

This document includes data that shall not be duplicated, used, or disclosed – in whole or in part – outside the Government for
any purpose other than to the extent provided in contract DG133W-05-CQ-1067. However, the Government shall have the right
to duplicate, use, or disclose the data to the extent provided in the contract. This restriction does not limit the Government’s right
to use information contained in this data if it is obtained from another source without restriction. The data subject to this
restriction are contained in all sheets.

AWIPS II EDEX Training Resource Material
MicroEngine Tasks

Prepared in Support of the AWIPS Software

Continuous Technology Refresh Re-Architecture,
Task Order T1

Document No. AWP.TRG.SWCTR/TOT1-03.00
28 February 2008

Prepared Under

Contract DG133W-05-CQ-1067
Advanced Weather Interactive Processing System (AWIPS)

Operations and Maintenance

Prepared by:

Raytheon Technical Services Company LLC
8401 Colesville Road, Suite 800

Silver Spring, MD 20910

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 i
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Table of Contents

Page

1. Objective ..1
2. Description...1
3. Existing µEngine Tasks ...3

3.1 ArchiveSrvControl Task ..4
3.2 Catalog Task ..5
3.3 ColorMapImage Task ..6
3.4 ColormapQuery Task...6
3.5 ConvertWindsData Task..7
3.6 DataToXml Task..8
3.7 DecodeRadarImage Task ...8
3.8 ExecuteCommand Task ...9
3.9 FileIn Task ...10
3.10 FileOut Task...11
3.11 GribContourLine Task ...12
3.12 GribExtractData Task ..13
3.13 GribImpacts Task...13
3.14 GribMap Task ..14
3.15 GribSlicer Task ..15
3.16 HibernateStats Task ...16
3.17 ImageOut Task...17
3.18 LatestTimeQuery Task...17
3.19 MakeResponseAscii Task..18
3.20 MakeResponseInline Task ...19
3.21 MakeResponseNull Task ...20
3.22 MakeResponseUri Task ...21
3.23 MakeResponseXml Task ...22
3.24 MapAsciiData Task ...22
3.25 ObjectiveAnalysis Task ...23
3.26 ReplayArchive Task...24
3.27 ReprojectImage Task ...25
3.28 Shapefile Task..26
3.29 ShapeFileQuery Task...26
3.30 SpatialQuery Task..27
3.31 StopLightImage Task...28
3.32 SystemLog Task...29
3.33 TableQuery Task..29
3.34 TableUpdate Task ..30
3.35 TermQuery Task ..31
3.36 VtecObjectQuery Task...32
3.37 VtecQuery Task ...33
3.38 VtecUpdateEvent Task ..34

Appendix A. References ... A-1
Appendix B. Acronym List..B-1

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 ii
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

List of Figures
Page

Figure 1. µEngine Script Building Blocks.. 1
Figure 2. ScriptTask Class Diagram ... 1
Figure 3. ExecuteCommand Class Diagram... 2
Figure 4. DbQuery Class Diagram.. 2

List of Tables
Page

Table 1. Accessible uEngine Tasks ...3

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 1
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

1. Objective
This document identifies and describes the MicroEngine (µEngine) Tasks that were provided as
part of the AWIPS II EDEX baseline. The listing is accurate as of Task Order 8.

2. Description
µEngine tasks represent low-level building blocks that EDEX uses to create visualization
products. The other components are µEngine Scripts and User Scripts as shown in Figure 1.

Figure 1. µEngine Script Building Blocks

µEngine tasks are written in Java, but are intended to be accessed from JavaScript within the
µEngine. A µEngine task extends the abstract ScriptTask base class as shown in Figure 2.

Figure 2. ScriptTask Class Diagram

ScriptTask provides a logger (org.apache.commons.logging.Log) instance and specifies a single
operation, execute(), which returns an object. Generally, a µEngine task will provide at least one
public constructor and public accessor methods for any class attributes. The µEngine task may
provide additional public methods and any desired private methods.

Figure 3 displays the class diagram for the ExecuteCommand task, which allows the µEngine to
run a command using the AutoBldSvr endpoint. This task has two constructors and accessors for
two class attributes; the command body and the execution time out.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 2
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Figure 3. ExecuteCommand Class Diagram

In some cases, it is desirable to extract common functionality from a group of related tasks into a
common base class. In that case, a task will extend the common class rather than extending the
ScriptTask directly.

