

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for
any purpose other than to the extent provided in contract DG133W-05-CQ-1067. However, the Government shall have the right
to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the Government’s right
to use information contained in this data if it is obtained from another source without restriction. The data subject to this
restriction are contained in all sheets.

Software Continuous Technology Refresh

Product Improvement Plan

Version 4

Document No. AWP.PLN.SWPIP-04.00DFT
19 December 2008

Prepared Under

Contract DG133W-05-CQ-1067
Advanced Weather Interactive Processing System (AWIPS)

Operations and Maintenance

WBS 42030, OST-06-0010

Submitted to:

Ms. Anita Middleton
Contracting Officer

U.S. Department of Commerce
NOAA/NWS Acquisition Management Division

SSMC2, Room 11220
1325 East-West Highway
Silver Spring, MD 20910

By:

Raytheon Technical Services Company LLC
8401 Colesville Road, Suite 800

Silver Spring, MD 20910

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. ii

Table of Contents
Page

1. Introduction... 1
1.1 Background .. 1
1.2 Purpose of the Product Improvement Plan... 1

2. Strategy ... 3
2.1 Key Requirements / Needs... 3
2.2 Task Order Management Approach ... 4
2.3 Approach to Re-Architecture ... 6
2.4 Roadmap .. 6

3. AWIPS II Architecture ... 9
3.1 Introduction .. 9
3.2 Conceptual Architecture: Target State ... 9
3.3 AWIPS Service Oriented Architecture .. 10
3.4 Key AWIPS II Features ... 16
3.5 AWIPS II Implementation Approaches / Features... 22
3.6 Security Considerations ... 24
3.7 Technical Risks and Mitigations .. 25

4. Project Management ... 27
4.1 Assumptions... 27
4.2 Organization... 27
4.3 Risk and Opportunity Management ... 28
4.4 Decision Management: Governance .. 29
4.5 Technical (Management) Controls... 29
4.6 Integrated Master Plan; Integrated Master Schedule ... 30
4.7 Facilities and Capital Equipment ... 30
4.8 Formal Reviews and Reporting.. 31

5. Software Development.. 32
5.1 Software Configuration Management .. 32
5.2 Testing.. 32
5.3 Documentation ... 32
5.4 Standards .. 33
5.5 Tools... 33
5.6 Backup and Recovery .. 33
5.7 Security (Information Assurance) .. 33

6. AWIPS Software Migration.. 34
6.1 Migration Approach.. 34
6.2 Migration Task Order Summary Descriptions.. 36
6.3 Special Topics... 38
6.4 Local Applications (LA) ... 40
6.5 Documentation.. 40
6.6 TTR/DR Processing Coordination.. 41

7. AWIPS I Baseline Software Migration Risks... 42
8. Training... 43

8.1 Developer Training .. 43
8.2 System Administration Training... 44

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. iii

8.3 Training Support Task Order Description .. 44
9. Site Migration and Deployment.. 45
10. Transition to O&M ... 46

10.1 Release Management .. 47
10.2 SWIT, CM, and Test Environment Transition.. 48
10.3 Application Maintenance .. 49
10.4 NCF and User Support.. 50
10.5 Governance ... 50
10.6 Service Level Agreements .. 50

11. Government Testing.. 52

List of Tables
Page

Table 3-1. Open Source Project Usage in AWIPS II.. 17
Table 3-2. Additional AWIPS II Implementation Approaches/Features...................................... 23
Table 3-3. AWIPS II: Technical Risks/Mitigations.. 25
Table 6-1. Task Order Themes ... 35
Table 6-2. Discrete Function Summary .. 36

List of Figures
Page

Figure 2-1. ADE Release Content .. 7
Figure 2-2. SW CTR Overall Roadmap.. 7
Figure 2-3. TO11 Conceptual Approach .. 8
Figure 3-1. Conceptual Architecture Target State Rendering .. 10
Figure 3-2. System Capabilities Available as Network Services ... 11
Figure 3-3. Services Organized Into Containers With Loose Coupling 12
Figure 3-4. Container-Based Processing... 13
Figure 3-5. Services Composed of Components... 13
Figure 3-6. Interface Details Abstracted Away From Services .. 14
Figure 3-7. Interfaces Defined in Well-Known Data Model .. 15
Figure 3-8. Event-Driven Services ... 16
Figure 3-9. AWIPS II System Concept... 18
Figure 3-10. Common AWIPS Visualization Environment (CAVE)... 19
Figure 3-11. Extensibility Enabled by Plug-Ins for Data Types and Transforms 21
Figure 3-12. Extending Local Capability via Scripting .. 21
Figure 3-13. Data Type-Independent Metadata Indexing and Query ... 22
Figure 4-1. AWIPS SW CTR Project Organization ... 28
Figure 4-2. Risk / Opportunity Management Tool ... 29

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. iv

Figure 10-1. O&M Transition... 47
Figure 10-2. AWIPS I Release Management Process .. 48

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. v

Record of Changes

Version Effective Date Section(s) Affected
Page(s)
Affected Description of Changes

1 June 12, 2006 Original
2 Oct. 24, 2006 Cover, Header, Footer All Updated version #, submission

date, Document Number
 Record of Changes iv New
 Acronyms and

Abbreviations
v - vi Addition of new acronyms used in

Version 2
 1. Background;

2. Strategy; 3. AWIPS II
Architecture; 4. Project
Management

1-3, 7-10, 17-
21, 27-28, 30

Text deletions, additions,
changes. Modification of Figures
2-1, 2-2, 3-8, 3-9, and 4-1

 6. AWIPS Functionality
Migration

35 Original §6 (Application Migration)
replaced with new section

 8. Transition to O&M 38 New
3 June 22, 2007 Cover, Header, footer All Updated version #, submission

date, Document Number
 Acronyms and

Abbreviations
vii - viii Addition of new acronyms used in

Version 3
 June 22, 2007 1. Introduction 1–2 Text deletions, additions, changes

to section 1.2
3 June 22, 2007 2. Strategy 4–9 Minor text additions to section 2.2.

Rewrite of section 2.4, including
new and modified figures (2-1 – 2-
3).

3 June 22, 2007 3. AWIPS II Architecture 12, 18, 23–27 Minor text additions to section 3.4.
Revisions to Table 3-1. Revisions
to Figure 3-13. Replaced section
3.6, para. 3.
Text additions, deletions to
section 3.7.

3 June 22, 2007 4. Project Management 28–31 Revisions to Figure 4-1. Text
additions, deletions to section 4.4.

3 June 22, 2007 5. Software Development 33–34 Text additions, deletions to
sections 5.4, 5.5.

3 June 22, 2007 6. AWIPS Software
Migration

35–42 New

3 June 22, 2007 7. Migration Risks 43 New

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. vi

Version Effective Date Section(s) Affected
Page(s)
Affected Description of Changes

3 June 22 8. Training 44–46 New
3 June 22 9. Deployment 47 New
3 June 22 10. Transition to O&M 48–50 New
3 June 22 11. Government Testing 51 New
4 Dec 19,2008 1. Introduction 1 General qualification for update
4 Dec 19,2008 2.1 Minor edit
4 Dec 19,2008 2.4 Roadmaps Updated Roadmaps and

discussion. Added TO11
approach figure. Moved O&M
Transition roadmap to section 10

4 Dec 19,2008 3 AWIPS II Architecture Added qualification for update
4 Dec 19,2008 3.2 Conceptual

Architecture
 Updated fig 3-1 to TO9 currency

Edited words in section 3.2 to
match figure

4 Dec 19,2008 3.4 Key AWIPS II
Features

 Updated Table 3-1 to reflect
change in ESB from Mule to
Camel

4 Dec 19,2008 3.5 AWIPS II
Implementation
Approaches / Features

 Updated Table 3-2 to reflect
change in ESB from Mule to
Camel

4 Dec 19,2008 4.2 Organization Changed name to Scott Risch on
org chart in fig 4-1

4 Dec 19,2008 4.7 Facilities and Capital
Equipment

 Corrected ownership and
description of capital equipment in
use at Raytheon Omaha

4 Dec 19,2008 5.2 Testing Added qualification and reference
to separate document describing
AWIPS II Testing

4 Dec 19,2008 6.1 Migration Approach Minor edit
4 Dec 19,2008 6.2 Migration Task Order

Summary Descriptions
 Added qualification and reference

to separate document for TO11
description

4 Dec 19,2008 6.3 Special Topics Updated answers
4 Dec 19,2008 6.3 Local Apps Corrected section number to 6.4.

Section rewritten to reflect the
current state

4 Dec 19,2008 6.4 Documentation Corrected section number to 6.5

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. vii

Version Effective Date Section(s) Affected
Page(s)
Affected Description of Changes

4 Dec 19,2008 6.5 TTR / DR Processing
Coordination

 Corrected section number to 6.6.
Title changed. Section rewritten to
reflect the current state

4 Dec 19,2008 7. Migration Risks Renamed to AWIPS I Baseline
Software Migration Risks

4 Dec 19,2008 8. Training Updated, removed some
subsections, renumbered as
appropriate

4 Dec 19,2008 9. Deployment Renamed to Deployment and Site
Migration. Updated section with
DTP output

4 Dec 19,2008 10 Transition to O&M Major update
4 Dec 19,2008 11. Government Testing Minor edits

4 05 Feb 2008

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. viii

Acronyms and Abbreviations Used in This Plan
ADE AWIPS Development Environment
AE AWIPS Evolution
AELC AWIPS Evolution Leadership Committee
ASM Application Support & Maintenance
AIFM AWIPS Integration Framework Manual
AWC Aviation Weather Center
C&A Certification and Accreditation
AWIPS Advanced Weather Interactive Processing System
CAVE Common (AWIPS) Visualization Environment
CM Configuration Management
CMP Configuration Management Plan
CONOPS Concept of Operations
COTS Commercial-Off-The-Shelf
CPU Central Processing Unit
CSCI Computer Software Configuration Items
CTR Continuous Technology Refresh
D2D Display 2-Dimensional
DCS Design Change Specification
DMZ Demilitarized Zone
DR Discrepancy Report
DTP Deployment and Transition Planning Task Order
EDEX Electronic Data Exchange System
ESA Electronic Systems Analyst
ESB Enterprise Service Bus
FEWS Flood Early Warning System
FFP Firm Fixed Price
GFE Graphical Forecast Editor
GIS Geographical Information System
GSD Global Systems Division
GUI Graphical User Interface
HMI Human Machine Interface
HQ Headquarters
HTTPS Hypertext Transfer Protocol Secure
ICD Interface Control Documents
IDE Integrated Development Environment
IMET Incident Meteorologist
IMP Integrated Master Plan
IMS Integrated Master Schedule
I/O Input/Output
IRAD Internal Research and Development
IT Information Technology
ITO Information Technology Officer
IV&V Independent Validation & Verification
IWT Integrated Working Team
JMS Java Messaging Service

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. ix

JVM Java Virtual Machine
LA Local Application
KAP Knowledge Acquisition Process
LDAD Local Data Acquisition and Dissemination
METAR Meteorological Aviation Report
MPLS Multi-Protocol Label Switching
NAS Network Attached Storage
N-AWIPS NCEP-Advanced Weather Interactive Processing System
NC National Center
NCF Network Control Facility
NCEP National Centers for Environmental Prediction
NOAA National Oceanic and Atmospheric Administration
NWS National Weather Service
NWSTD National Weather Service Training Division
O&M Operations & Maintenance
OB Operational Build
ORION One Raytheon Integrated On-demand Network
OSIP Operations and Services Improvement Process
OST Office of Science and Technology
OTE Operational Test and Evaluation
PIP Product Improvement Plan
PIPT Partnership Integrated Product Team
PIT Pre-Integration Test
PMP Program Management Plan
POC Point of Contact
QAP Quality Assurance Plan
R&D Research and Development
RAMP Risk Assessment and Management Planning
RAOB Radiosonde Observation
RCP Rich Client Platform
RDBMS Relational Database Management System
RFC River Forecast Center
RHEL Red Hat Enterprise Linux
ROM Rough Order of Magnitude
RRD Risk Reduction Demonstration
RTM Requirements Traceability Matrix
SBN Satellite Broadcast Network
SDK Software Developers Kit
SDP Software Development Plan
SEC Systems Engineering Center
SEDA Serial Event-Driven Architecture
SEMP System Engineering Management Plan
SHEF Standard Hydrological Exchange Format
SMM AWIPS System Manager’s Manual
SLA Service Level Agreement
SLOC Software Lines of Code

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. x

SOA Service Oriented Architecture
SOP Standard Operating Procedures
SSDD AWIPS System/Subsystem Design Description
SSL Secure Sockets Layer
SW Software
SW CTR Software Continuous Technology Refresh
SWIT Software Integration and Test
TAF Terminal Aerodrome Forecast
TCO Total Cost of Ownership
TIM Technical Interchange Meeting
TO Task Order
TTR TestTrack Report
TP Test Plan
UFE User Functional Evaluation
UFT User Functional Test
UM AWIPS User’s Manual
URI Universal Resource Identifier
VTEC Valid Time Event Code
WAN Wide Area Network
WBS Work Breakdown Structure
WFO Weather Forecast Office
WSO Weather Service Office
WX Weather
XML eXtendible Markup Language

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 1

1. Introduction
The focus of this SWCTR PIP update, version 4.00, is Deployment and O&M Transition.
Therefore, changes to Sections are forward looking and no revisions were made to the PIP for
historical accuracy. Please refer to the “Record of Changes” starting on page iv for specific
changes made.

1.1 Background
In 2004, the National Oceanic and Atmospheric Administration (NOAA) National Weather
Service (NWS) conducted a “present state” analysis of the Advanced Weather Interactive
Processing System (AWIPS). The analysis raised several issues related to AWIPS software and
indicated that AWIPS’ ability to support the future NWS mission was at risk. The analysis also
pointed to a growing backlog in the development of new science capabilities, including data
types, and raised concerns about the lengthy and tenuous Operational Build (OB) installation
process. The ultimate conclusion was that AWIPS “software was in critical need of
improvement.” Moreover, no Product Improvement Plan existed to address this critical need.
NOAA presented the results of the AWIPS present state analysis to Raytheon during the Due
Diligence period that preceded the submission of proposals to support AWIPS Operations and
Maintenance (O&M). Based on the information provided during the presentation and on our own
follow-up research, Raytheon proposed to make several improvements to the overall AWIPS
software development and release processes – all of them predicated on migrating AWIPS
software to a modern Services Oriented Architecture (SOA). Raytheon’s proposal, which
resulted in the award of Contract DG133W-05-CQ-1067 in August 2005, included an offer to
develop and produce a Software Product Improvement Plan (PIP) as the first step of the
migration. This document constitutes that plan, which we will execute under contract Option 1,
AWIPS Continuous Technology Refresh (CTR). The CTR option includes hardware, software,
and telecommunications.

The following terms, all of which are used frequently throughout the PIP and elsewhere, require
definition to avoid confusion.

• Software Continuous Technology Refresh (SW CTR) refers to the project described in this
Product Improvement Plan, and is focused on the migration of AWIPS baseline software.

• AWIPS II refers to the migrated AWIPS system.
• AWIPS Evolution (AE) refers to the overall evolution of AWIPS, including software,

hardware, and communications. AWIPS Evolution also refers to the functional organization
of the Raytheon AWIPS Program that is concerned with the Continuous Technology
Refresh of AWIPS. Each encompasses the same scope.

1.2 Purpose of the Product Improvement Plan
The purpose of this Software CTR Product Improvement Plan (PIP) is to document and
formalize the multiyear SW CTR project. The PIP describes the AWIPS Software Architecture
target state and the plan to realize that state. It accounts for more current and complete
information than was available for proposal preparation.

The PIP will provide a mechanism for communicating project scope, objectives, and details to
the sizable and widely dispersed community of AWIPS stakeholders. These stakeholders will

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 2

share ownership of the PIP with the NWS AWIPS Program and Raytheon, and will have both
visibility into the plan and the ability to provide feedback at any time.

