestFilter tables, respectively.

11. Location table -
access time

12. GeoArea table -
access time

13. IngestFilter table -
access time

14. LK -

this literal string identifies the next four fields as two sets of two values each, where the first number is for the LatestObsValue table and the second is for the ProductLink table

15. LatestObsValue table -
number of records processed

16. ProductLink table -
number of records processed

17. LatestObsValue table -
access time

18. ProductLink table -
access time

19. HPOF -

this literal string identifies the next eight fields as two sets of four values each, where the four values are for the Height, Precip, Other PE tables (e.g. Discharge, Temperature, etc.), and Forecast PE (i.e. FcstHeight, FcstDischarge, FcstPrecip, FcstTemperature) tables, respectively

20. Height table -

number of records processed

21. Precip table -

number of records processed

22. Other observed PE tables -

number of records processed

23. Forecast PE tables -

number of records processed

24. Height table -

access time

25. Precip table -

access time

26. Other observed PE tables -

access time
27. Forecast PE tables -

access time

28. U -

this literal string identifies the next two fields as a pair of a count value, followed by the elapsed time, for processing unknown data

29. UnkStn/UnkStnValue -

number of records processed, for the applicable table

30. UnkStn/UnkStnValue -

access time

31. NP -

this literal string identifies the next four fields as a set of four count values

32. Not posted

count of records instructed to not post

33. Unknowns not posted

count of records not posted because they are unknown

34. Outside time window

count of records not posted because they are outside the allowable time window

35. Ignore duplicate

count of records not posted because they are duplicates and did not meet certain overwrite criteria

All times are given as elapsed time in seconds. A sample log record (ignore the

word wrap) is:

KWOHRRSOUN,1227162126,45,1.411,EW,0,0,33,12,LGI,0.092,0.000,0.085,LK,33,9,0.590,0.058,HPOF,5,0,0,0,0.000,0.05,0.000,0.000,U,3,0.017,NP,0,0,0,0

In this example with 45 total records, the total time was 1.411 seconds. The filtering operation (Location and IngestFilter) took 0.178 (=0.092+0.085) seconds, posting to LatestObsValue and ProductLink took 0.59 and 0.058 seconds, posting to the PE tables took 0.05 seconds (all for the height table), and the UnkStn table took .017 seconds.

The CSV format of the file facilitates the development of scripts that can analyze the data and provide summary information. These scripts can be written to interpret the data in an almost unlimited number of ways. Below is an awk script that reads a given performance log file and for each product that is processed, writes the product identifier, the number of records in the product, the time spent processing the product, and the processing rate given in units of seconds per record.

#!/bin/awk -f

BEGIN {printf(" PRODUCT-ID NUM TIME TIM/NUM\n");

sum3=0;

sum4=0

prods=0

FS=","}

{prods++

sum3=sum3+$3;

sum4=sum4+$4;

printf("%15s %4d %6.2f %5.3f\n", $1, $3, $4, $4/$3) }

END { print "Total Records=", sum3, "Total Time=",sum4, "Total Products=",prods;

 print "Avg. sec/prod=",sum4/prods,"Avg sec/rec="sum4/sum3}

APPENDIX E. NEW FEATURES SINCE AWIPS RELEASE 5.0
Release 5.1.1 changes:
1. Removed ObsValue, ObsValueDup, FcstValue tables.

2. Modified performance logging to account for removed tables.

Release 5.1.2 changes:
1. Modify the poster to handle paired/vector data such as TB, TV, and NO data. To accomplish this, added new table, PairedValue, to store the observations for the following special SHEF physical elements:

HQ (distance to river's edge from stake)

MS (soil moisture at various depths)

NO (gate opening)

ST (snow temperature at various depths)

TB (temperature at depth under bare soil)

TE (air temperature at various elevations)

TV (temperature at depth under vegetated soil)

These physical elements are special in that they require an additional independent variable for the primary key; this independent variable is required because these data are composed of several values at the same station, for the same physical element, and for the same time.

The NO physical element gives gate number and gate opening; the TB and TV physical elements give soil depth and soil temperature; the HQ physical element gives stake number and distance to river; the MS physical element gives soil depth and soil moisture; the ST physical element gives depth in the snow pack measured from the ground and snow temperature; the TE physical element gives elevation above the ground and the air temperature.

The PairedValue table structure is similar to all other dynamic forecast PE data tables such as FcstHeight in order to make this new table totally general in case some new forecast data types appear in the future that are structured like this; the structure is: "lid", "pe", "dur", "ts", "extremum", "probability", "validtime", "basistime", "ref_value", "value", "shef_qual_code", "quality_code", "revision", "product_id", "producttime", and "postingtime"; the primary key is composed of the first 9 columns; the only new column (apart from a standard forecast data table) is "ref_value" defined as an Postgres integer;

2. Modified so that it includes the number of parsing warnings and errors; request was to also add other fields. Modified so posting time is defined on a per-record basis, not a per-product basis.

3. Added FcstOther table to store forecast data that is not Forecast Height, Temperature, Discharge, or Precipitation.

4. Added new table, Power, to store the observations for the SHEF physical elements VB through VW, generation and generator data; the structure is identical to all other dynamic observation PE data tables such as Height;

5. Added new table, WaterQuality, to store the observations for the SHEF physical elements WA through WV, water quality; the structure is identical to all other dynamic observation PE data tables such as Height;

6. Added new table, FishCount, to store the observations for the SHEF physical elements FA through FZ, fish counts; the structure is identical to all other dynamic observation PE data tables such as Height;

7. Added new fields to performance log file for error counts.

Release 5.2.1 Changes:
1. Added the physical elements (PEs) MD, MN, MV to the list of Pes that are treated as vector/paired values.