Figure 4 illustrates this situation. In this case, DbQuery is an abstract class that 1) extends
ScriptTask, and 2) includes common functionality (and class attributes) shared by database query
tasks. TermQuery and TableQuery represent concrete tasks for performing specific types of
database queries.

Figure 4. DbQuery Class Diagram

Currently, a µEngine task can be defined in one of two places; within the µEngine itself or in a
data-type plug-in. A discussion of procedures for writing a µEngine task is beyond the scope of
this document. Rather, the rest of the document will provide a listing of the existing µEngine
tasks.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 3
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

3. Existing µEngine Tasks
This section provides detailed descriptions of most of the µEngine tasks delivered in AWIPS II
Task Order 8. Tasks that exist in the code baseline but are not currently available to the µEngine
have been omitted. Each task description includes a sample JavaScript snippet illustrating how
the task may be used in a µEngine script.

Table 1 provides a list of the tasks described in this section and identifies the package and
location for each task. This listing includes only concrete, non-abstract, classes that are
accessible to the µEngine. Note that some of these tasks are demonstration tasks created for the
ADE 1.0 release and may have limited application.

Table 1. Accessible uEngine Tasks
Task Package Location

ArchiveSrvControl com.raytheon.edex.uengine.tasks.process µEngine
Catalog com.raytheon.edex.uengine.tasks.query µEngine
ColorMapImage com.raytheon.edex.uengine.tasks.process µEngine
ColormapQuery com.raytheon.edex.uengine.tasks.query µEngine
ConvertWindsData com.raytheon.edex.uengine.tasks.process µEngine
DataToXml com.raytheon.edex.uengine.tasks.output µEngine
DecodeRadarImage com.raytheon.edex.uengine.tasks.radar Radar Plug-in
ExecuteCommand com.raytheon.edex.uengine.tasks.process µEngine
FileIn com.raytheon.edex.uengine.tasks.decode µEngine
FileOut com.raytheon.edex.uengine.tasks.output µEngine
GribContourLine com.raytheon.edex.uengine.tasks.grib GRIB Plug-in
GribExtractData com.raytheon.edex.uengine.tasks.grib GRIB Plug-in
GribImpacts com.raytheon.edex.uengine.tasks.grib GRIB Plug-in
GribMap com.raytheon.edex.uengine.tasks.grib GRIB Plug-in
GribSlicer com.raytheon.edex.uengine.tasks.grib GRIB Plug-in
HibernateStats com.raytheon.edex.uengine µEngine
ImageOut com.raytheon.edex.uengine.tasks.process µEngine
LatestTimeQuery com.raytheon.edex.uengine.tasks.query µEngine
MakeResponseAscii com.raytheon.edex.uengine.tasks.response µEngine
MakeResponseInline com.raytheon.edex.uengine.tasks.response µEngine
MakeResponseNull com.raytheon.edex.uengine.tasks.response µEngine
MakeResponseUri com.raytheon.edex.uengine.tasks.response µEngine
MakeResponseXml com.raytheon.edex.uengine.tasks.response µEngine
MapAsciiData com.raytheon.edex.uengine.tasks.process µEngine
ObjectiveAnalysis com.raytheon.edex.uengine.tasks.process µEngine
ReplayArchive com.raytheon.edex.uengine.tasks.process µEngine
ReprojectImage com.raytheon.edex.uengine.tasks.process µEngine
Shapefile com.raytheon.edex.uengine.tasks.output µEngine
ShapeFileQuery com.raytheon.edex.uengine.tasks.query µEngine
SpatialQuery com.raytheon.edex.uengine.tasks.obs OBS Plug-in
StopLightImage com.raytheon.edex.uengine.tasks.process µEngine
SystemLog com.raytheon.edex.uengine.tasks.process µEngine
TableQuery com.raytheon.edex.uengine.tasks.query µEngine
TableUpdate com.raytheon.edex.uengine.tasks.process µEngine
TermQuery com.raytheon.edex.uengine.tasks.query µEngine

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 4
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Task Package Location
VtecObjectQuery com.raytheon.edex.uengine.tasks.vtec µEngine
VtecQuery com.raytheon.edex.uengine.tasks.vtec µEngine
VtecUpdateEvent com.raytheon.edex.uengine.tasks.vtec µEngine

3.1 ArchiveSrvControl Task
Package:

com.raytheon.edex.uengine.tasks.process

Description:
Executes a command against a specific Archive Service. Commands provide
control over all aspects of the archival process. Commands allow the client to 1)
get a list of archive services, 2) turn archiving on and off, 3) set/modify the
archive directory location. The command(s) to be executed depend on the
attribute(s) set prior to calling the execute method. If no attributes are set, a list of
archive servers is returned.