The PIP will associate the SW CTR plan with other events – Operational Builds, the Operations
and Services Improvement Process (OSIP), other AWIPS system infrastructure changes (e.g.,
network, hardware), and Science and Technology – in order to provide a larger context and
enable synchronization with related efforts.

PIP updates will be issued, as required, to keep the Plan current. If appropriate, the updates may
be released as Task Order deliverables. If material new information is discovered, or if
conditions change, the Plan can change to accommodate it.

The PIP identifies and describes tasks at a Master Plan or Strategy level of detail. Project
specifics, such as detailed schedules, will be provided in individual Task Orders. Technical
briefings, software demonstrations, training materials, source code, and documentation were
delivered to the NWS with Task Orders 3, 4, 5, and 6. Other briefings have been given to the
NWS as well (e.g., Corporate Board). Individuals desiring more detailed information are
encouraged to review this material. Jason Tuell (301.713.1809 x. 112) and Ronla Henry
(301.713.0211 x. 140) are Points of Contact for this information.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 3

2. Strategy

2.1 Key Requirements / Needs
System-Level Requirements/Needs. The existing end-user functionality of AWIPS appears to
be comprehensive and adequate for current needs. Of concern to NWS, however, are the cost,
complexity, and rapidly increasing difficulty of extending AWIPS’ functionality to meet the
future mission of NWS and adapt to evolving end user and consumer requirements. NWS cited
several system-level issues during the Due Diligence presentation on the “AWIPS Present State
Analysis.” Those issues are the basis for the following list of major system-level requirements /
needs:

• Improved adaptability to accommodate new science, new data types, and a changing
CONOPS (to include new requirements in interagency collaboration).

• Maximum use of Open Source software vs. licensed Commercial-Off-the-Shelf (COTS) and
proprietary software.

• Platform independence (hardware, operating system, database).
• Improved reliability, availability, and supportability.

− Reduced Discrepancy Reports (DR).
− Faster fix cycles.

• Improved performance, scalability (up and down), and load balancing.
• Improved flexibility.
• Simpler software build and deployment framework.
• Streamlined installation process, including application releases.
• Consistent user interfaces across applications (includes applications of Weather Forecast

Offices (WFO), River Forecast Centers (RFC), and the National Centers for Environmental
Prediction (NCEP).

• Improved software consistency across independent developers.
• Improved support for including local applications in site installations.
• Standard development environment for all developers.
• Improved compliance with standards.

As we meet these system-level requirements, current end-user functionality and desirable traits
must be preserved. Moreover, the functionality of AWIPS will change while the development of,
and migration to, the new architecture is occurring. Therefore, the system needs to preserve the
then-current functionality of the baseline Operational Build.

Functional Requirements. During Technical Interchange Meetings (TIM) with representatives
of numerous NWS development and operational groups, several critical functions of the legacy
applications were noted. These include:

• N-AWIPS (render large data sets, interactive and automated product production, extensive
grid diagnostics, on-the-fly ad-hoc calculation, drawing, pan, and roam).

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 4

• AWIPS (rendering performance, precise forecaster interaction with the data, warning
performance, data event performance, and radar analysis).

• GFESuite (accurate forecast generation, forecaster-optimized digital forecasts, graphical
harmonized editing of digital forecast, forecast product generation, local customization and
extensibility, and Python support).

• Hydro (water shed modeling, graphical interaction with modeling and gauge data, and
warning performance).

New capabilities will be developed using a Software Developers Kit (SDK) within an AWIPS
Development Environment (ADE). The ADE/SDK must support developing capabilities that are
beyond the current baseline (OB6). For example, D2D (i.e., AWIPS’ two-dimensional data
display) does not currently provide drawing capability. The ADE/SDK should provide the means
for the application developer to add this functionality easily.

Specific extensions beyond current capability to be supported by the architecture include:

• A Common (AWIPS) Visualization Environment (CAVE) merging D2D, N-AWIPS, FX-
net, FX-C, and GFE (Graphical Forecast Editor).

• Forecaster collaboration/briefing (e.g., supporting functionality similar to FX-C).
• Thin Client access to data (e.g., supporting functionality similar to FX-net).
• GIS (Geographical Information System) data capability.

Subsystem Remediation Requirements. Several problem areas within the present-state AWIPS
can be corrected only by architecture changes and are therefore beyond the scope of corrective
maintenance. These requirements include:

• Improved Notification Server capability.
• Improved Satellite Broadcast Network (SBN) ingest capability.
• An installation rollback capability.
• Support for improved/updated LDAD (Local Data Acquisition and Dissemination)

CONOPS.

Non-Technical Requirements. Finally, non-technical requirements need to be addressed. One
such requirement is the need for expedient execution. The new system is needed as quickly as it
can be made available without incurring undue program risk or operational disruption. This
requirement has influenced the approach to realization. Another requirement that significantly
influenced our general approach to managing the project is the requirement that Raytheon
support the AWIPS O&M contract on a Firm Fixed Price (FFP) basis. Our approach for meeting
the FFP requirement is discussed in the next section.

2.2 Task Order Management Approach
NWS has expressed a strong desire to execute SW CTR on an FFP basis. However, large-scale
FFP development projects of significant duration pose risks for the contractor and the customer.
For example, the information known at the time the cost proposal is prepared is limited, virtually
guaranteeing a “less than perfect” cost projection. Cost increases are commonplace, whether the
contract is Cost Plus or FFP. Shutting down large programs is difficult. Additionally, the longer a

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 5

project’s duration, the more likely it is that the conditions that formed the basis of the project
plan will change during the period of performance. Customer functional requirements, along
with technical and business drivers, change over time. Changing conditions are problematic for
FFP contracts.

All of these issues can be managed, but their general effect is that additional time and money are
spent dealing with contract issues while the technical program may remain in suspension
pending resolution of programmatic concerns. To avoid the pitfalls of a large-scale, long-term
FFP project, Raytheon proposed an approach that provides the necessary requirements flexibility
while also providing a means to control cost and schedule effectively: Develop a Program Plan
that provides a project roadmap and overall cost estimate. Then decompose the project into
relatively small, well-defined, and rapidly executed Task Orders resulting in specific, value-
added deliverables.

Smaller tasks are typically shorter in duration than large-scale projects, and estimates of schedule
and cost are generally more accurate, with less risk to contractor and customer. In light of these
considerations, Raytheon has developed a SW CTR plan that incorporates a series of small, well-
focused tasks, each of which provides value-added deliverables and incremental improvements
against previous Task Orders (TO). The end result of these TOs is a new, Service-Oriented
AWIPS II capable of supporting the flexibility, adaptability, and extensibility desired by NWS.

This PIP describes the TOs in enough detail to enable readers to understand their purpose,
schedule, and intended results; it does not describe the details of each TO as those will be
provided in each discrete TO proposal. The Plan is based on current information. As conditions
change, the Plan will be, and has been, adjusted to account for the change. Note that during the
execution of any given TO, the very next TO(s) to be executed is/are proposed and priced. These
TOs will be funded as FFP projects, with detailed performance schedules and well-understood
deliverables. Changes to the Plan may include new TOs, changes to TO descriptions, or removal
of TOs. These changes occur under management oversight and are recorded in the PIP. This
approach mitigates cost and schedule risks, and avoids the overhead associated with contract
modifications.

A TO approach to SW CTR also provides “off-ramps” for the Weather Service. If for any reason
NWS decides to abort the project, it can end the work simply by not funding the next TO – again
avoiding the overhead associated with contract modifications and the risk associated with
monolithic programs.

A TO approach to performance, however, introduces two additional risks, both of which need to
be mitigated. The first risk is project drift. It is conceivable that when focusing on the near term,
changes to the plan can take it off course, or that issues might be missed altogether in developing
subsequent TO plans. This risk is mitigated by undertaking periodic PIP reviews and updates.
Second, we risk incurring time gaps between TOs because of delays in generating TO proposals
or acquiring customer approval. Our general approach is to submit a proposal for the next TO
prior to completing the active TO, allowing sufficient time for the customer’s review and
approval. Overall program reviews keep the principals current; this in turn helps maintain the
timeliness of TO proposals and approvals.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 6

2.3 Approach to Re-Architecture
AWIPS’ current architecture is circa early to mid-1990s, and is composed of approximately 4.5
million SLOC (source lines of code). A slow migration with coexisting new and old architecture
elements would take too long and is likely to cause significant disruptions to operations.
Raytheon looked instead for an approach to realizing the new AWIPS software that would bring
about the most expedient migration of AWIPS at the lowest risk of operational disruption.

Our general approach is to perform a “black-box” conversion, which will consist of replacing the
AWIPS “internals” while maintaining the outward appearance and forecaster functionality of
today’s AWIPS. The AWIPS baseline system will be completely converted off-line, thus
avoiding operational disruption. The system will be thoroughly tested, validated, and accepted by
field operations before deployment. This includes testing of local applications. As previously
stated, the deployed system will be current with its contemporary, deployed OB (~9).

We “jump started” the conversion by utilizing results of Raytheon Internal Research and
Development (IRAD). These results represent approximately five years of related research and
development.

The approach for future AWIPS development is as follows:

• Raytheon develops the “infrastructure” code (services).
• Raytheon develops and provides an AWIPS ADE that includes an SDK.
• ADE/SDK is provided freely to NWS and its partners.
• Labs/Centers produce new forecaster and weather application functionality (i.e., “new

science”) using the ADE/SDK.
• Local application developers use the ADE/SDK.

2.4 Roadmap
This section discusses the steps required to realize the new system (i.e., “AWIPS II”), and
includes two roadmap views. The first view (Figure 2-1) summarizes ADE development and
release content during the first 15 months of Task Order performance. The second view, Figure
2-2, shows the updated overall roadmap of the project.

Figure 2-2 shows the updated detail and refinement of the deployment and O&M transition tasks.
“A pre-OTE Testing” task is new for this version of the roadmap. TO11 includes pre-OTE
Testing SW support and as a result is longer in duration than previously planned. Figure 2-3
shows the new approach to TO11. O&M Transition tasks start earlier than in the previous plan.
A detailed Roadmap and discussion is in Section 10. Training tasks explicitly show Application
Focal Point training and current NWSTD (National Weather Service Training Division) plans. A
new task, “Site Migration,” was added to the roadmap to reflect activities needed to prepare the
Sites to become operational using AWIPS II. Section 9 has a discussion on Site Migration
activities. As before, the deployment task is for Sites that were not included in OTE.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 7

TO 3 TO 4 TO 5 TO 6Raytheon IRAD

6/15/071/4/071/1/06 6/15/06

TO 7
Detailed Application Migration Planning

App Migration
6/15/096/15/08

TO 10

TO 4 TO 5 TO 6

TO 8

1/1/086/15/07

TO 7

TO 9 TO 11

TO 12

TO 13

TO 4

TO 4

TO 12

TO 13

1/1/08

Release 0.0
1rst Delivered Code
• CM / Deploy Pattern
• SOA Templates
• Data Plug-ins
• Sub / notification
• mEngine Scripting
• CAVE

Tech. Reference Arch.
• SOA Service Framework
• Plug-in framework
• Micro Engine
• Core Base of Services
• Core Patterns
• Initial Open Source Project

Integration

Release 0.2
• Server Execution

Structure
• Remote Admin
• Legacy Adapters
• Alerting Pattern
• SOA Services +
• CAVE++

Release 0.1
• Regression

Test Environ.
• CAVE +
• mEngine +
• Remote Data

Access (XML)
• Dissemination

Release 1.0
• Localization Pattern

• Server
• CAVE

• Stress Testing
• Code Hardening
• Installation

Simplification

+Ingest Data
+Index Data +Store Data
+Transform +Auto Build

+Request

+Subscribe +Collaborate

<<Technical Reference Architecture>>
Services

<<Technical Reference Architecture>>
SOA System Services Data Types

Transforms
Scripts

+domain libraries
+mapping libraries

<<Visualization Framework>>
CAVE

Vis Plugin 1+core plug-ins
+ libraries

Vis Plugin 2
Vis Plugin n

Meta
Data

Data

+Ingest Data
+Index Data +Store Data
+Transform +Auto Build

+Request

+Subscribe +Collaborate

<<Technical Reference Architecture>>
Services

<<Technical Reference Architecture>>
SOA System Services Data Types

Transforms
Scripts

+domain libraries
+mapping libraries

<<Visualization Framework>>
CAVE

Vis Plugin 1+core plug-ins
+ libraries

Vis Plugin 2
Vis Plugin n

Meta
Data

Data All execution on workstation Add Server
Execution

TO 3 TO 4 TO 5 TO 6Raytheon IRAD

6/15/071/4/071/1/06 6/15/06 6/15/071/4/071/1/06 6/15/06

TO 7
Detailed Application Migration Planning

App MigrationApp Migration
6/15/096/15/08

TO 10

TO 4 TO 5 TO 6

TO 8

1/1/086/15/07

TO 7

TO 9 TO 11

TO 12

TO 13

TO 4

TO 4

TO 12

TO 13

1/1/08

Release 0.0
1rst Delivered Code
• CM / Deploy Pattern
• SOA Templates
• Data Plug-ins
• Sub / notification
• mEngine Scripting
• CAVE

Tech. Reference Arch.
• SOA Service Framework
• Plug-in framework
• Micro Engine
• Core Base of Services
• Core Patterns
• Initial Open Source Project

Integration

Release 0.2
• Server Execution

Structure
• Remote Admin
• Legacy Adapters
• Alerting Pattern
• SOA Services +
• CAVE++

Release 0.1
• Regression

Test Environ.
• CAVE +
• mEngine +
• Remote Data

Access (XML)
• Dissemination

Release 1.0
• Localization Pattern

• Server
• CAVE

• Stress Testing
• Code Hardening
• Installation

Simplification

Release 0.0
1rst Delivered Code
• CM / Deploy Pattern
• SOA Templates
• Data Plug-ins
• Sub / notification
• mEngine Scripting
• CAVE

Tech. Reference Arch.
• SOA Service Framework
• Plug-in framework
• Micro Engine
• Core Base of Services
• Core Patterns
• Initial Open Source Project

Integration

Release 0.2
• Server Execution

Structure
• Remote Admin
• Legacy Adapters
• Alerting Pattern
• SOA Services +
• CAVE++

Release 0.1
• Regression

Test Environ.
• CAVE +
• mEngine +
• Remote Data

Access (XML)
• Dissemination

Release 1.0
• Localization Pattern

• Server
• CAVE

• Stress Testing
• Code Hardening
• Installation

Simplification

+Ingest Data
+Index Data +Store Data
+Transform +Auto Build

+Request

+Subscribe +Collaborate

<<Technical Reference Architecture>>
Services

<<Technical Reference Architecture>>
SOA System Services Data Types

Transforms
Scripts

+domain libraries
+mapping libraries

<<Visualization Framework>>
CAVE

Vis Plugin 1+core plug-ins
+ libraries

Vis Plugin 2
Vis Plugin n

Meta
Data

Data

+Ingest Data
+Index Data +Store Data
+Transform +Auto Build

+Request

+Subscribe +Collaborate

<<Technical Reference Architecture>>
Services

<<Technical Reference Architecture>>
SOA System Services Data Types

Transforms
Scripts

+domain libraries
+mapping libraries

<<Visualization Framework>>
CAVE

Vis Plugin 1+core plug-ins
+ libraries

Vis Plugin 2
Vis Plugin n

Meta
Data

Data All execution on workstation Add Server
Execution

Figure 2-1. ADE Release Content

Figure 2-2. SW CTR Overall Roadmap

2008 2009 201120102007

= Fiscal Year
= Calendar Year

ADE TrainingADE Training Dev ADE TrainingADE Training Dev

Note: Task bar colors are
For speaker reference only

AWIPS I OBs
99 9.1 9.29.2 9.39.3

2006

PIP
Analysis

Migration Planning

RTS IRAD ADE Development

PIPPIP
AnalysisAnalysis

Migration PlanningMigration Planning

RTS IRAD ADE DevelopmentRTS IRAD ADE Development

SWIT TransitionSWIT Transition

NCF Transition
NCF SLA Ownership

NCF Transition
NCF SLA Ownership

ASM TransitionASM Transition
SMS SLA Ownership

New Capability Development

AWIPS II Releases (notional)AWIPS II Releases (notional)

OTE DeploymentPre-OTE Testing OTE DeploymentPre-OTE Testing

D&T PlanningD&T Planning

Baseline Application Migration TO11

OTE / Deployment Support

SA Course Dev SA Deployment Course

LA Training Modules

Local App Migration Planning LA Migration

Pilots AFP Deployment CourseAFP Course Dev AFP Deployment CourseAFP Course Dev

Site Migration Activities Site Migration Activities

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 8

Figure 2-3. TO11 Conceptual Approach

Figure 2-3 shows the conceptual approach to TO11. The figure shows TO11 starting on January
7, 2009 and ending on November 30, 2009. TO11 is currently estimated to consist of twenty
builds (e.g., B1…B2). The TO11 proposal will refine this estimate and provide more detailed
information than previous Task Order proposals. To facilitate pre-OTE testing there will be
multiple deliveries (e.g., “Di”) of complete testable functions, which, after pre-OTE testing and
update, will be suitable for OTE entry. These deliveries will provide more overall time for pre-
OTE testing than if delivering everything at the end of a task order. Since the number, content,
and timing of the Di are unknown at this time, “Di” is not connected to the timeline. The red
dashed arrows indicate DR processing. Interim builds that have DR fixes only may be provided
in addition to the Di. Note that the task order activity can start in early January even if there isn’t
a Task Order Authorization at that time.