Release OB1 Changes:

1. Added data adjustment feature, which allows the SHEF Decoder to use any locally specified numerical adjustment factors, which are managed via a new HydroBase GUI under Data Ingest/Adjustment Factors. This GUI provides a way to enter, update and delete Data Adjustment Factors which are stored in the IHFS AdjustFactor table.

Note that this table is only read in at the time SHEF Decoder is started and any changes made to this table after the SHEF Decoder is started are not used in the adjustment of the raw SHEF values. The user will need to stop and start the SHEF Decoder to have any changes made to the AdjustFactor table to take affect.

Release OB2 Changes
1. Modified processing so that the Location and GeoArea data are buffered at program startup, so that the decoder need not query these tables for posting status. This reduced to near-zero the amount of time spent performing this function. Tests showed that this consistently used about 15% of the processing time, in the case where latestobsvalue posting was on. However, this requires that whenever a location or area is added or deleted, or a location’s post flag is changed, that the changes will not be recognized until the decoder is restarted.

2. The posting to the LatestObsValue table is now done via an Postgres stored procedure, rather than thru direct database calls. This results in a significant improvement in performance.

Release OB3 Changes
1. Fixed problem that can occur when a product which had a mix of forecast data and observed data, and the observed data triggered an alarm (using WHFS features). This caused the decoder to do a routine clean of old basis time forecast data, but there were no forecast data to clean, and the clean operation has a bug that will cause to sometimes crash if there is no data to clean. The workaround is to adjust or turn off the alarms so they won't occur (undesirable since alarms are there for a reason; or to separate the observed and forecast data into separate products (not necessarily practical).

2. Added setting VALID_OR_MISSING for shef_post_latest token. It considers missing data and only "non-bad" data, unlike the VALID_ONLY setting, which could really be named VALID_AND_NOT_MISSING.

3. Modified so that loading of the max forecast values ignores probabilistic forecast values.

4. Added a large set of new type-source codes, which unlike any existing type-source codes, being with a numeral instead of a letter. These were added to support the RFC Archive database needs.
Release OB4 Changes:

1. Correct typo type bug in main_shefdecode.f where "valid_and_not_missing" is treated as "VALID_OR_MISSING" in the reading of the tokens. BTW, the VALID_ONLY setting should really be named VALID_AND_NOT_MISSING.
2. Modified posting of paired data so that if the value is encoded as missing (-9999.), both the values are stored as missing. Also, if only the dependent value is missing, which is the more meaningful case, then the value is expected to be set as -#.999, so that the independent value still gets a valid number (such as 2 feet) and the dependent is missing (such as a missing soil temp at 2 feet). Previously, a missing value of -9999. was posted as 9999. and -0.0

3. Updated alert/alarm purging so that it always will try and purge old basis time data from the Alert/Alarm table, if alert/alarm checking enabled and forecast data recieved, even if there were no alert/alarm conditions noted in the product just processed. Prior to this change, the purging was only done if new alerts/alarms were detected. However, this meant that old basis time data could exist in the AlertAlarm table if the new forecast issuance did not have any alert/alarms. Also updated program version info.
Release OB5 Changes:
1. Added functionality to support the new Gage Precipitation Processing (GPP) server operations. All hourly PP reports and all near-top-of-hour PC reports are sent as a file to the GPP server as a post-product processing operation.
2. Added ability to post to the new ArealObs table if typesource=PM (processed mean areal), and new ArealFcst table if typesource=FL (forecast mean areal).
3. Modified processing to support new Gage Precipitation Processing GPP) methods. This includes supporting the option to still post to the old Precip/CurPrecip tables, and always posting to the RawPC/RawPP/RawPother tables, and sending buffered files to the gage pp server input directory. The IngestFilter stage2 input flag is used to see whether to post a location's data to the Hourly tables. The new GPP processes are described in detail in a separate document.
4. Increased the maximum bundle of files it can process from 100 to 2500
5. Enhanced load_maxfcst (load max forecast) operations so that instead of re-processing all forecast time series data for a given physical element (discharge or height) when a forecast physical element is retrieved in a given product, the program now recomputes the maxfcst for only those stations which received data in the recent product. This should dramatically increase the speed by which this operation is completed since normally a given product only has a small subset of the total forecast time series
Release OB6 Changes:

1. The duplicate data handling token is changed. New token shef_duplicate is added for this purpose and the old tokens vl_always_overwrite and shef_use_revcode are removed.
2. The application was changed to work with PostgreSQL

3. Modified format of any GPP load files so that trailing pipe terminator is not used at end of record.

Release OB71 Changes:
1. 6 hour(PPQ) , 24 hour(PPD) , 7AM (PPP) local time precipitation reports are added to GPP files in addition to the top-of-the-hour hourly precipitation reports.
2. There are new limits alert_upper_limit, alarm_upper_limit, alert_lower_limit and alarm_lower_limit added to datalimits and locdatalimits table instead of alert_limit and alarm_limit. Shefdecode will compare the values and if they are greater than upper limit or lesser than lower limit then they will be written to alertalarmval table.