Return:
The execute() method returns the list, of possibly updated archive servers in the
system.

Usage:
This example is a JavaScript script that turns on archiving of radar data.
// create the task to perform the control command
var query = new ArchiveSrvControl();
// set the archive mode on
query.setTeeModeOn(true);
// set the service to receive the command
query.setTargetName('RADAR');
// execute the command
var response = query.execute();
var makeResponse = new MakeResponseXml(response);
makeResponse.execute();

Constructors:
ArchiveSrvControl()

Class Attributes:
Name Type Description
targetName String Name of the dataflow to modify.
teeModeOn boolean Set to true to enable data archive.
archiveDirectoryLocation String Directory into which data is to be

archived.

Notes:
1. There are additional attributes available, but there is currently no command

capability behind the attributes.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 5
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

3.2 Catalog Task
Package:

com.raytheon.edex.uengine.tasks.query

Description:
Performs a catalog query based on specified constraints. The catalog query
generates a list of values of a specified field (or fields) in the metadata for a
specified data type as constrained by a set of query constraints. The query can
return either a full listing of values in the specified field or only the distinct values
of the field.

Return:
execute() returns a ResponseMessageCatalog object, which contains the results of
the query.

Usage:
This example is a JavaScript script that requests a list a radar product codes
available at KOAX. The resulting list contains distinct values.

// create the Catalog object, setting query type
var query = new Catalog('distinctValue');
// specify the field(s) to return
query.addQueryField('productcode');
// specify the plugin
query.addConstraint('plugin', 'radar');
// specify query constraints
query.addConstraint('icao', 'koax');
// execute the query
var result = query.execute();

Constructors:
Catalog(String aQueryType)

Class Attributes:
Name Type Description
queryType String DistinctValue or document – identifies type

of query to perform.
queryField List<String> List of fields to return in the result set.
fields List<String> List of fields in query constraints.
operands List<String> List of operands in query constraints.
values List<Object> List of values in query constraints.

Notes:

1. Every query must have a constraint identifying the data-type plug-in

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 6
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

3.3 ColorMapImage Task
Package:

com.raytheon.edex.uengine.tasks.process

Description:
Applies a color map to an image buffer, creating a BufferedImage. The single
dimension image buffer is a byte array.

Return:
execute() returns a java.awt.image.BufferedImage object.

Usage:
This example is a JavaScript snippet that applies a color map to an image buffer.
It is part of a script that creates an image from a satellite record.

// single query result obtained using the TermQuery task.
var result;
// single record obtained using the FileIn task.
var record;
// get the product geometry from the query results
var geom. = result.getSpatialInfo().getMapGeom();
// get the data from the data object
var data = record.getDataObject();
// create the color map object
var colorMap = new ColorMapImage('BW',data,geom);
create the buffered image
var buffered = colorMap.execute();

Constructors:
ColorMapImage(String mapName, byte[] image, GridGeometry2D geometry)

Class Attributes:
Name Type Description
colorMapName String Name of the desired color map.
image byte[] Buffer containing the image pixels.
gridGeometry GridGeometry2D Geometry object describing the image.

Notes:

1. Although accessors are provided for the class attributes, the only constructor
requires all three attributes as arguments, so the accessors are not normally used.

3.4 ColormapQuery Task
Package:

com.raytheon.edex.uengine.tasks.query

Description:
Gets a list of available color maps.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 7
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Return:

execute() returns a ResponseMessageCatalog object, which contains the list of
color map names.

Usage:
This example obtains the list of available color maps.

// create the color map query object
var query = new ColormapQuery();
//execute the query to obtain the color map list
var colormaps = query.execute();

Constructors:
ColormapQuery()

Class Attributes:
None.

3.5 ConvertWindsData Task
Package:

com.raytheon.edex.uengine.tasks.process

Description:
Converts u/v winds data into either wind speed or wind direction.
ConvertWindsData takes three inputs; a buffer containing the u-wind components,
a buffer containing the v-wind components, and a flag indicating the desired
conversion. All inputs are set by the constructor.

Return:
execute() returns a FloatDataRecord containing the converted wind values.

Usage:
This example is a JavaScript snippet that converts u/v wind data into wind speed.
It is part of a larger script that produces a red/yellow/green chart based on
windspeeds.