OTE

OTE Entry
Evaluation

Jan 7
2009

B1

Nov 30
2/25

B5 B10 B20

3/ 25 4/22 5/20 6/17 7/22 8/19 9/16 10/14 11/181/28

= Deemed suitable for OTE entry evaluation

Di = Interim Delivery of complete function for testing (e.g. WarnGen with WAN Round Trips)

Di

Test Di: HQ + RTF

B15

START TO11
OTE

OTE Entry
Evaluation

Jan 7
2009

B1

Nov 30
2/25

B5 B10 B20

3/ 25 4/22 5/20 6/17 7/22 8/19 9/16 10/14 11/181/28

= Deemed suitable for OTE entry evaluation

Di = Interim Delivery of complete function for testing (e.g. WarnGen with WAN Round Trips)

Di

Test Di: HQ + RTF

Di

Test Di: HQ + RTFTest Di: HQ + RTF

B15

START TO11

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 9

3. AWIPS II Architecture
While some details have changed, the fundamental conceptual architecture has not changed.
There is a 100-slide presentation on the current state of the architecture that is expanded and
updated with each SW migration task order (e.g., TO10 update to be delivered in February
2009). The reader is directed to that presentation for the detailed current state of the
architecture.

3.1 Introduction
Future Weather Service missions require a new AWIPS software architecture. A fundamental
driver for the new architecture is the National Weather Service’s desire to utilize Open Source
software instead of COTS or proprietary software. Taking this approach, NWS will realize
significant savings on license fees and the administrative costs of negotiating and administering
software licensing and distribution versus using commercial software (e.g., COTS). Even while
realizing these savings in license costs, NWS will benefit from substantial code reuse and the
ability to incorporate new Open Source software and enhancements as they become available.

Over the last ten years, Open Source software has become a viable alternative to expensive
COTS software. By utilizing Java-based Open Source software, NWS can achieve a significantly
lower Total Cost of Ownership (TCO) and improved programmer productivity due to reuse.

This section reviews several aspects of the new AWIPS architecture. In keeping with Raytheon’s
current task, which is to provide a plan rather than a design or an implementation, the review has
been prepared at a high level. This discussion describes the target state for improving AWIPS
software.

The concepts and design constructs presented here will be detailed and implemented under Task
Orders 3 through 6, as described in Section 2.5.

3.2 Conceptual Architecture: Target State
Figure 3-1 shows a rendering of the conceptual architecture for AWIPS as a layered model.
Generally, higher-level services access services in the next lower layer of the hierarchy. Layers
are isolated from one another. The top layers provide the common human-machine interface and
presentation services, which access mission services. Mission services access data at the platform
layer via a data access layer. The layers interconnect through standard network services, and
security services cut across all the layers of the architecture.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 10

Figure 3-1. Conceptual Architecture Target State Rendering

Additional insight as to how the conceptual architecture rendered in Figure 3-1 can be realized,
and why it is beneficial to NWS, follows.

3.3 AWIPS Service Oriented Architecture
“Service Oriented Architecture” has become a buzz word, but what does it really mean to
AWIPS II? Service Oriented Architecture, or SOA, is actually a simple concept that has the
following attributes:

• System capabilities available as network services.
• Services organized into containers with loose coupling.
• Services composed of components.
• Interface details abstracted away from services.
• Interfaces between services and clients of services defined in a well-known data model.
• Event-driven services.

Descriptions of these basic attributes follow.

Client/Presentation Services

Platform Layer

Mission Services
Layer

Data Access Layer

Metadata
Index

Data Persistence
Store

En
te

rp
ris

e
Se

rv
ic

e
B

us
 -

C
om

m
un

ic
at

io
n

Se
cu

rit
y

Se
rv

ic
es

/D
em

ili
ta

riz
ed

 Z
on

e
(D

M
Z)

Spatial
Index

Hydro Models

LAPS

FORTRAN/C/C++
Command Line

Programs

External Programs

JMX

<<Java>>
DataLayer

PostgreSQLHDF5

<<abstract>>
BaseDao

Hibernate

<<Java>>
HDF5DataStore

HDF5 API

IngestSrv
VtecSrv

IndexSrv

ProductSrv

AdapterSrv

NotifySrv

SubscribeSrv

AutoBldSrv

PurgeSrv

Mbean

Synchronous
Interface

CAVE

StagingSrv

UtilitySrv

Localization
Store

ArchiveSrv

Client/Presentation Services

Platform Layer

Mission Services
Layer

Data Access Layer

Metadata
Index

Data Persistence
Store

En
te

rp
ris

e
Se

rv
ic

e
B

us
 -

C
om

m
un

ic
at

io
n

Se
cu

rit
y

Se
rv

ic
es

/D
em

ili
ta

riz
ed

 Z
on

e
(D

M
Z)

Spatial
Index

Hydro Models

LAPS

FORTRAN/C/C++
Command Line

Programs

External Programs

JMX

<<Java>>
DataLayer
<<Java>>
DataLayer

PostgreSQLHDF5

<<abstract>>
BaseDao

<<abstract>>
BaseDao

Hibernate

<<Java>>
HDF5DataStore

<<Java>>
HDF5DataStore

HDF5 API

IngestSrv
VtecSrv

IndexSrv

ProductSrv

AdapterSrv

NotifySrv

SubscribeSrv

AutoBldSrv

PurgeSrv

Mbean

Synchronous
Interface

CAVE

StagingSrv

UtilitySrv

Localization
Store

ArchiveSrv

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 11

System Capabilities Available as Network Services. Figure 3-2 shows the fundamental idea,
and illustrates how the AWIPS II architecture can support enhanced service backup, inter-site
coordination, and various thin client and data sharing scenarios.

Network transport protocols [jms|http|https|soap|ftp|tcp|…]

Thin Client

<<SOA Service>>
AWIPS Service

Service Container

NAS Data Storage

<<SOA Service>>
AWIPS Service

Service Container

AWIPS Site 1

<<SOA Service>>
AWIPS Service

Service Container

NAS Data Storage

<<SOA Service>>
AWIPS Service

Service Container

AWIPS Site 2

AWIPS Sites n…

Thick Client

Network transport protocols [jms|http|https|soap|ftp|tcp|…]

Thin Client

<<SOA Service>>
AWIPS Service

<<SOA Service>>
AWIPS Service

<<SOA Service>>
AWIPS Service

Service Container

NAS Data Storage

<<SOA Service>>
AWIPS Service

<<SOA Service>>
AWIPS Service

<<SOA Service>>
AWIPS Service

Service Container

AWIPS Site 1

<<SOA Service>>
AWIPS Service

<<SOA Service>>
AWIPS Service

<<SOA Service>>
AWIPS Service

Service Container

NAS Data Storage

<<SOA Service>>
AWIPS Service

<<SOA Service>>
AWIPS Service

<<SOA Service>>
AWIPS Service

Service Container

AWIPS Site 2

AWIPS Sites n…

Thick Client

Figure 3-2. System Capabilities Available as Network Services

End users access services via either a Thick Client or a Thin Client. The clients access services
via network transport protocols. In other words, the system capabilities are available as network
services. However, the “network transport” may be implemented on a single workstation or
across a distributed environment. Either client can access any AWIPS site by simply setting the
address similar to a URL. This will support an improved service backup, inter-site coordination,
and data sharing services.

The Thin Client has less functionality than the Thick Client, but it can also access multiple sites,
and it will fill the needs of Incident Meteorologists (IMET) and Weather Service Offices (WSO)
that are being addressed by FX-Net today.

Note the line connecting the NAS data storage to the Thick Client. This indicates that large data
sets can be accessed directly to meet performance requirements.

The current AWIPS Wide Area Network (WAN) places limits on multi-site scenarios. However,
the MPLS WAN has the potential to enable this scenario when fully meshed (point to point) and
with bandwidth improvements. Data distribution and storage approaches over the entire system
can improve the technical and cost performance of the system. Service backup for GFE forecasts
could be improved with file distribution and update methods (delta transmission and update).

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 12

Services Organized Into Containers With Loose Coupling. As shown in Figure 3-3, services
exist within containers that execute within a Java Virtual Machine (JVM) that isolates the
container from the specific details of the hardware and operating system, thus enabling platform
independence. Services are connected via messages and are isolated from the details of the
specific protocol. Loose coupling in software design is not a new idea regardless of the reference
(“module,” “procedure,” etc.). Loose coupling simplifies system maintenance and enables
adaptability because of the isolation. A change to a tightly coupled system can ripple through
several modules or programs, greatly complicating maintenance or adaptability.

Figure 3-3. Services Organized Into Containers With Loose Coupling

Figure 3-4 lists more advantages of the container-based process over the “Discrete Process-
Based Processing Model” used in the current AWIPS implementation.

<<SOA Service>>
AWIPS Service

Service Container

<<SOA Service>>
AWIPS Service

Java Virtual Machine (JVM)

Hardware and Operating System

Legacy|C|
FORTRAN

Process

Files

Endpoints • Service Management
• Service Events
• Endpoints
• Data adaptations
• Routing
• Transformations

<<SOA Service>>
AWIPS Service

<<SOA Service>>
AWIPS Service

<<SOA Service>>
AWIPS Service

Service Container

<<SOA Service>>
AWIPS Service

<<SOA Service>>
AWIPS Service

<<SOA Service>>
AWIPS Service

Java Virtual Machine (JVM)

Hardware and Operating System

Legacy|C|
FORTRAN

Process

Files

EndpointsEndpoints • Service Management
• Service Events
• Endpoints
• Data adaptations
• Routing
• Transformations

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 13

Figure 3-4. Container-Based Processing

Services Composed of Components. As shown in Figure 3-5, components can be reused in
multiple services. Aside from the coding efficiencies, this also reduces the runtime footprint.

<<SOA Service>>
AWIPS Service 2

<<Java Class>>
ClassName

+method()

<XML>
Properties

common.jar

<<Java Class>>
ClassName

+method()

<XML>
Properties

uEngine.jar

<<Java Class>>
ClassName

+method()

<XML>
Properties

Component-N.jar

<<SOA Service>>
AWIPS Service 1

<<SOA Service>>
AWIPS Service 2
<<SOA Service>>
AWIPS Service 2

<<Java Class>>
ClassName

+method()

<XML>
Properties

common.jar

<<Java Class>>
ClassName

+method()

<XML>
Properties

uEngine.jar

<<Java Class>>
ClassName

+method()

<XML>
Properties

Component-N.jar

<<SOA Service>>
AWIPS Service 1
<<SOA Service>>
AWIPS Service 1

Figure 3-5. Services Composed of Components

New
Container-Based Processing

Existing
Discrete Process-Based

Processing Model

• Efficient use
of hardware
because of
resource
sharing

• Elimination of
the startup/
shutdown
overhead of
on-demand
services
because container is a persistent process

• Response time improved through blocked
services responding to events

• Scaling enabled through multiple instances
• Service management part of the container,

eliminating custom code

• On-demand processes waste resources
through startup and shutdown

• Memory wasted because common code is not
shared

• Custom code required to manage processes
• Scaling difficult because of tight coupling

<<ESB Service>>
AWIPS Service

<<JAVA Virtual
Machine>>

<<ESB Service>>
AWIPS Service <<ESB Service>>

AWIPS Service <<ESB Service>>
AWIPS Service<<ESB Service>>

AWIPS Service<<ESB Service>>
AWIPS Service

<<Operating System Process>>
C/C++/Fortran/Perl/Shell Script <<Operating System Process>>

C/C++/Fortran/Perl/Shell Script <<Operating System Process>>
C/C++/Fortran/Perl/Shell Script <<Operating System Process>>

C/C++/Fortran/Perl/Shell Script <<Operating System Process>>
C/C++/Fortran/Perl/Shell

Script
<<Operating System Process>>
C/C++/Fortran/Perl/Shell Script <<Operating System Process>>

<<Operating System Process>>
C/C++/FORTRAN/Perl/Shell Script

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 14

The common practice 10-15 years ago was for each application to contain many core functions
that today are available through common services. Being constructed “from the ground up” not
only costs more, but it also complicates maintenance and creates “stovepipes.” Modern practice
is to use “enterprise” services that are “common” to all services of the enterprise, which in this
case is NWS. The extended enterprise would include NOAA and other Government agencies.

Past practices were known to be problematic in the big picture; however, the state of the
technology (languages, networking, etc.) did not support the “enterprise” approach of common
services. It is currently unknown what proportion of the 4.5 million lines of code is dedicated to
services that can be made common today.

Interface Details Abstracted Away From Services. As shown in Figure 3-6, the current
system’s tight coupling and requirement for custom code at every interface make it expensive to
maintain. The endpoints of the new architecture hide the details of the interface, which reduces
coupling. Code remains the same regardless of how it is interfacing with other services or
transport mechanisms used.

Abstraction layers are used throughout the new system to hide details of each specific service
from the others. This is the same conceptually as hardware drivers that hide the hardware details
from software. Major Open Source patterns (e.g., Enterprise Service Bus, or ESB) being used in
the new system are also abstracted from the rest of the system, allowing easy changeover to
another pattern, if needed or desired. This mitigates the risk associated with technology
obsolescence or failure of an Open Source project.

