To accelerate the transition of scientific advances from the climate research community to improved NOAA climate forecast products and services.


To significantly increase the accuracy, reliability, and scope of NOAA's suite of operational climate forecast products to meet the needs of a diverse user community.


Recent Activities

September 6, 2018   Discussions continued on the hot topic of the 2015-16 El Niņo event and the prediction of California rainfall. The Arctic Oscillation (AO) impact is critical to improving middle- to high-latitude climate outlooks, and most models did not catch the positive AO observed during that season. Michelle L’Heureux, Lead of the El Niņo-Southern Oscillation (ENSO) team, NOAA’s Climate Prediction Center did a more careful study, looking inside the complex problem. She demonstrated a strong correlation (r~0.9) between ensemble mean AO and ENSO values out to long lead times of 12 months in the NMME products, much stronger than the correlation in observations. Though her studies revealed the NMME has some skill in predicting the AO out to 5-7 seasons for winter and early spring, she noted that not all the AO skill (forecast vs. observations) can be attributed to ENSO, especially at short lead times. While ENSO can impact the winter AO/NAO, the predictable signal was smaller than the unpredictable noise, suggesting the NMME is overdoing the AO-ENSO relationship, especially during the spring and fall. This sensitivity may arise from the models underrepresenting or missing other sources of predictability. The details were explored in her paper with coauthors (L’Heureux et al. 2017).


L’Heureux, M. L., M. K. Tippett, A. Kumar, A. H. Butler, L. M. Ciasto, Q. Ding, , K. J. Harnos, and N. C. Johnson, 2017: Strong relations between ENSO and the Arctic Oscillation in the North American Multimodel Ensemble. Geophys. Res. Lett., 44, 11,654–11,662.