// uData and vData are obtained using TermQuery and FileIn tasks.
var uData;
var vData;
// create the task to perform the conversion – “true” means to convert to wind
speed
var converter = new ConvertWindsData(uData,vData,true);
// perform the data conversion – “true” means to convert to wind speed
var speeds = converter.execute();

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 8
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Constructors:
ConvertWindsData(IDataRecord uWinds, IDataRecord vWinds, Boolean speed)

Class Attributes:
None.

Notes:
1. This is a prototype task created as a proof of concept demonstrating specific

processing that can be performed on grib data. It should not be considered ready
for use and may be removed from its package in the future.

3.6 DataToXml Task
Package:

com.raytheon.edex.uengine.tasks.output

Description:
Converts the data contained in a PluginDataObject object into XML format.

Return:
execute() returns a string containing the XML formatted data.

Usage:
This example is a JavaScript snippet that converts a query result into XML. It is
part of a larger script that performs a query for ascii data over a specified region.

// single query result obtained using the TermQuery task.
var result;
// create the task to perform the conversion
var converter = DataToXml(result);
// perform the conversion
var xml = converter.execute();

Constructors:
DataToXml(Object pluginDataObject)

Class Attributes:
Name Type Description
record PluginDataObject Contains the data to be converted.

Notes:

1. DataToXml can be used with both text/ascii data and binary data. Care should be
taken, however, as the binary data can be very large when converted to XML.

3.7 DecodeRadarImage Task
Package:

com.raytheon.edex.uengine.tasks.radar

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 9
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Description:

Converts the raw radar data contained in an array of radar records into a single
radar image. As a side effect, the Grid Geometry and Coordinate Reference
System objects are created for the radar image. The resulting image can be
processed further for display.

Return:
execute() returns a byte array containing the converted radar image.

Usage:
This example is a JavaScript snippet that converts a set of radar data into an
image raster. It is part of a larger script that retrieves a radar image for specified
site.

// single query result obtained using the TermQuery task.
var query;
// group of records obtained using the FileIn task.
var records;
// create the task to perform the conversion
var converter = new DecodeRadarImage(query,records);
// convert the radar data to an image raster
var raster = converter.execute();

Constructors:
DecodeRadarImage(PluginDataObject master, IDataRecord[] records)

Class Attributes:
Name Type Description
geometry GridGeometry2D The grid geometry from the radar.

data (read only)
crs CoordinateReferenceSystem The CRS for the radar data.

(read only)

3.8 ExecuteCommand Task
Package:

com.raytheon.edex.uengine.tasks.process

Description:
Executes the specified operating system command. The command is executed by
forwarding the request to the Adapter Service (AdapterSrv) for processing. The
command must be formatted appropriately for the EDEX server’s operating
system.

Return:
execute() returns a ProgramOutput object containing the results of executing the
command.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 10
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Usage:

This example is a JavaScript script that attempts to run a Linux ps command on
the EDEX server.

// create the task to execute the command
var runner = new ExecuteCommand('ps -f',10000);
// execute the command
var result = runner.execute();
// convert the response to XML
var response = new MakeResponseXml(result);
// return the XML response
return response.execute();

Constructors:
ExecuteCommand(String command)
ExecuteCommand(String command, long timeout)

Class Attributes:
Name Type Description
body String The command to execute.
timeout long Length of time to wait for a response, in milliseconds.

3.9 FileIn Task
Package:

com.raytheon.edex.uengine.tasks.decode

Description:
Allows a µEngine script to import data from the EDEX data store. There are two
action methods available; execute() returns a single data record from the data
store, retrieveGroup() returns a group of records from the data store.

Return:
execute() returns a singe IDataRecord object; retrieveGroup() returns an Object
array.

Usage:
This example is a JavaScript snippet that obtains a single satellite record from the
data store. It is part of a script that creates a displayable image from the satellite
data.

// single query result obtained using the TermQuery task.
var query;
// create the task to read the data
var reader = new FileIn('satellite',query);
// read the data
var record = reader.execute();

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 11
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Constructors:
FileIn(String plugin, PluginDataObject dataRecord)

Class Attributes:
None.

3.10 FileOut Task
Package:

com.raytheon.edex.uengine.tasks.output

Description:
Writes the contents of a buffer to a file in the EDEX server’s file system. There
are two constructors. Both accept the data buffer and the file format token. The
second version also accepts a URI that identifies the name of the output file. If the
two-arg constructor is used, the file is written to a generated file name.

Return:
execute() returns the URI of the output file.

Usage:
This example is a JavaScript snippet that writes a data buffer containing a PJEG
image to a file. It is part of a larger script that generates a browser viewable
satellite image.