New
Service / Interface Independence

Existing
Processing Coupled to Interfaces

Endpoints hide the details of the
interface from the service, reducing
coupling
Code in service remains the same
regardless of how it is interfacing

Custom code in process for each
interface
Tight coupling makes maintenance
expensive
Constrains scaling

<<ESB Service>>
AWIPS Service
+getMessage()

<<JAVA Virtual Machine>>
Mule ESB + Spring

Files

JMS

HTTP

Interface Endpoints
<<Ingest Process 1>>

Data Type 1

Files

TCP Socket

New
Service / Interface Independence

Existing
Processing Coupled to Interfaces

Endpoints hide the details of the
interface from the service, reducing
coupling
Code in service remains the same
regardless of how it is interfacing

Custom code in process for each
interface
Tight coupling makes maintenance
expensive
Constrains scaling

<<ESB Service>>
AWIPS Service
+getMessage()

<<JAVA Virtual Machine>>
Mule ESB + Spring

Files

JMS

HTTP

Interface Endpoints
<<Ingest Process 1>>

Data Type 1

Files

TCP Socket

New
Service / Interface Independence

Existing
Processing Coupled to Interfaces

Endpoints hide the details of the
interface from the service, reducing
coupling
Code in service remains the same
regardless of how it is interfacing

Custom code in process for each
interface
Tight coupling makes maintenance
expensive
Constrains scaling

<<ESB Service>>
AWIPS Service
+getMessage()

<<JAVA Virtual Machine>>
Mule ESB + Spring

Files

JMS

HTTP

Interface Endpoints
<<Ingest Process 1>>

Data Type 1

Files

TCP Socket

<<Ingest Process 1>>
Data Type 1

Files

TCP Socket

Figure 3-6. Interface Details Abstracted Away From Services

Well-Known Data Model Defines Services and Client Interfaces. Interfaces based on a data model
that is clearly defined and well known within the system will enable extensibility and reduce
maintenance costs. The current approach appears to be ad hoc or not based on any standard. The
new system uses a canonical XML documents interface that follows W3C standards and a

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 15

common AWIPS XML schema definition for all messages. It also uses standard XML parsers to
encode and decode documents and allows the XML decoding to be embedded in base classes of
service. As noted in Figure 3-7, which compares the existing and new interfaces, the existing
interface requires custom code for each message type, and custom socket protocols require
custom “C” code. All this makes maintenance difficult because of the learning curve that is
necessary to institute changes.

New
Canonical XML Document Interface

Existing
Ad Hoc Interfaces

• Service interface follows W3C
standards

• Uses a common AWIPS XML schema
definition for all messages

• Uses standard XML parsers to encode /
decode documents in services

• XML decoding can be embedded in
base classes of service

• Each message type needs custom
code

• Custom socket protocols require
custom “C” code

• Maintenance is difficult because the
details for the interface need to be
learned to make changes

<<ESB Service>>
AWIPS Service
+getMessage()

<<JAVA Virtual Machine>>
ESB Container

Files

JMS

HTTP

Interface Endpoints

<XML>
Document

A
daptersA

dapters A
dapters

<<Ingest Process 1>>
Data Type 1

Files

TCP Socket

New
Canonical XML Document Interface

Existing
Ad Hoc Interfaces

• Service interface follows W3C
standards

• Uses a common AWIPS XML schema
definition for all messages

• Uses standard XML parsers to encode /
decode documents in services

• XML decoding can be embedded in
base classes of service

• Each message type needs custom
code

• Custom socket protocols require
custom “C” code

• Maintenance is difficult because the
details for the interface need to be
learned to make changes

<<ESB Service>>
AWIPS Service
+getMessage()

<<JAVA Virtual Machine>>
ESB Container

Files

JMS

HTTP

Interface Endpoints

<XML>
Document

A
daptersA

dapters A
dapters

<<ESB Service>>
AWIPS Service
+getMessage()

<<ESB Service>>
AWIPS Service
+getMessage()

<<JAVA Virtual Machine>>
ESB Container

Files

JMS

HTTP

Interface Endpoints

<XML>
Document

A
daptersA

dapters A
dapters

<<Ingest Process 1>>
Data Type 1

Files

TCP Socket

<<Ingest Process 1>>
Data Type 1

Files

TCP Socket

Figure 3-7. Interfaces Defined in Well-Known Data Model

Event-Driven Services. The new AWIPS architecture will feature a Staged Event-Driven
Architecture (SEDA) that will allow processing services to pull from the work queue when they
are idle. It also provides for automatic load balancing, load scaling, and fault tolerance. Figure
3-8 compares the “pull data” flow of the new product to the “push data” flow of the existing
system.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 16

Figure 3-8. Event-Driven Services

3.4 Key AWIPS II Features
Key features of the AWIPS architecture are as follows.

• Primary system language: Java.
• Layered SOA with container-hosted services.
• Enterprise Service Bus used to interconnect services.
• Services communicated through XML-based messages.
• Thick Client visualization implemented in a Rich Client Platform (RCP) extendable through

plug-ins.
• System adapts to new data types and transforms through plug-ins.
• System users extend the capabilities with a scripting language (not compiled Java).
• SEDA clustering, which enables scalability.

Java has been chosen as the primary system language for AWIPS II for several reasons. Java is
optimized to be platform independent and is ideally suited for distributed applications through its
extensive built-in networking capabilities. Advanced architectural patterns are enabled by Java
because it contains the “Interface” class concept and dynamic real-time linking through a
hierarchy of class loaders. There is an extensive Open Source code base that provides virtually
all the core services needed to implement the architecture.

New
Pull Data Flow (Ex.)

Existing
Push Data Flow

<<Ingest Process 1>>
Data Type 1

• Staged Event Driven Architecture (SEDA)
• Processing Services Pull from Work Queue

when they are idle
• Automatic Load Balancing
• Automatic Load Scaling
• Automatic fault tolerance
• Item in queue can have priority over others
• Low maintenance cost due to weak coupling

• Ingest Process tightly coupled to
downstream data processing

• Communication by custom socket
protocol and shared memory makes
maintenance expensive

• Scalability is difficult and often impossible
• Proliferation of processes affects

hardware efficiency

<<Agnostic Ingest Service>>

Service
Output Queue

<<Processing Service>>
<<Processing Service>>

<<Processing Service>>
<<Processing Service>>

<<Ingest Process 2>>
Data Type 2

<<Data Process 1>>
Data Type 1

<<Data Process 1>>
Data Type 1

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 17

Java offers many more advantages, including:
• Platform independence via JVM.
• Lower development cost through:

− Language efficiency.
− Code reuse through object-oriented concepts.
− Large body of available open source patterns.
− Extensive Java Class libraries, which reduces coding effort.
− Garbage collection, which simplifies coding and increases reliability.

• Improved performance through threading and event-driven design patterns.
• Java Just-in-Time optimization, which eliminates speed advantage of compiled languages.
• Largest population of programmers today.

– University graduates.
• No competing language on the horizon.

− Historically, there is a 10-year cycle for new language to become widespread.

Table 3-1 illustrates the reuse readily available with Java, and shows some of the system
functions that are being implemented with Open Source Java. As of June 15, 2006, we were
leveraging 965,000 SLOC of Open Source.

Table 3-1. Open Source Project Usage in AWIPS II
Function Open Source Project

Software Build ANT
Configuration Management (CM) Subversion + Trac
Enterprise Service Bus (ESB) Camel + Spring
Integrated Development Engineering (IDE) Eclipse
Logging Log4j
Java Messaging Service (JMS) Broker ActiveMQ
XML Reader Commons Digester
Web Server Apache/Tomcat
Data/Class Binding JiBX XML

The use of the Enterprise Service Bus pattern as the primary mechanism to interconnect Mission
Services (Figure 3-1) into a layered Service Oriented Architecture is a key feature. A large set of
existing communication endpoints (e.g., File IO, Web services, JMS, TCP, UDP, VM, and serial)
is available as Open Source. Adapters interface to the endpoints and isolate weather components
from communication details. A standards-based management interface and available patterns
enable local or remote system management (e.g., JMX management console), and common
logging based on Log4j provides high performance.

XML is the method used to encode the messages between the services and outside users. A
canonical (well formed and normalized) XML model will represent these messages, and the
formal schemas that define the model become the Interface Control Documents (ICD). XML is a
text-based format that is human readable and self-describing. A text-based format is important

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 18

for eliminating the platform differences of binary data that inhibit platform independence. Tool
and parser availability is another benefit of using XML.

A plug-in approach will enable rapid inclusion of new data types and transforms. The
implementation code for all data types will be packaged in dynamic deployable plug-ins that
follow a precisely defined pattern. This is an advanced enterprise pattern that ensures system
adaptability to new data categories and flexibility. The plug-in pattern will be applied at two
levels within the architecture. The first is at the data ingest, storage, decoding, and
transformation levels of the data processing. Second, plug-ins are a basic part of the visualization
framework. These plug-ins can be hot deployable and delivered via network. The decision to
enable this hot plug-in deployment capability over the network will be evaluated once all
security issues are addressed.

SEDA provides for scalability, automatic load balancing, and seamless “failover.” The
development of distributed data caching frameworks and advances in JMS make SEDA practical
at the enterprise level.

Layered Service Oriented Architecture. As noted in Section 3.1, a modern technical reference
architecture is an executable environment of services and structure. A standard technical
reference architecture underpins the layered services to enable maximum reuse of core
capabilities. As Figure 3-9 shows, the AWIPS II high-level technical reference architecture will
consist of two major groupings: 1) the layered SOA framework of services; and 2) a
visualization framework. These two frameworks will be loosely coupled by a canonical XML
model that will be network protocol independent.

Figure 3-9. AWIPS II System Concept

+Ingest Data
+Index Data +Store Data
+Transform Data +Build Products

+Disseminate

+Visualize +Manipulate

<<Technical Reference Architecture>>
AWIPS Weather Services

Data Types
Transforms

Scripts
+weather libraries
+mapping libraries

Core base of services
Micro Engine
Plug-in framework
Core libraries

Extend to a specific set
of services
Plug-in specific libraries
Plug-in data types,
transforms

<<Visualization Framework>>
AWIPS Applications

Eclipse SWT+Core Plug-Ins
+ Libraries

Vis Plug-in 1
Vis Plug-in n

Service interface to data
Clean separation between
data and visualization
Canonical XML data model

SBN Feed

Local
Data+WAN

Meta
Data

Data

JMX Management Console

+Ingest Data
+Index Data +Store Data
+Transform Data +Build Products

+Disseminate

+Visualize +Manipulate

<<Technical Reference Architecture>>
AWIPS Weather Services

Data Types
Transforms

Scripts
+weather libraries
+mapping libraries

Core base of services
Micro Engine
Plug-in framework
Core libraries

Extend to a specific set
of services
Plug-in specific libraries
Plug-in data types,
transforms

<<Visualization Framework>>
AWIPS Applications

Eclipse SWT+Core Plug-Ins
+ Libraries

Vis Plug-in 1
Vis Plug-in n

Service interface to data
Clean separation between
data and visualization
Canonical XML data model

SBN Feed

Local
Data+WAN

Meta
Data

Data

+Ingest Data
+Index Data +Store Data
+Transform Data +Build Products

+Disseminate

+Visualize +Manipulate

<<Technical Reference Architecture>>
AWIPS Weather Services

Data Types
Transforms

Scripts
+weather libraries
+mapping libraries

Core base of services
Micro Engine
Plug-in framework
Core libraries

Extend to a specific set
of services
Plug-in specific libraries
Plug-in data types,
transforms

<<Visualization Framework>>
AWIPS Applications

Eclipse SWT+Core Plug-Ins
+ Libraries

Vis Plug-in 1
Vis Plug-in n

Service interface to data
Clean separation between
data and visualization
Canonical XML data model

SBN Feed

Local
Data+WAN

Meta
Data

Data

JMX Management Console

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 19

Figure 3-9 also shows the JMX management console, which will allow monitoring and
management of the software either at the site or remotely at the Network Control Facility (NCF).
This technical architecture can adapt to a wide range of CONOPS and deployment options. For
example, at the minimal end of scalability, all the services can be hosted in a single execution
container along with the visualization on a small laptop. This mode of deployment will support
the remote user with limited data needs. At the other scalability extreme, the services can be
hosted in sets of execution containers on clusters of server hardware without code modification.
Multiprocessor high-end graphics workstations can host the visualization applications with the
software, taking full advantage of the extra hardware.

Common AWIPS Visualization Environment. A common visualization framework (see Figure
3-10) will provide a platform for reengineering the visualization applications. The framework is
based on the Eclipse RCP, which provides an extensive set of human interaction features and is
extended through plug-ins. The extensive library of components enables the developer to focus
on adding real capability. The visualization framework will consist of a base set of plug-ins that
are used to build applications. The capabilities of legacy visualization applications (e.g., D2D,
NMAP, GFE, RFS, RiverPro, FX-C) will be reengineered as a set of plug-ins built using the
common capabilities of the framework. The reengineered visualization applications will maintain
the features of the legacy applications such as:

• Forecaster control of D2D (e.g., CONOPS).
• Large data sets of N-map.
• The extensive grid diagnostics of N-AWIPS.
• The Python-based scripting of GFE Editor.

Collaboration Plug-ins

Eclipse Rich Client Platform (RCP)

Eclipse SWT

Visualization Plug-Ins

Legacy Visualization Plug-Ins

ESB transport [jms|http|https|soap|ftp|tcp|…]

• Auto Subscription
• Script Messages

• Notifications
• Response Message

Enables Local/
Remote Data

Sharing

Direct Access to Local Data
For Large Data Set Performance

Operator Extension
Through Editable
Scripts

Collaboration Plug-ins

Eclipse Rich Client Platform (RCP)

Eclipse SWT

Visualization Plug-Ins

Legacy Visualization Plug-Ins

ESB transport [jms|http|https|soap|ftp|tcp|…]

• Auto Subscription
• Script Messages

• Notifications
• Response Message

Enables Local/
Remote Data

Sharing

Direct Access to Local Data
For Large Data Set Performance

Operator Extension
Through Editable
Scripts

Figure 3-10. Common AWIPS Visualization Environment (CAVE)

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 20

The end result will be a platform-independent Thick Client visualization capability – flexible
enough to handle the existing weather and hydro needs, with adaptability for changes in
CONOPS.

Core framework capabilities beyond the RCP consist of the following:

• Visual rendering that takes advantage of the capabilities of the graphics hardware for
performance. This capability uses the standards of OpenGL with a Java API
interface and includes, via extensions, the ability to render 2D map-projected data,
vertical soundings or cross-sections, and 3D data sets such as radar. Vector, raster,
and ASCII data will be supported.

• Quad-Tree tiling at both the disk and memory level maximizes performance and
allows rendering of large data sets.

• Automatic data subscriptions and notifications, which enable auto updating display.
• Common event handling for user interactions with displayed data including drawing.
• A wide scalability range from lightweight laptops with limited graphics to top-line

multi-headed/multi-CPU workstations.
• The core functionality package, which is a set of plug-ins, and new functionality

build upon the existing set.
• Local customization, accomplished through configuration and local application

scripts.
• Large data sets, which will be accessed locally and directly to enable performance.

Extensibility Enabled by Plug-Ins for Data Types and Transforms. Data type plug-ins (see
Figure 3-11) will lower the effort required to add new data types and are the primary
architectural pattern for enabling extensibility and flexibility. The plug-in implementations
define the details of how the data are ingested, persisted, transformed, and made available to the
visualization applications. Plug-ins can also be used to introduce new science by adding new
transformation classes. The plug-in capability will be packaged as a component and made
available to any SOA service. The set of plug-ins can be tailored for the particular deployment
and enable extending the full capability of the system to local data sets such as Mesonets. A
developer at a local site can write a new plug-in and test it locally without rebuilding the system.
All data types will be defined in plug-ins to maximize system flexibility.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 21

• Enables new / modified
data types to be added
to fielded systems

• Enables new science
through new transforms

• Plug-ins built and
packaged as separate
components

NOAAPORT Plug-In

Data Type/Transform Plug-In 2

Data Type/Transform Plug-In n

<<ESB Service>>
Plug-in Capability

Becomes
Available to

Services

<<JAVA Virtual Machine>>
ESB Container

<<Java Class>>
Plug-In Core
Pattern +

Class Loader

<<Java Interface>>
Extract MetaData
<<Java Interface>>

Store Data
<<Java Interface>>

Decode Data

XML Plug-In
Configuration

<<Java Class>>
Implementation<<Java Class>>

Implementation<<Java Class>>
Implementation<<Java Class>>

Implementation<<Java Class>>
Implementation

Plug-Ins Jar Container

<<Java Interface>>
Transform Data

• Enables new / modified
data types to be added
to fielded systems

• Enables new science
through new transforms

• Plug-ins built and
packaged as separate
components

NOAAPORT Plug-In

Data Type/Transform Plug-In 2

Data Type/Transform Plug-In n

<<ESB Service>>
Plug-in Capability

Becomes
Available to

Services

<<JAVA Virtual Machine>>
ESB Container

<<Java Class>>
Plug-In Core
Pattern +

Class Loader

<<Java Interface>>
Extract MetaData
<<Java Interface>>

Store Data
<<Java Interface>>

Store Data
<<Java Interface>>

Decode Data
<<Java Interface>>

Decode Data

XML Plug-In
Configuration

<<Java Class>>
Implementation
<<Java Class>>
Implementation<<Java Class>>

Implementation
<<Java Class>>
Implementation<<Java Class>>

Implementation
<<Java Class>>
Implementation<<Java Class>>

Implementation<<Java Class>>
Implementation
<<Java Class>>
Implementation

Plug-Ins Jar Container

<<Java Interface>>
Transform Data

Figure 3-11. Extensibility Enabled by Plug-Ins for Data Types and Transforms

Extending Local Capability via Scripting. A task-based execution model using a micro-engine
pattern will be used to create high system flexibility (see Figure 3-12). Micro-engine script
execution enables both ad-hoc and data/time triggered product requests. Product building is
broken up into small reusable tasks. Transform task chaining enables reuse of small, single-
purpose transformation code. Products are available locally and/or remotely via the Thick and/or
Thin Client.

