
6.2 OVERVIEW OF THE NEW AWIPS SOA

John D. Lawson, Frank P. Griffith*
Raytheon Company

Jason P. Tuell, Ronla K. Henry
NOAA/National Weather Service

1. INTRODUCTION∗

The National Weather Service (NWS) Advanced
Weather Information Processing System (AWIPS)
is undergoing an extensive re-architecture and
conversion to a Services Oriented Architecture
(SOA). A primary goal of the new architecture is to
provide a software environment that meets the
NWS continually growing mission requirements.
This requires an adaptable system able to readily
incorporate new data types and new science
applications while providing scalability from a
laptop computer to high performance clustered
servers.

Raytheon Company is currently developing the
new AWIPS SOA. The technical reference
architecture is an executable environment that
provides an “end-to-end” AWIPS development
environment (ADE) and runtime environment
created by automated build and deploy processes.

This paper provides an overview of the conceptual
architecture and design approaches being used.
The paper also discusses the features and
benefits provided by the new architecture.

2. KEY REQUIREMENTS / NEEDS

The existing end-user functionality of AWIPS
appears to be comprehensive and adequate for
current needs. Of concern to the NWS, however,
are the cost, complexity, and rapidly increasing
difficulty of extending AWIPS’ functionality to meet
the future mission of NWS and adapt to an
evolving Concept of Operations.

The new Architecture addresses several AWIPS
system needs identified by the NWS. These needs
/ requirements include:

∗ Corresponding author address: Frank P. Griffith,
Raytheon Company; email:
Frank_P_Griffith@raytheon.com

• Improved adaptability to accommodate new
science, new data types, and a changing
CONOPS.

• Maximum use of Open Source software
• Platform independence (hardware, operating

system, database).
• Improved reliability, availability, and

supportability.
• Improved performance, scalability (up and

down), and load balancing.
• Simpler software build and deployment

framework.
• Streamlined installation process, including

application releases.
• Improved support for local applications in site

installations.
• Standard development environment for all

developers and improved compliance with
standards.

3. APPROACH

The project approach of this software architecture
conversion first creates a software infrastructure
and then utilizes that infrastructure to migrate end-
user functionality (e.g. applications) to a new
execution environment. The design approach
creates a new low cost framework for hosting a full
range of environmental services. The framework
scales down to a small laptop and up to clusters of
enterprise servers without software change. The
framework is based on highly reusable design
patterns that maximize reuse, have data type
independence, and fast adaptability.
Reuse is maximized through leveraging open
source projects which also meets the NWS desire
for non-proprietary software usage.

The framework implementation integrates several
best of breed open source projects with a set of
advanced enterprise patterns to create a highly
extendable framework. The open source codes
and enterprise patterns are packaged into the
“AWIPS Development Environment” (ADE) that

Figure 1 - AWIPS SOA Technical Reference Architecture

+Ingest Data
+Index Data +Store Data
+Transform Data +Build Products

+Disseminate

+Visualize +Manipulate

<<Technical Reference Architecture>>
Services

<<Technical Reference Architecture>>
AWIPS Weather Services Data Types

Transforms
Scripts

+weather libraries
+mapping libraries

Core Base of Services
Micro Engine
Plug-in Framework
Core libraries

Extend to a specific set
of services

Plug in specific libraries
Plug in data types,

transforms

<<Visualization Framework>>
AWIPS Applications

Vis Plugin 1+core plug-ins
+ libraries

Vis Plugin 2
Vis Plugin n

Service Interface To Data
Clean separation between data

and visualization
Canonical XML data model
Scriptable Interface

Satellite Feed

Local Data

Meta
Data

Data

JMX Management Console

+Ingest Data
+Index Data +Store Data
+Transform Data +Build Products

+Disseminate

+Visualize +Manipulate

<<Technical Reference Architecture>>
Services

<<Technical Reference Architecture>>
AWIPS Weather Services Data Types

Transforms
Scripts

+weather libraries
+mapping libraries

Core Base of Services
Micro Engine
Plug-in Framework
Core libraries

Extend to a specific set
of services

Plug in specific libraries
Plug in data types,

transforms

<<Visualization Framework>>
AWIPS Applications

Vis Plugin 1+core plug-ins
+ libraries

Vis Plugin 2
Vis Plugin n

Service Interface To Data
Clean separation between data

and visualization
Canonical XML data model
Scriptable Interface

Satellite Feed

Local Data

Meta
Data

Data

JMX Management Console

includes everything from the source code
repository to the execution environment including
operator clients.