// file contents generated via previous processing
var contents;
// create the task to write the file
var writer = new FileOut(contents,’jpg’);
// execute the file write
var response = writer.execute();

Constructors:
FileOut(byte[] data, String format)
FileOut(byte[] data, String format, URI productURI)

Class Attributes:
Name Type Description
format String File type extension code, e.g. png or jpg
uri URI (optional) Specifies the output name for the

file.
data byte[] The data to be written to the file. This will

normally be formatted data.
ignoreDefaultDataDir boolean Should the destination directory be considered

to be fully qualified?

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 12
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

3.11 GribContourLine Task
Package:

com.raytheon.edex.uengine.tasks.grib

Description:
Creates contours from a GRIB record.

Return:
execute() returns a GeometryCollection object containing the contour lines.

Usage:
// single query result obtained using the TermQuery task.
var result;
// single record obtained using the FileIn task.
var record;
// get the product geometry from the query results
var geom. = result.getSpatialInfo().getMapGeom();
// get the product crs from the query results
var crs = result.getSpatialInfo().getCrsObject();
// extract the requested grib record from the data store
var extracter = new GribExtractData(record,result);
var data = extracter.execute();
// create the grib impacts
var generator = new GribContourLine(500,10,800,geom,crs,
 data.getDataObject());
var impacts = generator.execute();

Constructors:
GribContourLine(double baseLevel, double interval, double ceiling,
 GridGeometry2D geometry, CoordinateReferenceSystem
crs,
 Float[] data)

Class Attributes:
Name Type Description
baseLevel double Lowest contour level desired.
interval double Interval between contours.
ceiling double Highest desired level.
geom. GridGeometry2D Geometry object describing the

grid.
crs CoordinateReferenceSystem The CRS for the grid data.
floatData float[] The data in the grid.
collection GeometryCollection Contains the contour lines. (read

only)

Notes:
1. This is a prototype task created as a proof of concept demonstrating specific

processing that can be performed on grib data. It should not be considered ready
for use and may be removed from its package in the future.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 13
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

3.12 GribExtractData Task
Package:

com.raytheon.edex.uengine.tasks.grib

Description:
Extracts the grid data from a data record.

Return:
execute() returns a FloatDataRecord containing the grid data. (A FloatDataRecord
consists of a float buffer and dimensions.) If an error occurs in extracting the grib,
the original input data is returned.

Usage:
This example is a JavaScript snippet that extracts the grid data for a grid request.
It is part of a script that creates an image from a grib record.

// single query result obtained using the TermQuery task.
var query;
// grid record obtained using the FileIn task.
var data;
// create the task to extract the specified grid data
var extractor = new GribExtractData(data, query);
// extract the data
var record = extractor.execute();

Constructors:
GribExtractData(IDataRecord dataRecord, GribRecord record)

Class Attributes:
None.

3.13 GribImpacts Task
Package:

com.raytheon.edex.uengine.tasks.grib

Description:

Transforms a grib record into a set of impacts areas.

Return:
execute() returns a GeometryCollection object containing the impacts areas.

Usage:
// single query result obtained using the TermQuery task.
var result;
// single record obtained using the FileIn task.
var record;
// get the product geometry from the query results
var geom. = result.getSpatialInfo().getMapGeom();

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 14
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

// get the product crs from the query results
var crs = result.getSpatialInfo().getCrsObject();
// extract the requested grib record from the data store
var extracter = new GribExtractData(record,result);
var data = extracter.execute();
// create the grib impacts
var generator = new GribImpacts(data.getDataObject(),geom,crs);
var impacts = generator.execute();

Constructors:
GribImpacts(float[] data, GridGeometry2D geom., CoordinateReferenceSystem
crs)

Class Attributes:
Name Type Description
crs CoordinateReferenceSystem The CRS for the grid.
geom. GridGeometry2D The geometry for the grid.
griddata float[] The data in the grid.
minValue int Lower threshold to ignore.
keys List<Integer> List of keys to the polygons in the

result.

Notes:
1. This is a prototype task created as a proof of concept demonstrating specific

processing that can be performed on grib data. It should not be considered ready
for use and may be removed from its package in the future.

3.14 GribMap Task
Package:

com.raytheon.edex.uengine.tasks.grib

Description:
Converts a buffer of float data into a buffer of byte data. Individual values in the
grid are transformed into the range of pixel values available in the specified color
map. (Transformation is linear.) Class attributes allow for optional scaling of the
image and for filtering out high or low values from the grid.