Figure 3-12. Extending Local Capability via Scripting

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 22

Sets of tasks will be transported as messages that enable changes in CONOPS through changes
in endpoint addressing. The system becomes easily extensible by adding new tasks either
through the data-type plug-in or to a component library. A scripting task will be part of the core
system, enabling clients to extend the functionality of the system. Python (e.g., Jython) is the
leading candidate for the scripting capability to maintain legacy compatibility and existing
operator training.

A very simple XML scripting capability based on simple tasks for straightforward data retrieval
and transformation will be provided. This simple XML scripting will support remote data access.

Data Type-Independent Metadata Indexing and Query. Data type-independent metadata is
engineered into the technical architecture from the beginning (see Figure 3-13). The raw data
repository is independent of data type, and queries will work the same way regardless of data
type. However, implementers can choose to use the metadata pattern, or ignore it and go directly
to a persistence repository. The persistence repository is keyed by Universal Resource Identifier
(URI), which enables support for remote access of local data and subscription services. Data
persistence can be by RDBMS or by the file system. Data containers such as HDF5 and NITF are
supported.

Implementation
In Plug-in

NOAAPORT

Metadata ends up as set
of words in a document
Raw Data repository
independent of data type
Queries work the same
way with any data type

Metadata ends up as set
of words in a document
Raw Data repository
independent of data type
Queries work the same
way with any data type

Raw Data

Extract Metadata
(Use Endpoint Data

if Possible)
Enough for Unique

Retrieval

Store Metadata

Persist
Raw Data

Data Type
Independent

Query + Ranking

Metadata Index
Repository

URI-Based Raw Data
Repository

Implementation
In Plug-in

NOAAPORT

Metadata ends up as set
of words in a document
Raw Data repository
independent of data type
Queries work the same
way with any data type

Metadata ends up as set
of words in a document
Raw Data repository
independent of data type
Queries work the same
way with any data type

Raw Data

Extract Metadata
(Use Endpoint Data

if Possible)
Enough for Unique

Retrieval

Extract Metadata
(Use Endpoint Data

if Possible)
Enough for Unique

Retrieval

Store MetadataStore Metadata

Persist
Raw Data

Persist
Raw Data

Data Type
Independent

Query + Ranking

Metadata Index
Repository

URI-Based Raw Data
Repository

Figure 3-13. Data Type-Independent Metadata Indexing and Query

3.5 AWIPS II Implementation Approaches / Features
Additional implementation approaches and features of the proposed architecture include
execution containers to support the layered SOA, XML binding, data persistence, adapter
patterns for enabling reuse of “C/FORTRAN,” maximization of the map re-projection
performance, and “vector” data representation. Table 3-2 expands on additional approaches and
features. Descriptions of the planned design patterns for notification and subscriptions and data
caching patterns – which are also key components of AWIPS II – follow the table.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 23

Table 3-2. Additional AWIPS II Implementation Approaches/Features

Approach/Feature Details
A lightweight dependency injection container integrated with a flexible
Enterprise Service Bus (ESB) {Spring+Camel ESB}.
Enables high performance through Serial Event Driven Architecture
(SEDA) for data flow between services.
Adding a JMS broker further enables performance by extending SEDA
to above the container level and enhances reliability through automatic
message persistence.
Dependency injection enhances maintainability by minimizing
component coupling and enhances flexibility by allowing component
interconnections to be defined through configuration.

Execution Containers to
Support the Layered SOA

ESB enables a decoupling of services from network and
interconnection protocols that enhances maintainability and flexibility of
services.

Several XML binding approaches have been evaluated from our
experience base.
XML binding is traditionally a messy area that affects maintainability
and performance to gain standardized interface structures.
JiBX is a binding approach that is relatively simple, has good
performance, and can map to standard attributes in ordinary Java
classes.
JiBX is being planned to provide a standard pattern for services to get
at XML message elements.

XML Binding

Commons Digester is another approach for binding Java Objects to
XML and is being planned for binding configuration data.
Reverse Indexed Metadata for all ingested data enables new data
types to be incorporated through plug-ins.
“Universal Resource Identifier” (URI)-referenced data keyed to
metadata: Enables remote access and simplicity of design.
URI referenced data simplifies notification design.
HDF5 for grid persistence gains standards compliance and
performance for large data sets.

Data Persistence

Purge, backup, and archive mechanisms have no impact operations.
Java Exec and stream I/O pattern is a simple approach that allows
legacy to run unmodified.

Adapter Patterns for
Enabling Reuse of
Legacy “C/FORTRAN” An adapter pattern based on “GluGen,” allowing legacy “C++” to run in

the same process space as the container is being planned.

http://www.springframework.org/
http://mule.codehaus.org/

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 24

Approach/Feature Details
An approach that makes map re-projection available at several
locations within design {Services, Thick Client, and Thin Client}.
Map library design optimized for performance and accuracy.
Map library based on a concept of a “Map Data Set” structure that holds
the metadata for a particular geo-referenced product.

Maximizing the Map Re-
Projection Performance

Re-projection based on a dynamic scheme that balances speed with
accuracy.
SVG: A widely adopted vector standard that is rendered in browsers. “Vector” Data

Representation Offers extensive primitive capability; wide tool availability; common
Web-based approaches for style and element access.

Design Patterns for Notification and Subscription. Notification and data subscription will be a
core part of the architecture. AWIPS II will have no separate “Notification Server.” The
subscription and notification service will support auto updating of visualizations both locally and
remote. The service will also support automatic product building and product dissemination.

Visualization and data will be keyed by a unique URI to support notification. Each rendered data
element will have a URI that can be tied to displayed data. Ingestible data will have a similar
URI to enable the display to tie to a raw data element.

The notification service will be fronted by a SEDA queue to maximize scalability. Notification
events will be triggered on data arrival with clients receiving an event through an ESB endpoint
(JMS Topic). Notifications of subscription satisfaction will be data ingest and/or time triggered
(Spring has a Quartz scheduler). A cached data structure will hold the subscription request,
which can be scaled.

3.6 Security Considerations
The current approach for AWIPS security is a hardened perimeter with restrictive policy
implementations. The current security implementation is an impediment to collaboration with
external entities and communication with NWS customers. The need for interagency
communication is growing, and an approach needs to be developed that will enable the needed
collaboration while meeting the security needs of NWS. SOAs will require authentication of
services as well as people. In the longer term, AWIPS II may need to accommodate
authentication packets from external Government agencies and NWS customers as consumers of
services.

AWIPS II will have user authentication built into the system from the start; it will not be added
as an afterthought. The planned ESB has Security Infrastructure facilities for endpoint
authentication and service authentication, and transports with secure protocols like SSL (Secure
Sockets Layer) and HTTPS (Hypertext Transfer Protocol Secure).

AWIPS will undergo a Certification & Accreditation plan update in mid 2008. AWIPS II
software update will require an update to that C&A. The fundamental security architecture (i.e.,
hardened perimeter) will not change for AWIPS II Release 1.0 because collaboration with

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 25

external agencies is not a requirement for AWIPS II Release 1.0. We will provide the technical
controls required by the C&A. Future external collaboration requirements can be accommodated
when it becomes a requirement.

3.7 Technical Risks and Mitigations
Raytheon will employ an automated Risk Assessment and Management Planning tool as we
develop AWIPS II to document and report on project risks and our approaches to risk mitigation.
The features of this tool – known as “RAMP” – are described in this PIP at Section 4.3, Risk and
Opportunity Management. In this section, we identify potential risks to the technical
performance and longevity of our Open Source approach to AWIPS software re-architecture and
describe some “general mitigations” that have been put in place. Over the life of the project,
these and other risks will be entered into a risk register that will be maintained electronically,
avoiding the need to modify the PIP as risks are addressed under each subsequent TO.

Technical Risks. Raytheon has identified risks commonly associated with Java and Open Source
software. As shown in Table 3-3, these risks can be mitigated, and in some cases the risks are not
as significant as they might be perceived to be.

Table 3-3. AWIPS II: Technical Risks/Mitigations

Risk Mitigation Approach
This is no longer the risk it may once have been. Today’s Java
code performance equals C/C++ for most applications.

Just-in-Time optimization eliminates the speed advantage of
compiled languages.

Provide risk reduction demonstrations to verify and illustrate the
ability of Java code to perform at acceptable levels.

The performance of a Java code
base could be inadequate (e.g.,
rendering, data ingest, warning
generation)

Improve performance through threading and event-driven design
patterns.

Java could be replaced by a new
language.

Research indicates that there is no competing language on the
horizon. This implies 10+ year life for Java.

The Open Source choice could
dissolve or become dormant.

Open Source segments are wrappered to enable a swap, in the
event it becomes necessary. NWS also has the source code for
all open projects and may decide to continue using the code.

New technology developments
(future evolution) could render
the system obsolete.

Loose coupling and service containers enable repackaging to
utilize the new technology.

General Mitigations. Raytheon has instituted several “general mitigation” approaches that will
limit the level of technical risk associated with the AWIPS II project. Among them are:

• Raytheon Internal Research and Development (IRAD). Using Raytheon R&D resources
and funds, we have developed, implemented, and tested concepts in advance of committing
them to AWIPS.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 26

• Risk Reduction Demonstrations. A Risk Reduction Demonstration (RRD) is a technique
used to verify the viability of specific implementation approaches for critical system
capabilities early in the development cycle. The prototype (i.e., not production hardened)
implementations address key functional capabilities and/or system performance. A
performance RRD provides an indicator or relative measure of performance rather than an
absolute measure. The goal of the RRD is to determine if the approach is likely to produce
the required performance. Marginal performance results indicate more investigation is
needed. Functional RRDs are typically conducted to prove (or demonstrate) that a particular
functionality can be provided. Success is generally more black and white than a
performance demonstration in that the function is performed or not. RRDs are performed to
address concerns of requirements realization. Raytheon has and will continue to perform
functional and performance risk reduction demonstrations as needed. These RRDs will be
specified in Task Order Proposals.

• Industry Trends and Development. We will monitor the industry for more Java-based
capability in work, and for hardware and networking advancements relevant to AWIPS.

• Existing Algorithms. We will “borrow” from the current system in cases where we
determine that the reuse of existing algorithms or the encapsulation of existing code serves
to mitigate development risks without compromising future performance. Raytheon and
NWS will work together to decide which algorithms to use when different algorithms exist
in AWIPS I for the same problem. (e.g., calculate relative humidity). NWS will also review
Raytheon data sets used to verify migrated algorithms.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 27

4. Project Management

4.1 Assumptions
Raytheon made several key assumptions during development of the original proposal for this
effort (see Figure 6-4 of the proposal), and revalidated them during Task Order 1. These
assumptions follow.

• This plan assumes reuse of software, both from the current AWIPS system and from
other Raytheon weather programs under development.

• The project requires free and open access to NWS personnel at NWS Headquarters,
the Regional Headquarters, the development labs, and various WFOs, RFCs, and
National Centers on a non-interference basis. This access is required to complete an
accurate assessment of the current AWIPS system and identify critical data and work
flows.

• Software developers will use existing office workstations and Open Source tools.
Software developed on this project will be made available, on a non-proprietary
basis, to the National Weather Service and associated development organizations.

• Configuration management and software builds will be performed at the software
development team location until the first system is deployed to the field.
Development servers will be obtained and installed through the recapitalization of
ongoing server upgrade activities.

• The team will require access to all weather data available to operational AWIPS
organizations. Raytheon has installed a NOAAPort antenna and receiver at the
Omaha office and will use that system to emulate the Satellite Broadcast Network
(SBN) data feed. Other data flows into AWIPS will be identified during Task Order
2, and necessary steps will be taken to capture those data for use during
development.

• During Task Order 2, interfaces to automated sensors that directly feed the current
operational AWIPS systems will be identified. Steps will be taken to emulate those
live sensor feeds; they will be identified during Task Order 2.

4.2 Organization
Figure 4-1 shows the organizational structure for the SW CTR software re-architecture project.
Management controls include programmatic control through the AWIPS Evolution Manager, and
strategy and architecture controls via the Chief Systems Architect and Strategy Manager.
Various Raytheon functional organizations, including IT support, and process and engineering
management, provide additional support to the development activities executed on the project.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 28

Figure 4-1. AWIPS SW CTR Project Organization

4.3 Risk and Opportunity Management
No project of this size and scope is without risk. Risks and opportunities that arise throughout the
project will be collected and centrally managed in a risk database called “Risk Assessment and
Management Planning” (RAMP). RAMP, an MS Access-based risk management tool developed
by Raytheon, will be adapted for the purposes of collecting and reporting risks and opportunities
related to the SW CTR project.

The Raytheon project team will review risks on a weekly basis, and will report to the customer
on risk/risk management at the regular meetings of the Partnership Integrated Product Team
(PIPT). Major risk items will be elevated to Program Management Office Risk System and
maintained in the risk register.

Additionally, the Raytheon project team will work with the Office of Science and
Technology/Systems Engineering Center (OST/SEC) Programming Branch to capture technical
risks. The Programming Branch will be the collection point for technical risks identified by the
NWS. Raytheon will meet with the Programming Branch at least once a month to review the SW
CTR technical risks. Technical risks will also be reported periodically to the AWIPS Evolution
Leadership Committee (AELC).

Figure 4-2 is a screen capture of the risk and opportunity management tool.

Chief Software
Architect

Frank Griffith

Chief Software
Architect

Frank Griffith

Systems
Engineering
Systems

Engineering
Test

Engineering
Test

Engineering

SW CTR
Project Lead
Chuck Meier

SW CTR
Project Lead
Chuck Meier

Chief Systems Architect &
Strategy Manager

Doug Lawson

Chief Systems Architect &
Strategy Manager

Doug Lawson

AWIPS Evolution
Manager

Andre Tarro

AWIPS Evolution
Manager

Andre Tarro

Support FunctionsSupport Functions

Software
Engineering
Software

Engineering

Scott Risch

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 29

Figure 4-2. Risk / Opportunity Management Tool

4.4 Decision Management: Governance
Given the ambitious goal of developing a complete system re-architecture for AWIPS, a
discussion of decision management or governance over the project is critical. Section 4.2
introduced the Raytheon AWIPS II organization. In parallel with the contractor team, NWS has
established an AWIPS Evolution Leadership Committee (AELC). The AELC has established an
AWIPS Evolution Management Plan to document the relative roles of NWS and the Raytheon
AWIPS Team. Long-term Governance is a separate topic that addresses decisions related to
changing AWIPS II over time. A brief discussion of long-term AWIPS II governance is included
in Section 10.6.

4.5 Technical (Management) Controls
The project team developed a series of tailored plans to guide the software portion of the AWIPS
SW CTR project. These plans were developed under Task Order 3 and updated under
appropriate subsequent Task Orders. They are:

• Program Management Plan (PMP). Defines the management approach for the
project, including planning, execution (monitor and control), and project closeout
activities. Because to the relatively small size of this project, the Software

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 30

Development, Configuration Management, Quality Assurance, and System
Engineering Management Plans described in this section are included in the PMP.