The technical reference architecture, shown in
Figure 1, is an executable environment that
provides an “end-to-end” AWIPS development
environment (ADE) and runtime environment
created by automated build and deploy processes.

One important aspect of the architecture is that the
core services are extendable to varying
implementations. As shown in the figure the core
services are extended to the specific needs of the
AWIPS Weather Services. Other instances of this
architecture could include different libraries and
metadata for other application domains. Another
important aspect of the architecture is the
separation of the data and the visualization
framework which ensures loose coupling of data
and the visualization applications. Loose coupling
enables system flexibility and adaptability.

4. ARCHITECTURE FEATURES

SOA has become a buzz word of sorts. In simple
terms, what SOA means to AWIPS is:

• Services are organized into containers with
loose coupling.

• Services are composed of components
• Interface details are abstracted away from

services.
• Interfaces between services and clients of

services are defined in a well-known data
model.

• System capabilities are available as network
services.

• Service are event-driven
Additional features are discussed in the following
paragraphs.

Languages and Inter-process communication
Java is the primary programming language. Java
has extensive open source support, high
programmer productivity, high reuse, performance
parity with traditional languages, and is a primary
university teaching language enabling a population
of future Java programmers. Java also enables
platform independence via the Java Virtual
Machine (JVM).

Python is supported with a Jython engine for
scripting. The Jython engine is extensible with
Java classes, has a large base of customer scripts
and expertise, and provides a clean OO approach
to scripting

The Java Messaging System (JMS) is the primary
mechanism for inter-process communication. JMS
enables Staged Event Driven Architecture (SEDA)
processing, increases reliability through queue
persistence, and enables subscription / notification
through topics. JMS also enables asynchronous
communication for improved performance.

HTTP, FTP, JMS, e-mail are utilized for WAN
communication. Transparent switching between
JMS and HTTP occurs without application
changes.

Execution Container & Data

The new AWIPS SOA utilizes an Enterprise
Service Bus (ESB) approach to integration that
provides the “plumbing” for highly distributed
loosely coupled services. The ESB supports
messaging, web services, data transformation,
and routing. Process flow and service invocation
can span the entire bus. A dependency injection
container minimizes service and component
coupling enabling more flexible services. The ESB
provides clear separation between business and
control logic.

Visualization

A Common AWIPS Visualization Environment
(CAVE) is provided to facilitate consistent user
interface implementations across varying AWIPS
applications. CAVE supports the fixed scales and
detailed interactions of D2D and also supports the
large data sets and analysis capability of N-
AWIPS. CAVE supports GIS Visualization natively
as well as collaboration and remote client
operations.

CAVE is implemented as a set of Eclipse Plug-ins
installed in the Eclipse Rich Client Platform (RCP).
Eclipse RCP is a full featured framework with an
extensive widget set, extendable through plug-ins.
It has high performance and is available as open
source.

Eclipse RCP has an extensive support community,
and a large public repository of plug-ins.

Geospatial Enabling Data
All ingested data is indexed into a spatial index
making spatial query and analysis available to the

visualization operator or SOA service. Station and
scale definitions are converted into ESRI standard
shape files. An R-Tree index of geometry records
is created. (A prototype using 7000 record station
list had a query performance of ~ 230 spatial
queries / sec on a laptop). GIS analysis of data
and rendering GeoTiff using Tiff tags are enabled.
The system can ingest and index data spatially
and create Shape and GeoTiff output. ESRI
Shape Files are used as the standard vector
format. This overall approach is free, simple,
provides high performance, and is based on an
industry standard data format.