Return:
execute() returns a byte array containing the transformed data.

Usage:
This example is a JavaScript snippet that maps grid data to 8-bit pixels using the
“Grid/gridded data” color map. The image is not scaled. It is part of a script that
creates an image from a grib record.

// single query result obtained using the TermQuery task.
var query;
var geom = query.getSpatialInfo().getMapGeom();

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 15
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

// single record obtained using the RileIn and GribExtractData
tasks.
var data;
// create the task to perform the data transform
var mapper = new GribMap('grib', 'Grid/gridded data', data,
geom);
mapper.setScaleFactor(1.0);
// transform the data
var image = mapper.execute();

Constructors:
GribMap(String plugin, String colorMapName,

IDataRecord data, GridGeometry2D geometry)

Class Attributes:
Name Type Description
colorMapName String The name of the color map to use.
dataRecord IDataRecord The gridded data to transform.
gridGeometry GridGeometry2D The geometry for the grid.
maximum float Upper value for filtering.
minimum float Lower value for filtering.
scaleFactor int Scale factor for the grid.

3.15 GribSlicer Task
Package:

com.raytheon.edex.uengine.tasks.grib

Description:
Retrieves the values associated with a list geo-locations from a specific grid.

Return:
execute() returns a GribSlice object containing the DataPoint objects in the grid
slice. Each DataPoint object contains a geo-coordinate, a value and a scale.

Usage:
This example is a JavaScript snippet illustrating how to create a grid slice.

// single query result obtained using the TermQuery task.
var query;
// single record obtained using the FileIn and GribExtractData
tasks.
var data;
// create the task to obtain the grid slice
var slicer = new GribSlicer();
// set the coverage on the GribSlicer task
slicer.setCoverage(query.getSpatialInfo());
// set the data into the slicer
slicer.setDataRecord(data);
// set locations into the slicer
slicer.addCoordinate("-91.0","42.0");

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 16
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

// create the slice
var slice = slicer.execute();

Constructors:
GribSlicer()

Class Attributes:
Name Type Description
coverage GridCoverage Contains the geometry information for the grid.
dataRecord IDataRecord Contains the gridded data.
lineStringList ArrayList Contains the points at which to extract the data.

Notes:

1. This is a prototype task created as a proof of concept demonstrating specific
processing that can be performed on grib data. It should not be considered ready
for use and may be removed from its package in the future.

3.16 HibernateStats Task
Package:

com.raytheon.edex.uengine

Description:
Retrieves the current Hibernate statistics as generated by the database
interactions.

Return:
execute() returns a ResponseMessageCatalog object containing the Hibernate
statistics.

Usage:
include("RetrieveHibStats.js");
var query = new HibernateStats();
query.execute();

Constructors:
HibernateStats()

Class Attributes:
None.

Notes:
1. This is a prototype task created as a proof of concept demonstrating specific

processing that can be performed on grib data. It should not be considered ready
for use and may be removed from its package in the future.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 17
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

3.17 ImageOut Task
Package:

com.raytheon.edex.uengine.tasks.process

Description:
Converts a BufferedImage object containing an image into a byte array containing
the image. The byte array is suitable for persisting to a file.

Return:
execute() returns a byte array containing the converted image.

Usage:
This example is a JavaScript snippet that converts a buffered image into a byte
array. It is part of a script that creates an image from a grib record.

// obtained from previous processing
var geom.;
// as created by the ColorMapImage task.
var image;
// create the task to convert the image
var converter = new ImageOut(image, "png",geom.);
// perform the conversion
var converted = converter.execute();

Constructors:
ImageOut(BufferedImage image, String format, GridGeometry2D geom.)

Class Attributes:
Name Type Description
format String Token, such as “png” or “jpg” indicating the

output format.
image BufferedImage The image to convert.
gridGeometry GridGeometry2D The geometry for the image.

3.18 LatestTimeQuery Task
Package:

com.raytheon.edex.uengine.tasks.query

Description:
Performs a query to retrieve the latest available times for specified data items.
Each data item are identified by their data URI.

Return:
execute() returns a ResponseMessageCatalog object containing the list of data
URI’s and the latest available times.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 18
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Usage:
This JavaScript snippet demonstrates using LatestTimeQuery.

// comma separated URI list provided by the client
var list;
// create the task to perform the query
var query = new LatestTimeQuery(list);
// execute the query and return the result
return query.execute();

Constructors:
LatestTimeQuery(String uriList)

Class Attributes:
None.