• Software Development Plan (SDP). Defines the management approach to planning,
designing, developing, controlling, and tracking software development across the
engineering life cycle of the project. The plan will outline the development activities,
the development library, coding standards, and the safety and security of the
software development environment.

• Configuration Management Plan (CMP). Provides a detailed description of the tasks
associated with managing the configuration of the software during development. The
CMP will follow well-defined and documented procedures and processes for
developing high-quality software and for managing the project baseline once
established.

• Quality Assurance Plan (QAP). Documents the procedures for establishing and
maintaining product and process integrity based on both contractual and company
requirements. The QAP will detail activities conducted to profile various well-
established engineering standards and procedures, tailored for the AWIPS SW CTR
project.

• System Engineering Management Plan (SEMP). Documents the system-level
requirements and lays out the plan to develop a coherent and consistent AWIPS
system across all stakeholder organizations within NWS.

• Additional Technical Controls. Includes routine interaction with the AELC and
NWS leadership; Technical Interchange Meetings (TIM) with development
organizations; updates to the PIP and software development metrics.

4.6 Integrated Master Plan; Integrated Master Schedule
The Integrated Master Plan (IMP) contains a high-level description of the project, including the
end-state deliverables of the system and the path (including key milestones) to get to the end
state. The IMP does not contain detailed schedules or cost information.

The Integrated Master Schedule (IMS) includes a high-level project schedule and provides a
framework for the more detailed Work Breakdown Structure (WBS). The WBS resource loads
hours and people against individual tasks. The IMS is maintained and updated as required as
each Task Order is added to the program.

4.7 Facilities and Capital Equipment
The software project team performs work at Raytheon’s offices in the Scott Technology Center
of the Peter-Kiewit Institute on the campus of the University of Nebraska and at Raytheon’s
Silver Spring, Maryland facility. Developers will use their standard desktop workstations for
software development and testing. Raytheon purchased development and database servers as
well as a Network Attached Storage (NAS) device for use in AWIPS migration support. The
Raytheon Information Technology (IT) staff provides on-site support for the servers and desktop
development environments. Development occurs within the One Raytheon Integrated On-
demand Network (ORION).

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 31

4.8 Formal Reviews and Reporting
The IMS includes milestones to account for formal project reviews at various decision points. At
a minimum, these reviews occur near the conclusion of each TO. The AWIPS Evolution
Manager and the Chief Systems Architect represent the development team at regularly scheduled
AELC meetings. These meetings provide a forum for communicating the status of development
activities. Raytheon will also report the status of the project at regularly scheduled partnership
IPT meetings.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 32

5. Software Development

5.1 Software Configuration Management
Raytheon established a software Configuration Management (CM) environment on the
development servers during Task Order 3. The CM tool is Subversion, which is a Java-based
variation of the commonly used CVS tool. The development team also uses the Open Source tool
Trac for project management and another Open Source tool – Cruise Control – for routine
software builds.

5.2 Testing
The information provided in this section represents a subset of AWIPS II testing. A more
comprehensive description of AWIPS II testing is documented in a presentation entitled “AWIPS
II Testing,” dated October 30, 2007. The presentation, and the test types and approaches
described by it, were jointly developed and agreed upon by Raytheon and the NWS. The reader is
directed to that presentation for additional information on testing of AWIPS II.

Testing is a continuous process throughout the software development life cycle. The Software
Development Plan, developed under TO3, defines objectives, procedures, and schedules for:

• Unit Test – during development.
• Integration Test – as components are brought together to form the system.
• System Test – at the end of integration and prior to final acceptance testing.
• Acceptance Test – final stage of test where NWS will accept the new system.

In addition to formalized testing, developers submit software for formal review in a series of
Code Reviews conducted throughout the development phase. The results of those code reviews
are documented and added to the software library. Details of the early stages of testing are
documented in the SDP developed during TO 3. Later in the development cycle, at the time of
system testing, a separate Test Plan (TP) was developed. The TP includes the details of system
testing and indicates the timing and location of the System Test. There are also other
opportunities throughout the development cycle for users and developers to get an early (hands-
on) look at the new system. The details of these opportunities are provided in appropriate TOs
and in updates to this PIP document.

5.3 Documentation
During project startup, a number of documents were created that guide the software development
process. Several of those documents are identified in Section 4.5. In addition to those documents,
a set of project instructions was created. These instructions provide the developers with
guidelines for completing routine development activities.

“Javadocs” are written on all components and services of the new architecture, and account for
the software details of AWIPS II.

Additional “deliverable” documentation is developed under individual TOs as required. TO
proposals detail all deliverable documentation associated with that particular TO.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 33

5.4 Standards
The AWIPS II software development team will adhere to Sun Java coding standards for Java
coding standards, and will follow Raytheon software coding standards for C, C++, and Fortran,
if used. The coding standards have been made available to the NWS.

All other technical standards related to the software project or interfaces to other parts of AWIPS
Evolution (i.e., hardware and communications) will follow Raytheon standards.

5.5 Tools
Raytheon will use appropriate software development tools, including:

• MS Visio Professional – to build the system and software architectural artifacts.
• Eclipse – used by software developers both as an Integrated Development Environment

(IDE) and as a Rich Client Platform (RCP) to build client-server applications.
• Subversion – a Java-based CM tool similar to CVS.
• Trac – an Open Source, project management tool.
A more detailed list of tools is included in the SDP developed during TO3.

5.6 Backup and Recovery
Raytheon has instituted backup and recovery procedures to protect the development
environment. Details of the backup and recovery procedures are documented in the SDP.

5.7 Security (Information Assurance)
Raytheon has established physical security measures to protect the development environment
from outside intrusion and unapproved access. ORION is a protected Wide Area Network with
sufficient security measures in place to protect corporate assets and intellectual property from
outside interference. This same high level of security provides the security necessary to protect
both the development environment and the software being developed for AWIPS SW CTR.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 34

6. AWIPS Software Migration

6.1 Migration Approach
The “black box conversion” mentioned as a fundamental approach to AWIPS II migration means
that the current AWIPS “applications” functionality will appear the same to the end-users (e.g.,
forecaster, hydrologists), but the inner workings of AWIPS that produces the end-user
functionality will change.

The conceptual approach to migrating AWIPS to AWIPS II follows.
AWIPS II functionality can be divided into two broad categories: end-user and infrastructure.
Migrating AWIPS to AWIPS II involves creating the infrastructure functionality that enables the
creation and execution of end-user functionality (whatever the end-users see and touch generally
manifests in GUIs and hard/softcopy output). When the migration is complete, AWIPS II will be
a single environment of end-user and infrastructure functionality. Everything needed to create
and execute desired end-user functionality will be present in the environment.

The overall approach to migrating AWIPS to the new AWIPS II architecture is to first design the
framework and implement sufficient infrastructure functionality to begin migration, and then
migrate end-user functionality while implementing the remainder of the needed infrastructure
functionality. We start end-user functionality migration before the infrastructure is complete.
Beginning end-user functionality migration with an infrastructure that is incomplete, but
sufficient, rather than waiting until the infrastructure is “complete” reduces overall project cycle
time and cost. Risk Reduction Demos (RRD), discussed in section 3.7, were employed to
manage technical risk. The collection of sufficient infrastructure functionality to begin end-user
functionality migration is ADE 1.0.

During Task Order 7, “Migration Planning,” the existing AWIPS I code base was analyzed in
detail and fundamental migration methods were examined for different applications. Options
considered were: “delete”, or don’t migrate obviated code or applications to be retired;
encapsulate, or interface, legacy code (e.g., RFP, LAPS); and re-engineer and re-implement
application functionality. Most code fell into the last category.

The existing code was decomposed into discrete functions. During this process, AWIPS I
functional redundancy was identified. The redundant functions will be re-engineered into a
single function (or infrastructure capability) and re-implemented using the ADE capabilities in
AWIPS II. This will eliminate the redundant code and greatly reduce the size of the code base.
The discrete functions will be “reassembled” to replicate AWIPS I forecaster functionality.
Because this approach does not convert one application at a time, a means other than “checking
off” the applications was needed to ensure everything is migrated. To meet this need, a
“capabilities matrix” was created that maps the discrete re-engineered functions to the AWIPS I
CSCIs (computer software configuration items). The Capabilities Matrix also groups the discrete
functions into the four software migration task orders (TO8, 9, 10, 11).1 The functions are
scheduled for migration within the task orders to maximize integration opportunities (or not miss

1 The Capabilities Matrix was delivered to the NWS with Task Order 7.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 35

them!). This means that major applications such as D2D, GFE, and Hydro will actually be
migrated over multiple task orders. Additionally, risk reduction efforts in the form of early, or
advanced, development will occur in TO8 and TO9 addressing aspects of GFE and Hydro. At
that point, the implementation method will be known and it will be more of a “turn the crank”
effort for the respective task order. The two-year software migration will be composed of four
task orders, each of which is nominally six months in duration. Table 6-1 shows the basic
organization of the task orders and their “themes.”1 As can be seen in the figure, TO8 is
primarily D2D, TO9 is primarily GFE, TO10 is primarily Hydro, and TO11 implements plug-in
applications (e.g., SAFESEAS).

Table 6-1. Task Order Themes

Task Order Themes TO8 TO9 TO10 TO11
Workstation Capabilities
D2D + 80% Primary Capabilities x
D2D + 10% Secondary x
D2D + 10% Lowest Priority x
Graphical Forecast Editing Suite
GFEsuite + 10% Repository x
GFEsuite + 80% Primary Capabilities x
GFEsuite + 10% Secondary x
Hydro GUI System and IHFS
Hydro + 10% IHFS Repository x
Hydro + 10% CAVE Perspective x
Hydro + 80% Primary x
Communications and Plug-In Applications
Extensions + 100% Primary x

These discrete functions were also grouped into the following major categories: Workstation
Capabilities (CAVE); SOA Service Capabilities; SOA Plug-ins; EDEX Common Library; and
Data Management. Table 6-2, “Discrete Function Summary” shows the number of discrete
functions for each category and Task Order. It should be noted that some functions are bigger
than others, and that these counts can change over time; nevertheless, the table should provide a
sense of “size” for the preceding discussion.

1 TO11 has been structured differently than the description provided here. See the update in section 2.4 for more
discussion on the approach for TO11.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 36

Table 6-2. Discrete Function Summary

Functional Breakout Task Order
Category TO8 TO9 TO10 TO11 Total

Workstation Capabilities (CAVE) 15 13 16 18 62
SOA Service Capabilities (EDEX) 4 9 3 5 21
SOA Plug-Ins 14 5 2 1 22
EDEX Common Library 4 2 3 2 11
Data Management 4 2 3 2 11

6.2 Migration Task Order Summary Descriptions
Some of the details of this section are OBE. Please see the Task Order 11 Proposal for more
information on the remaining SW migration work.

Brief descriptions of the task orders planned during the migration phase (i.e., before deployment)
are provided in this section. Additional detail will be provided in subsequent task order
proposals; details may change in the future if needed.

Task Order 8, “Core Workstation Capabilities”

• Delivers the Initial Core AWIPS-II Workstation Capability.
• Includes the ingest, indexing, and storage of data from the SBN for bin Lighting, GINI

Satellite, Grib1/2, RAOB, basic Text, Aircraft, Maritime, Radar, TAF, Synoptic, and
METAR.

• The CAVE workstation will have core vector, raster, X-Y graphs, and text rendering. All
the ingested data listed above can be rendered.

• CAVE will include the D2D-style volume browser with load modes and time correlation.
• Will include D2D capabilities for displaying plot data, custom color map editing, text

display, warning generation with limited VTEC, and Skew-T views of vertical data.
• The radar will have the all-tilts from ADE 0.2 with the 4-panel display linked cursor.
• CAVE will have the full menus to support D2D, GFEsuite, and Hydro with actions only for

the D2D for evaluation.
• Includes limited workstation modes, localization, history, and procedures.
• Includes the Radar interface to the ORPG.
• Includes a basic SHEF ingest capability as a risk reduction for Hydro migration planned in

T10.
• Will add a framework for the GFE to CAVE as a risk reduction for TO 9.
• Will implement a prototype plug-in for GFE grids and supporting services along with the

IHFS hydro database to reduce the risk of migrating GFEsuite and Hydro applications.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 37

Task Order 9, “Graphical Forecast Editing Suite”

• Builds on T08 by migrating the major functionality in GFEsuite.
• Extends CAVE with a GFE perspective that will include grid rendering with color maps and

the rendering of grid edits.
• Migrates the existing Grid Manager, Spatial Editor with the editing tools.
• Includes GFE watches and GFE workstation localization.
• Includes workstation enhancements with a Smart Tools interface mechanism.
• Continues risk reduction efforts for Hydro capabilities with a River Pro framework, time

series, and point data control.
• SOA plug-ins for the GFE grids will migrate existing commands for grid management, text

management, and administration.
• Extends the UtilSrv to support color maps, map projection commands, and VTEC

commands.
• Includes decoders for bufr, afos, dpa, and products.
• Builds the GFE data model and tools to support the model into data management.

Task Order 10, “Hydro GUI and IHFS”

• Extends TO9 base with Hydro capabilities.
• Includes a (CAVE) hydro perspective that has hydroview, hydrogen, riverpro, report alarm,

and the MPE editor.
• Includes capabilities of hydrobase, site-specific hydrologic predictor, and product tools.
• Completes the GFE temporal editor to finish the GFEsuite capability.
• Completes workstations enhancements for alerting.
• Creates interface to the RFS to allow it to be part of the SOA.
• Implements SOA plug-ins to support ingesting SHEF data from LDAD.
• Implements the rate of change checker.
• Implements the IHFS database with new data access objects and supporting utilities.
• Encapsulates RFS.

Task Order 11, “Communications and Plug-in Applications”

• Finishes the migration by re-engineering a series of independent applications. These include
the SCAN-Rapid SCAN tools, SafeSeas, Snow, Fog Monitor, FFMP, Climate Tools, Hourly
Weather Roundup, Haz collect, and local storm reporting.

• Migrates hydro dam crest tool.
• Completes GFE daily forecast critique and ASCII grid import/export.
• Extends SOA plug-ins to support LDAR, LAPS interfaces, and LAPS tools.
• Migrates the MHS to an ESB approach.
• Migrates CP functionality and CP interfaces at the NCF.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 38

• Re-engineers LDAD.
• Includes support for SWIT and CM Transition of AWIPS II R 1.0 code base.
• Includes Sync for OB9 Corrective and Adaptive changes (Baseline Changes will be treated

separately).

Each of these Task Orders also includes:

• OB Impact analysis (changes that have been made between the end of TO7 and initiation of
subsequent TOs), which may include replanning the migration tasks.

• JavaDoc for all developed code.
• Copy of Raytheon Test Plan, Test Procedures, Associated Requirements Traceability Matrix

(RTM) and Test Report.
• User Functional Test DR Disposition Report.
• Task Order Technical Outbrief and RRD for advanced development work.
• Input to training material updates as appropriate. [Note: There will be a separate Training

Task Order.]
• Redlines of AWIPS User’s Manual, System/Subsystem Design Description, and System

Manager’s Manual for affected sections (delivery of updated UM, SSDD, and SMM occurs
with TO 11).

• Release Notes.
• Incorporating selected DRs.

6.3 Special Topics
This section addresses questions that have been raised regarding other aspects of the software
migration.

Algorithm Selection and Verification

Question: How will algorithms be verified to produce the same results as AWIPS I, and in cases
where there are multiple algorithms calculating the same thing (e.g., relative humidity), how will
you select the one to use?