Extensibility

The new AWIPS SOA enables adaptability and
flexibility by providing several mechanisms to
extend to extend the system’s functionality either
as a centrally or locally developed capability. New
data types and transforms are readily added to
AWIPS using plug-ins. New visualization capability
is added to CAVE using plug-in support provided
by the Eclipse RCP. The uEngine provides an
execution framework for generating custom
products on-demand. Customer systems can
request products by script requests over a
network. The script performs small general units
of work that get chained together to produce a
customer product. Other examples of extensibility
are support for GEMPAK style grid diagnostics
and GFE style scripting using Python.

Patterns and Services

Several design patterns have been implemented
in the new AWIPS SOA to maximize reuse across
system functions. A list of example patterns is
shown in Figure 2 on the next page.

Patterns and components are combined to form
various services. Sample services of the new
AWIPS SOA are shown in Figure 3 on the next
page.

Performance

Quad tree tiling and progressive disclosure enable
high performance graphical display pan and zoom
on relatively modest software for vector and raster
data.

Staged Event Driven Architecture (SEDA) is
employed with multithreading and clustering to
provide scalable performance without software
changes.

The new AWIPS SOA described in this paper
provides NOAA/NWS with a modern software

Consolidates disparate display mechanisms into one
platform independent whole

Common AWIPS Visualization
Environment (CAVE)

Enables data driven processing and displayData Notification / Subscription

Enables system evolution by allowing legacy
processes to run in a SOA

Legacy Adapter Pattern

Enables system adaptability to new data and
transforms

Datatype Plugin Pattern

Enables building, displaying, analysis, and querying
for data

Geo Spatial Pattern

Enables system flexibility through re-use of small
units of execution

uEngine Task Execution Pattern

Standard pattern for injecting new componentsComponent Model

Standardizes the request / response interface to
SOA services

Canonical XML Service Interface

Simplifies Service interactions with application
containers

SOA Service Pattern

Use open source tools to standardize build and
enforce standards for components

CM/Build/Deploy Pattern

Consolidates disparate display mechanisms into one
platform independent whole

Common AWIPS Visualization
Environment (CAVE)

Enables data driven processing and displayData Notification / Subscription

Enables system evolution by allowing legacy
processes to run in a SOA

Legacy Adapter Pattern

Enables system adaptability to new data and
transforms

Datatype Plugin Pattern

Enables building, displaying, analysis, and querying
for data

Geo Spatial Pattern

Enables system flexibility through re-use of small
units of execution

uEngine Task Execution Pattern

Standard pattern for injecting new componentsComponent Model

Standardizes the request / response interface to
SOA services

Canonical XML Service Interface

Simplifies Service interactions with application
containers

SOA Service Pattern

Use open source tools to standardize build and
enforce standards for components

CM/Build/Deploy Pattern

Figure 2 – Sample Design Patterns Focused on Maximizing Reuse Across System Functions

Service Description

Ingest Listens on an endpoint for new data and transforms the data into a m essage.

Persist Writes ingested data to a persistent store; file system or RDBMS.

Index Indexes the metadata extracted from the ingested data into a store that
facilities data searches and ret rievals.

Product Listens on an endpoint for external product requests and fulfills the request
with a res ponse m essage. Typically receives “Action” scripts that describe
how to transform raw data into a visualization product.

Notify Broadcasts a product from a subscription ful fillment. Also, sends out alerts
based on ingested data.

Subscribe Listens on an endpoint for URI references to new data and determines which
products need to be rebuilt.

Auto Build Receives requests to build products that are under subscription. Triggered by
data arrival and/or time.

Collaborate Provides a common point for serving out products that are shared by several
clients.

Grid Edit Receives requests to edit grids. Interfaces to a scripting engine to allow edit
requests to be scripted.

Adapter Enables legacy command line programs to be run as a standard service.

 Figure 3 – Sample Services of the New AWIPS SOA

architecture that should provide the adaptability
needed to meet future missions for many years.

	1. INTRODUCTION(
	2. KEY REQUIREMENTS / NEEDS
	3. APPROACH
	4. ARCHITECTURE FEATURES
	Languages and Inter-process communication
	Execution Container & Data
	Visualization
	Geospatial Enabling Data
	Extensibility
	Patterns and Services
	Performance