Notes:
1. The uriList passed to the constructor is a comma separated list of data Uri’s. Each

URI will normally include the SQL wild card characters “%”.
2. This task was written to support localization in CAVE. As such, it may have

limited application elsewhere.

3.19 MakeResponseAscii Task
Package:

com.raytheon.edex.uengine.tasks.response

Description:

Creates an ASCII response for the µEngine script. . This task is normally used to
return ASCII data such as OBs or TAFs. Although responses may be aggregated,
no further tasks should be applied to a set of data once this task has been
executed.

Return:
execute() returns a ResponseMessageASCII object containing the result of the
µEngine script.

Usage:
This example is a JavaScript snippet that creates an ASCII response from a
previously performed query. A similar pattern is used in scripts that return ascii
data to a client.

// single query result obtained using the TermQuery task.
var query;
// result of processing the query result
var result;
// create the task to generate the response
var response = new MakeResponseAscii(query,result);

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 19
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

// create and return the result
return response.execute();

Constructors:
MakeResponseAscii(PluginDataObject record, String input)

Class Attributes:
None.

3.20 MakeResponseInline Task
Package:

com.raytheon.edex.uengine.tasks.response

Description:
Creates an inline response message. It is used to return binary visualization
products from the µEngine to a client. In an inline response message, any product
created by the µEngine script is returned as binary data in the body of the
message. The inline response should be used only when the client is unable to
retrieve the binary product from the EDEX server via another means. Although
responses may be aggregated, no further tasks should be applied to a set of data
once this task has been executed.

Return:
execute() returns a ResponseMessageInline object containing the µEngine script
results.

Usage:
This example is a JavaScript snippet that creates an inline response for a product
created by a µEngine script.

// single query result obtained using the TermQuery task.
var query;
// result of processing the query result
var result;
// get the data URI from the query
var uri = query.getIdentifier();
// create the task to generate the response
var response = new MakeResponseInline(result,null,"png",uri);
// create and return the result
return response.execute();

Constructors:
MakeResponseInline(Object dataItem, Object validTime, String format, String
dataURI)

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 20
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Class Attributes:
Name Type Description
dataItem Object The product to return to the client.
dataUri String The data URI of the data associated with the

product.
format String Data type extension such as “jpg” or “png”
validTime Object The valid time of the object.

Notes:

1. Passing a null validTime to the constructor causes the current time on the server
to be used as the product time.

3.21 MakeResponseNull Task
Package:

com.raytheon.edex.uengine.tasks.response

Description:
Creates a Null Response Message. A Null Response Message is used to return a
message to the client. (Originally, this response was used to report that a meta-
data query had returned no results.)

Return:
execute() returns a ResponseMessageNull object containing the message.

Usage:
This example is a JavaScript snippet that returns a “no results” message to the
client. It is similar to code used in several scripts to handle a empty return from
the TermQuery task.

// the term query task
var query;
// the result set from executing the TermQuery task
var results = query.execute()
// check for positive results
if (results == null || results.size == 0) {
 var response = new MakeResponseNull("Query returned 0
results.",query);
 return response.execute();
}

Constructors:
MakeResponseNull(String message, DBQuery query)

Class Attributes:
None.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 21
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Notes:
1. Normally a metadata query will be available to pass to the constructor. If no query

is available, pass a null as the query attribute.

3.22 MakeResponseUri Task
Package:

com.raytheon.edex.uengine.tasks.response

Description:
Creates a ResponseMessageURI object to return information to the client. A URI
Response Message contains the URI that the client may use to retrieve the product
created by the µEngine script. (The URI points to a file in the EDEX server’s file
system.) MakeResponseUri is the preferred method for returning products to a
client that is able to retrieve the product directly from the server. Although
responses may be aggregated, no further tasks should be applied to a set of data
once this task has been executed.

Return:
execute() returns a ResponseMessageURI object containing the URI for retrieving
the product created by the µEngine script.

Usage:
This example is a JavaScript snippet that creates a URI Response to return to the
client. It is typical of several uEngine scripts that create products for display by
the client.

// single query result obtained using the TermQuery task.
var query;
// get the data URI from the query
var uri = query.getIdentifier();
// product created by the script
var product;
// write the product to the file system
var writer = new FileOut(product,"png");
var result writer.execute();
// create the task to prepare the response
var responseMaker = new MakeResponseUri(result,null,uri,"png");
// create the response
var response = responseMaker.execute();

Constructors:
MakeResponseUri(URI productUri, Object time, Object dataUri, String format)

Class Attributes:
None.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 22
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Notes:
1. Passing a null validTime to the constructor causes the current time on the server

to be used as the product time.