Response: Unless otherwise directed, only the implementation of the algorithms will change.
Algorithm concerns identified by Raytheon will be raised to NWS for rapid resolution. Raytheon
will construct drivers for existing and replacement implementations. Drivers will call existing or
new algorithms as appropriate, with defined data sets appropriate for the algorithm. Output of
existing and new algorithm implementations will be captured and compared during software unit
tests. NWS is requested to participate in identification of appropriate data sets composition.
Timing data will also be collected and recorded for the execution of each function. For output
data set comparison, acceptable margin of differences will be coordinated. Any questionable
differences will be coordinated with NWS for resolution.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 39

Geo-registration

Question: How will you verify that satellite, radar, and other images are correctly placed on the
map?

Response: Geo-registration verification is accomplished in several ways, depending on the data
that is to be verified. A key feature of the AWIPS II/CAVE application is the interactive ability
to display the latitude and longitude of the cursor location. This allows direct geo-registration
verification of station, geo-political and topographic data. Accuracy of AWIPS II geo-
registration is verified by examining the corner points of images and comparison with the source
image data. Geo-registration of grid data will be verified using test grid sets in cylindrical
equidistant projection and verifying the location of the key test features on the display. Inclusion
of latitude and longitude as a parameter also will be used to verify accurate geo-registration.
Differences are to be anticipated based on varying earth models. Radar geo-registration will be
verified similarly. If NWS has test data sets to support this testing, Raytheon will be happy to use
them.

GFESmart tools and Python

Question: Will Python be supported?

Response: Yes

FEWS and AWIPS II

Question: We’ve heard that “FEWS” will be included in the first release of AWIPS II. Is that
true?

Response: No. AWIPS II Release 1.0 will co-exist with FEWS to the extent that FEWS exists.

Sync with OB Builds

Question: What is your approach for staying in sync with OBs?

Response: Each Task Order uses as its starting point, the code from the baseline release just prior
to the start of the Task Order (i.e., OB8.1 – TO8, OB8.2 – TO9, OB8.3 – TO10, OB9.0 – TO11).
Each task order, however, focuses on only part of AWIPS functionality so only the areas being
migrated are assured of “capturing” the latest updates (naturally being in sync with the “related”
OB). Changes to portions of AWIPS I code made after the time of its initial migration may not
be incorporated into AWIPS II until TO11 (or later if the change is made very late in the
migration schedule – i.e., just prior to OTE). Whenever possible, minor changes are incorporated
at “points of opportunity,” that is, if an area of code is being worked on and a change can be
incorporated at that time without significant cost or schedule impact, it will be; not all changes
can be accommodated by this process however and major changes must, of necessity, be
assessed and scheduled separately. An assessment of changes (enhancements, new functionality,
major rework, significant corrective changes, etc.) made to already-migrated AWIPS I
capabilities will be included as part of TO11 and cost / schedule revisions submitted to the NWS.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 40

6.4 Local Applications (LA)
AWIPS II will provide a software environment that:

• Minimizes the need for “work-around” code for production operations;
• Allows for “peaceful co-existence” of Baseline and LA code; and
• Allows for easier adoption into baseline where appropriate

Field operations will be able to extend AWIPS II baseline capabilities via plugs-ins, scripts, and
legacy adapters (C and Fortran). These are essentially the same capabilities to extend AWIPS II
provided to the development organizations. However, it is anticipated that a large proportion of
LA needs will be met without Java programming. Python, the uEngine, the Command Line
Interface, and the subscription services provide a very powerful environment without the need to
program in Java.

Local Application (LA) migration is the responsibility of the NWS and field organizations. The
primary project objective is to deploy AWIPS II as scheduled; therefore, LAs need to be
migrated in time to avoid deployment delays, i.e., all LAs may not need to be migrated for a
particular site at the time of deployment.

Due to developments over the past 18+ months, requirements and methods for LA migration are
now simpler and more familiar. The widely used “textDB” and “handleOUP” utilities, ported to
Python in AWIPS II, are accessible through a simple Command Line Interface (CLI). Local apps
will use the utilities as is for AWIPS II. Python is now the recommended scripting language, but
rewriting existing LA using other scripting languages is not necessary.

A uEngine CLI will provide a mechanism to retrieve and transform AWIPS II ingested data
types. One accesses the uEngine CLI from the command line or the tools language “exec”
capability. The AWIPS II subscription service is useful for time or data event triggered
operations providing the equivalent for AWIPS I triggers.

A Java to Python Bridge delivered with TO9 greatly reduces the effort to migrate the huge
number of existing Smart Tools to AWIPS II.

The National Core Local Applications Development Team (NCLADT) is the NWS focal point
for Local Apps migration. Raytheon conducted several Technical Interchange Meetings (TIMs)
with LA developers over the last 18+ months. The exchanges provided a forum for providing
Local App developers with AWIPS II information as well as providing Raytheon with more
information on specific LA functionality. The simplifications discussed in the previous
paragraphs were a direct result of the TIMs. The field now appears well positioned to accomplish
the necessary LA migration for AWIPS II deployment.

6.5 Documentation
Documentation provided with ADE 1.0 will be updated as needed throughout the migration (e.g.,
Javadoc, Tech Brief). Current documentation that Raytheon is responsible for also includes the
AWIPS User Manual (UM), Systems Manager’s Manual (SMM), System/Subsystem Design
Description (SSDD), and Release Notes. This documentation will be redlined in appropriate
sections with each task order, and the updated versions will be delivered with AWIPS II Release
1.0.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 41

Updating other related documentation such as the AWIPS Integration Framework Manual
(AIFM) will be the responsibility of the NWS.

6.6 TTR/DR Processing Coordination
The NWS uses “TestTrack Pro” as a defect tracking and management system. Raytheon uses
“TRAC” in Omaha to track and manage DRs. Each organization has its own processes and a
detailed discussion of these processes is beyond the scope of this document. In fact, the details of
TTR/DR processing coordination are currently TBD and need to be determined prior to the start
of pre-OTE testing.

NWS and Raytheon have been following a disposition process for Task Orders through TO10.
The term TTR (TestTrack Report) is used to avoid confusion with the term “DR” used with
AWIPS I. TTRs are written for all NWS AWIPS II testing efforts (IV&V and user). The TTRs
are sent to Raytheon and Raytheon analyzes and dispositions them. Raytheon enters TTR
information into its DR system, TRAC, to manage them. Some of the defects have been fixed in
task orders subsequent to the TO being tested, others may be addressed during TO11.

TO11 will introduce “pre-OTE” testing directed by SEC. “Pre-OTE” testing will be more
extensive than the “Delivery Tests” performed with TOs 6, 8, 9, and 10. Section 2.4 discusses
the conceptual approach for TO11. “Pre-OTE” testing will begin with each interim software
delivery. The NWS will consolidate TTRs by culling duplicates and non-defect TTRs prior to
submitting to Raytheon. Raytheon and NWS will jointly disposition submitted TTRs and decide
if the defect needs to be corrected prior to OTE entrance. The NWS will retest corrected DRs in
a subsequent “Build” during TO11. The NWS will only test corrected DRs in a “DR fix release”
as opposed to a “Delivery Release” where new delivered functionality is tested. It is possible that
DR testing and retesting could occur as frequently as bi-weekly. However, it is more likely that,
due to logistics and efficient work organization, it will take longer than two weeks to apply a
batch of TTR/DRs to the system.

OTE System Testing is expected to report defects and issues via TTRs. However, at the
beginning of “field operations” testing at the sites, defects and issues should be reported using
the normal Trouble Ticket Process.

Raytheon does not expect its basic TTR/DR release processes to change with OTE. That is, “DR
releases” may occur on a biweekly basis. The adjudication processes are likely to change
somewhat due to the “ownership” of the testing transferring from OST to OOS. The details of
the OTE processes are TBD at this time.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 42

7. AWIPS I Baseline Software Migration Risks
Risk analysis has been ongoing during this project. Risks are entered into the Risk Assessment
and Management Plan (RAMP) as they are identified. Migration risks are generally associated
with resource management between AWIPS II and AWIPS I. These resources include Software
Maintenance and Support labor and test beds. OB content is a significant driver for these
resources and the appropriate balance must be set and managed to avoid schedule slips in
AWIPS II. Other risks are associated with inadequate communication among the many
stakeholders of AWIPS. Technical risks are not technology based as much as managing
discovery and the schedule. A primary worry for many people today is whether the performance
of AWIPS II will be adequate at operational loadings. Because the whole system needs to be in
place to completely determine system performance, reliable performance predictors need to be
developed to test elements of the system. These tests need to occur early enough to apply
correction if needed. The overall assessment is that there are no high risks for this project;
nevertheless, the project must be carefully managed and the collective eye needs to be on the
ball.

All risks are logged in the RAMP Risk Register. Reports are available on the Raytheon AWIPS
O&M Program Management Portal,

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 43

8. Training
Several groups will need AWIPS II training on the ADE/SDK and/or System Administration.
Application usage training will be limited to selected “variances” to AWIPS I “black box”
behavior. Groups requiring training include:

• ADE/SDK: Dev Orgs, Local apps developers, SST/HST, NCF, SMS
• System Administration: ITO/ESA, App Focal Point, SST/HST, NCF, Dev Org Sys Admin

• “Variance”: Forecaster, App Focal Point

[Note: Individuals within these groups may not need all of the training in the type shown. Note
also that some group(s) may not be listed. For example, application focal points (AFP) may only
need the localization portion of the Sys Admin training.

Training activity is composed of two major categories – course content development and training
delivery. NWS is responsible for training delivery to NWS/NOAA personnel, and Raytheon is
responsible for training Raytheon Team personnel.

Raytheon will support NWS training efforts by providing technical content for the training
material, and technical consulting during courseware development. Raytheon may also support
the NWS delivery of classes by “sitting-in” during initial classes to provide technical support to
instructors (i.e., answer questions from the class.)

Raytheon delivered the initial developer training with TO3, 4, 5, and 6, and provides updates to
the slide package with each SW migration Task Order (e.g., 8, 9, 10, 11). Raytheon provides
training support via a specific task order, TOT1, described later in this section.

8.1 Developer Training
NWSTD provides AWIPS II ADE/SDK training to developers via “distance learning.” Raytheon
supports the NWSTD activity by providing updates to the developer “briefing” slide package,
providing technical documentation (e.g., “MicroEngine commands”), providing “how to
examples” (often heavily annotated portions of actual code), and technical review of NWSTD
prepared material.

Developer training topics include:

• Foundation Course1
• Script Development

– Using script language
– Extending script language

• Cave Plug-ins
– Creating menus in CAVE
– Using the localization pattern within CAVE

1 Available from Learning Tree International. Suggested additional courses which are also available from Learning
Tree include Spring/hibernate, Best Practices in Java, and Eclipse IDE.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 44

• SOA Plug-ins
– Data ingest
– Using Data access
– Micro Engine extensions
– Configuring Mule end points

• Using the Localization Pattern
– Extending the meteo library

The topics will change as need dictates.

8.2 System Administration Training
The material needed for AWIPS II System Administration consists of the same basic topics in
existing NWSTD courses updated for AWIPS II specific differences.

Two courses provide the framework and topics needed, “AWIPS Operations Support” (course
number M-21-02) and “AWIPS Systems Manager” (course number M-18-02). “AWIPS
Operations Support” is primarily for Application Focal Points while “AWIPS Systems Manager”
is for people performing AWIPS System Administration (e.g., ESA/ITO). Raytheon will provide
technical documentation to support updates to these courses for AWIPS II. Material will be
provided during TO11 on a schedule agreed to by Raytheon and the NWSTD.

Other topics of interest include:

• Foundation Course (NWS SOA and/or AWIPS II architecture overview)
• Clustering and other hardware considerations
• Local application configuration management

8.3 Training Support Task Order Description
The training support Task Order includes upgrading the training material delivered with SW
migration Task Orders (e.g., “Programmers Briefing”). It will add material for new ADE features
as well as “how to” examples for scripting and micro-engine usage, creating CAVE plug-ins, and
data plug-ins.

Technical documentation to support System Administration training course development will be
delivered with Task Orders 8, 9, 10, and 11 as the capabilities are developed. Note that this is not
special content packaging. Technical support will be provided to the National Weather Service
Training Division (NWSTD) for courseware development. This support will take the form of a
briefing of the material, reviewing courseware for technical accuracy, and answering questions.

Training delivery support will be provided by “sitting in” (via telephone) on specific initial
training sessions to answer technical questions as needed to support the trainer. This will be
provided for both Developer and Sys Admin training as requested.

NWSTD has requested a week-long TIM for application focal points. This support will be added
to TO11 instead of generating a Task Order for this single item.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 45

9. Site Migration and Deployment
Site Migration is the process and activities performed to transition a site to an Operational State
using AWIPS II. This section discusses the preparation and steps to accomplish the transition.

Site Migration includes several activities:

− Application Software Functionality Testing
− Configuration Data Migration (localization and customization)
− Smart Tools (et al.) Migration
− Local Applications Migration
− Environment Configuration Migration (HW, OS, Utilities, Drivers, etc.)
− Training (Forecaster, Sys Admin, Application Focal Points)

Obviously, this work must be done prior to Operations Cutover, and cannot be done on an
AWIPS Operational System due to the risk of operations disruption. The HW needed to support
these activities is a standard AWIPS workstation with CAVE and EDEX Installed. Canned data
is assumed for these activities.

After completion of the site migration activities, the basic installation approach is

− Load A2 on A1 system (using install scripts provided by Raytheon)
− Enter Service Backup
− Shut down A1 and start A2 (A1 remains on HW)
− Perform Startup testing (includes local apps)
− If okay, go out of Service Backup and into operational mode
− If issues arise that cannot be resolved, go into service backup mode
− If fix is going to be “lengthy” roll back to A1 (last resort)
− When satisfied with A2 Operation, remove A1

Detailed cutover and rollback procedures will be tested, finalized, and documented during TO11.

OTE includes “deployment interoperability” testing prior to site cutover. The need for this
testing is a result of the fact that, during deployment, some sites will be on AWIPS II and some
on AWIPS I, and these “mixed pairs” will have to be capable of supporting Intersite
Coordination (ISC) and Service Backup functions. “Deployment interoperability” between
AWSIP II and AWIPS I amounts to sharing the relevant data between these systems.

More discussion on Site Migration is included in the DTP TO briefing. Detailed documented
procedures for performing site migration and installation will be delivered with TO11.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 46

10. Transition to O&M
The transition to O&M includes transitioning Software Integration and Test Environment
(including configuration management), Applications Support & Maintenance, and the
NCF/helpdesk. While we are re-architecting AWIPS baseline software, the fundamentals of the
overall support systems will not change. Because the basic requirements for SWIT and CM do
not change, the general processes and framework will remain largely the same as they are today.
Changes will occur mainly in procedure details. For example, some software infrastructure test
procedures will change, and other test procedures may not change. We will only change what
needs to change because of AWIPS II; we will not perform a wholesale revamp of the O&M
systems. Our general principle is to minimize disruption to the current System while meeting the
need. Preliminary deployment and transition plans described in this document assume that OB9.0
SVR will be complete by the end of January 2009, and that OB9 maintenance releases will be
limited to critical DRs and RHEL upgrade in order to ensure that appropriate resources are
available to support the transition to and preparation for O&M of the new AWIPS II software.
After OB9.3 is complete, SMS will be available to do Catastrophic Releases. Generally, a
Catastrophic Release involves significant loss of functionality that has no workaround, for
example: existing datasets become unavailable; a decoder crashes and cannot be restarted; or
messages cannot be transmitted.

The plan as shown with the roadmap in Figure 10-1 is based on the following assumptions:

− ASM has allocated 80 hours per month, which includes LOE time, coding, and/or
research associated with the DR(s).

− SWIT has allocated 32 hours per month, which includes LOE time, testing, and/or any
research associated with the DR(s).

− The 32 test hours will cover the 80 hours from ASM.
− Hours allocated are not limited to any specific functional area (GFE, MDL, OHD…).
− Use it or lose it. Any unused hours, for any month, will not be rolled over.
− Impacts to AWIPS II will have to be assessed for each change request.

SMS will follow its standard Knowledge Acquisition Process (KAP) for the transition to O&M.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 47

Figure 10-1. O&M Transition

10.1 Release Management
“Release Management” as used here refers to the overall framework of processes beginning with
the SREC and ending with delivery. Fundamental release products will not change (for example,
release notes, documentation updates). The current release process is shown in Figure 10-2. In
examining this figure, it is easy to see why things will not change much at this level of detail.

2009 2010 2011
9 9.1 9.2 9.3AWIPS I OBs

TO10: SW migration TO11: SW migration & Pre-OTE Support OTE Deployment
TO: OTE SW Support TO: Deploy SW Supp

Primary Contact
Hands On

CM / ENV Training & Intro
Primary Contact

TEST Training & Intro
Hands On

ASM Training & Intro
ASM Hands On

Primary Contact

SMS SLA
Ownership

= Fiscal Yr
= Calendar Yr

NCF AWIPS II Tiger Team
NCF Training

NCF Support

NCF Tool Evaluation

NCF Incremental SOP Updates

NCF SLA
Ownership

Test Beds to A2
TBW3 TBW4 TBDW TBDR

Catastrophic Releases if needed

2009 2010 2011
99 9.19.1 9.29.2 9.39.3AWIPS I OBs

TO10: SW migration TO11: SW migration & Pre-OTE Support OTE Deployment
TO: OTE SW Support TO: Deploy SW Supp

TO10: SW migration TO11: SW migration & Pre-OTE Support OTE Deployment
TO: OTE SW Support TO: Deploy SW Supp

Primary Contact
Hands On

CM / ENV Training & Intro

Primary Contact
Hands On

CM / ENV Training & Intro
Primary Contact

TEST Training & Intro
Hands On

Primary Contact

TEST Training & Intro
Hands On

ASM Training & Intro
ASM Hands On

Primary Contact

SMS SLA
Ownership

ASM Training & Intro
ASM Hands On

Primary Contact

SMS SLA
Ownership

= Fiscal Yr
= Calendar Yr
= Fiscal Yr
= Calendar Yr

NCF AWIPS II Tiger Team
NCF Training

NCF Support

NCF Tool Evaluation

NCF Incremental SOP Updates

NCF SLA
Ownership

NCF AWIPS II Tiger Team
NCF Training

NCF Support

NCF Tool Evaluation

NCF Incremental SOP Updates

NCF SLA
Ownership

Test Beds to A2
TBW3 TBW4 TBDW TBDR

Test Beds to A2
TBW3 TBW4 TBDW TBDR

Catastrophic Releases if needed

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 48

Figure 10-2. AWIPS I Release Management Process

10.2 SWIT, CM, and Test Environment Transition
The following lists describe the activities of each phase as shown on Figure 10-1.

• KAP Training and Intro
– SWIT gathers and reviews documents from Raytheon Omaha (OMA).
– OMA has full responsibility for execution and results of builds, releases, installs

and tests.
– OMA and SWIT conduct monthly TIMs, one each for Test, CM, and ENV.

• KAP Hands-On
– SWIT works on builds, releases, install and tests with assistance and direction

from OMA.
– SWIT and OMA share responsibility for execution, but OMA retains full

responsibility for the results.
– SWIT modifies procedure documents as required to support the new AWIPS II

paradigm.
– OMA and SWIT conduct weekly TIMs, one each for Test, CM, and ENV.
– All ENV TTs will be directed to OMA, OMA assigns select TTs to ENV and will

review ENV’s proposed resolution, those resolved by OMA will be reviewed by
ENV.

• KAP Primary Contact
– SWIT works on builds, releases, installs, and tests with OMA reviewing and

approving SWIT’s work.

CM Process

SREC /
DR Team

- Release Content

- Requirements
- Funding

α /β SyATSwIT

Support:
Software Problem
Resolution/User

Support

Emergency

Major

DR Life Cycle

- Release Types

Release Flow

- Burn DVD
- Support National
Install

Install

Verification
- System Verification
 Review

MDL
GSD
OHD
ASM
CDS
SEC
NMAP

SWIT

- DVD

- Selected Field
 Sites Test
- Install
 Procedures
 and Functionality
 Changes

- Push Deployment

α /β SyAT

- Dry-run SyAT
- Government
 Witness
- Test Readiness
 Review

SIT

- Full Integration
- Performance
 Monitoring

SwIT

- Stress Test

- New Functionality

- Interfaces

- Performance Test

Pre-SwIT

- Verifies Install
- Launches New
 Functionality

Integration
Build

Development Labs

Configuration Management Processes

DEVELOPMENT

Integration
Build

Integration
Build

Integration
Build

Integration
Build

Work Products
- Test Plan
- Test Cases
- Test Results
- Test Summary
Rpt

Work Products

Work Products
- Requirements
- Design
- Test Plan/Results
- Code
- Reviews

NCF

NCF

Business
Functional
Requirements

Technical
ReqmntsPlanning Design Construction

Functional
Test Closure

Integration Handoff

Business Functional
Requirements

Review
Maintenance

- Release Plan
- Project Schedule
- Productivity Insight

AWIPS SMS Release & Support Flow – v02 061110

PIT

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 49

– SWIT has full responsibility for execution, but shares responsibility for results
with OMA.

– OMA and SWIT conduct monthly TIMs, one each for Test, CM, and ENV.
– All ENV TTs will be directed to ENV, but OMA will review proposed resolution

• KAP Completion
– SWIT takes full responsibility for execution and results of builds, releases,

installs, and testing.
– OMA provides advice only if needed.
– All ENV TTs will be directed to the ENV.
– Once ASM takes Ownership of AWIPS II, AWIPS I will be archived and locked

with the CM tool.

10.3 Application Maintenance
The following lists describe the activities of each phase as shown on Figure 10-1.

• KAP Training and Intro
– OMA works on the component with the ASM team watching, asking questions,

and taking notes.
– OMA has full responsibility for execution and results.
– All TTs will be directed to OMA following existing processes.
– Phase In: During this timeframe, some of the ASM developers will be shifting

into the KAP Hands-On phase
• KAP Hands-On

– ASM works on the component, with assistance, direction, and direct supervision
from OMA.

– ASM and OMA share responsibility for execution, but OMA still retains full
responsibility for the results.

– All TTs will be directed to OMA following existing processes.
– Phase In: During this timeframe, some of the ASM developers will be shifting

into the KAP Primary Contact phase
• KAP Primary Contact

– ASM works on the component with OMA reviewing ASM proposed approach to
the task at hand and with OMA’s review and approval of deliverables before
installation.

– ASM has full responsibility for execution but shares responsibility for results with
OMA.

– All TTs will be directed to ASM following SMS processes but OMA will assist in
reviewing the code.

• SMS Ownership
– ASM takes full responsibility for both execution and results for the component.

OMA provides advice only if needed. All TTs will be directed to the ASM
following SMS processes.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 50

10.4 NCF and User Support
The following discussion describes the activities shown on Figure 10-1.

NCF Training will consist of AWIPS II familiarization/operations training for Backline and
Frontline staff. Training will focus on what NCF staff needs to be able to Evaluate – Diagnose –
Assign – Restore in the AWIPS II world. The Basic Engineering Course will be modified to
address AWIPS II changes.

During the transition, we will form an NCF AWIPS II Tiger Team. Each shift will have AWIPS
I and AWIPS II dedicated staff. The mix between AWIPS I and AWIPS II will gradually shift
until all sites are operational with AWIPS II. Site phone calls and trouble tickets will be parsed to
AWIPS I or AWIPS II team. All trouble tickets are escalated as is done today for AWIPS I. NCF
escalates AWIPS II tickets to OMA during OTE. During OTE, the NCF will produce a daily
AWIPS II status/troubles report.

The basic tools the NCF uses are not expected to change. The NCF will use Remedy to assign,
track, and store tickets distinctly for AWIPS I vs. AWIPS II. Openview (ITO) will be modified
to create templates for AWIPS II for items distinct to AWIPS II that might need to be evaluated,
tracked, alarmed, etc. The NCF will update its Standard Operating Procedures (SOP) and related
processes prior, during, and after transition as appropriate

10.5 Service Level Agreements (SLA)
SLA transition is part of O&M transition. AWIPS II SLAs are TBD at this time.

ASM AWIPS I SLAs end at SMS Ownership, and AWIPS II SLAs begin at SMS Ownership.
During transition, AWIPS I TTs will take priority over AWIPS II because the AWIPS I SLAs
are still in effect. TTs for AWIPS I will be resolved at best effort after SMS Ownership of
AWIPS II (example: NCs).

SWIT AWIPS I SLAs end at SMS Ownership and AWIPS II SLAs begin once SMS begins to
lead the activities related to a Major Release.

NCF AWIPS I SLAs end at SMS Ownership and AWIPS II SLAs begin at SMS Ownership.

10.6 Governance
AWIPS II delivery brings the opportunity to change the release paradigm while enabling easier
extension by the Field Operations. This also provides opportunity for problems resulting from
uncontrolled change. “Governance” is the term generally used to refer to the rules and processes
for managing change to the AWIPS II software environment. As with the rest of O&M transition
the fundamentals shouldn’t change that much except for possibly scope and organization
participation.

In the big picture, governance is fundamentally concerned with decision making, and for IT
systems like AWIPS it generally starts with funding/resource decisions. How much will be spent
on “IT”? How will it be spent? Next, governance is concerned with change decisions and related
processes such as managing change authorizations to AWIPS II; adding new capability; applying
corrective actions; and setting priorities (which is a form of “how to expend resources”).

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 51

A Governance Vision Team is currently defining governance for AWIPS II. The team has and is
reviewing AWIPS I governance processes and procedures for applicability with AWIPS II. The
Team is currently working the details of governing the AWIPS II Baseline, and will address local
application governance once Baseline governance is addressed.

One area of change for AWIPS II is governance of the architecture. Here, architecture refers to
the executable software that comprises the core infrastructure of the system. It is possible for a
software developer to ignore available functionality in the infrastructure and add redundant
functionality to the system. Left unchecked, these additions will create maintenance and
extensibility issues similar to those that exist with AWIPS I. To avoid this, an “architecture”
development/maintenance group needs to be formed separate from “applications”
development/maintenance. Design reviews for new applications should be held early in the
development cycle (OSIP Gate x) for architectural compliance, for example, not developing
redundant infrastructure or services. These reviews may point to the need for changes to the core
infrastructure. The architecture maintenance group would perform these changes. The NWS
should consider and include the resources to make architecture changes when planning new
applications development.

AWIPS II will have configuration management locks that will prevent certain changes to system
(by developers whether they are development or field operations organizations).

LA “Plug-ins” (e.g., CAVE, SOA, data) will be located in a specific directory similar to the
Baseline plug-ins (i.e., likely to be a tree structure with a branch terminating with a “base” leaf
and an adjacent “local” leaf.) Details will be developed in TO11. Changing to Camel has caused
changes to baseline locations.

LA scripts should be located in a Unix standard execution structure on a shared mount from the
NAS. This partition would also hold output data and provide a means to contain “run away” apps
from filling disk space outside the partition. This NAS set-up may also suffice as a LA Test
Environment in the longer term.

 AWIPS Software CTR Product Improvement Plan, Ver. 4 (Draft), 19 Dec. 2008

Contract DG133W-05-CQ-1067; DCN AWP.PLN.SWPIP-04.00DFT
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document. 52

11. Government Testing
The NWS will conduct several types of tests on AWIPS II. These types of testing will include
independent validation and verification (IV&V), User Functional Evaluation (UFE), Operational
Test and Evaluation (OTE), and (security) certification and accreditation (C&A). Other testing is
also being planning (e.g., pre-OTE, RTF). The NWS is responsible for the planning and
execution of these tests. However, Raytheon will provide technical support depending on the
specific testing. Support may take the form of fixing “work stops,” processing trouble tickets,
providing DR disposition reports, and assisting in defining performance test procedures. Details
of this testing are beyond the scope of this document; however, a few points on each are
provided in this section.

Independent Validation and Verification (IV&V)

IV&V started with ADE 0.1 release and will occur throughout the migration period. Raytheon
technical support will consist of assisting in defining performance tests, and providing DR
disposition reports.

User Functional Evaluation (UFE)

The UFE will occur at the end of TO8, 9, 10, and 11. It is similar to the Pre-Integration Test
(PIT) done today for new functionality. It is planned for a nominal three weeks (longer than
today’s PIT). It will provide for evaluation of “forecaster functionality” and will be performed by
field personnel (e.g., forecasters). The primary purpose of the UFE is to verify that the
functionality adequately mimics AWIPS I for end-user functions delivered with a specific TO.
Raytheon’s technical support will consist of fixing work stops, and providing a DR disposition
report for DRs submitted to Raytheon for the UFE.

Operational Test & Evaluation (OTE)

OTE will begin on November 30, 2009. OTE is currently planned for six months. The OTE plan
is currently under development by an NWS Integrated Working Team (IWT). Raytheon
technical support will consist of normal Trouble Ticket processing, which includes priority
resolution of work stops. Note that the AWIPS support organizations will be ready to provide
this support when OTE begins as discussed in Section 10. Raytheon also expects to participate in
OTE performance testing definition.

Certification & Accreditation (C&A)

AWIPS (the total system) will go through a C&A update in mid-2008. AWIPS II will be a
revision to that C&A plan addressing the AWIPS II software changes. This is expected to be
primarily testing of technical controls (e.g., authentication, authorization) of AWIPS II within the
security architecture of the AWIPS system (e.g., hardened perimeter). As such it is not expected
to be a major departure from the approaches today. C&A can start and occur concurrently with
OTE. If the technical controls test is successful, the overall process is expected to take eight
weeks.

	1.
	1. Introduction
	1.1 Background
	1.2 Purpose of the Product Improvement Plan

	2. Strategy
	2.1 Key Requirements / Needs
	2.2 Task Order Management Approach
	2.3 Approach to Re-Architecture
	2.4 Roadmap

	 3. AWIPS II Architecture
	3.1 Introduction
	3.2 Conceptual Architecture: Target State
	3.3 AWIPS Service Oriented Architecture
	3.4 Key AWIPS II Features
	
	3.5 AWIPS II Implementation Approaches / Features
	3.6 Security Considerations
	3.7 Technical Risks and Mitigations

	 4. Project Management
	4.1 Assumptions
	4.2 Organization
	4.3 Risk and Opportunity Management
	4.4 Decision Management: Governance
	4.5 Technical (Management) Controls
	4.6 Integrated Master Plan; Integrated Master Schedule
	4.7 Facilities and Capital Equipment
	4.8 Formal Reviews and Reporting

	 5. Software Development
	5.1 Software Configuration Management
	5.2 Testing
	5.3 Documentation
	5.4 Standards
	5.5 Tools
	5.6 Backup and Recovery
	5.7 Security (Information Assurance)

	 6. AWIPS Software Migration
	6.1 Migration Approach
	6.2 Migration Task Order Summary Descriptions
	6.3 Special Topics
	6.4 Local Applications (LA)
	6.5 Documentation
	6.6 TTR/DR Processing Coordination

	OTE System Testing is expected to report defects and issues via TTRs. However, at the beginning of “field operations” testing at the sites, defects and issues should be reported using the normal Trouble Ticket Process.
	Raytheon does not expect its basic TTR/DR release processes to change with OTE. That is, “DR releases” may occur on a biweekly basis. The adjudication processes are likely to change somewhat due to the “ownership” of the testing transferring from OST to OOS. The details of the OTE processes are TBD at this time. 7. AWIPS I Baseline Software Migration Risks
	 8. Training
	8.1 Developer Training
	8.2 System Administration Training
	8.3 Training Support Task Order Description

	 9. Site Migration and Deployment
	 10. Transition to O&M
	
	10.1 Release Management
	10.2 SWIT, CM, and Test Environment Transition
	10.3 Application Maintenance
	10.4 NCF and User Support
	10.5 Service Level Agreements (SLA)
	10.6 Governance

	11. Government Testing