3.23 MakeResponseXml Task
Package:

com.raytheon.edex.uengine.tasks.response

Description:
Creates a response message containing XML representing an object. This allows
the µEngine to return an object to the client in XML format. The object being
returned must implement the IMarshallable interface. Note that the actual
conversion to XML is handled by the µEngine after the script executes.

Return:
execute() returns a ResponseMessageXML containing the object to be converted
to XML.

Usage:
This example is a JavaScript snippet that returns a query result that can be
converted into XML. It is typical of several uEngine scripts that create products
for display by the client.

// single query result obtained using the TermQuery task.
var query;
// create the task to generate the response
var makeResponse = new MakeResponseXml(query);
// execute the task to create the response
var response = makeResponse.execute();

Constructors:
MakeResponseXml(IMarshallable input)

Class Attributes:
None.

3.24 MapAsciiData Task
Package:

com.raytheon.edex.uengine.tasks.process

Description:
Creates a set of Observation objects by mapping a METAR parameter to a set of
geo-locations. The geo-locations are normally retrieved using a SpatialQuery task.

Return:
execute() returns an ArrayList of Observation objects.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 23
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Usage:
This example is a JavaScript snippet that creates a set of temperature observations
from METARs available over a specific region.

// processed results of a spatial query
var locations;
var stations;
// processed results from a term query based on the spatial query
var obs;
// create the task to map the data
var obMap = new
MapAsciiData(“temperature”,obs,stations,locations);
// perform the data map
var result = obMap.execute();

Constructors:
MapAsciiData(String parameter, List<Object>obsList,
 List<Object> stationList, List<Object> geomList)

Class Attributes:
Name Type Description
geoData List<Object> Contains the geometry object with the lat/lons of

the stations.
obsData List<Object> Contains the observations to map.
parameter String The ob parameter to retrieve.
stnData List<Object> Contains the station list.

Notes:

1. This is a prototype task created as a proof of concept demonstrating specific
processing that can be performed on METAR data. It should not be considered
ready for use and may be removed from its package in the future.

3.25 ObjectiveAnalysis Task
Package:

com.raytheon.edex.uengine.tasks.process

Description:
Performs objective analysis to conform non-gridded, geo-located data to a grid
using a specific analysis method.

Return:
execute() returns a FloatDataRecord containing the (possibly updated) grid.

Usage:
// single query result obtained using the TermQuery task.
var query;
// contains the grid data from the FileIn task.
var record;
var geom. = query.getSpatialInfo().getMapGeom();

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 24
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

var crs = query.getSpatialInfo().getCrsObject();
// observations from executing MapAsciiData
var mapObs;
// create the task to perform the analysis
var analyzer = new ObjectiveAnalysis(record,geom.,crs,mapObs);
// set analysis parameters
analyzer.addParameter("searchRadius",50000);
analyzer.addParameter("weight",0.50);
analyzer.addParameter("minNoStns",1);
analyzer.addParameter("numPasses",1);
analyzer.addParameter("extrapolate","true");
// perform the analysis
var analyzed = analyzer.execute();

Constructors:
ObjectiveAnalysis(FloatDataRecord data, GridGeometry2D geometry,
 CoordinateReferenceSystem crs, ArrayList<Observation> obs)

Class Attributes:
None.

Notes:
1. This is a prototype task created as a proof of concept demonstrating specific

processing that can be performed on grib data. It should not be considered ready
for use and may be removed from its package in the future.

3.26 ReplayArchive Task
Package:

com.raytheon.edex.uengine.tasks.process

Description:
Replays the specified archive(s), causing the file(s) in the archive to be
resubmitted to the appropriate ingest endpoint in the correct order and (time)
spacing.

Return:
execute() returns a status message.

Usage:
var query = new ReplayArchive();
// Set the location to feed the data back into the system
query.setSbnDir('/awips/opt/data/sbn/');

//Set the directories to scan and
query.addArchiveDirectory('/awips/opt/data/archive/radar');
query.addArchiveDirectory('/awips/opt/data/archive/sat');
query.addArchiveDirectory('/awips/opt/data/archive/metar');
// execute the playback
var resp = query.execute();
// prepare return the response message
var makeResponse = new MakeResponseNull(resp, null);
makeResponse.execute();

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 25
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Constructors:

Class Attributes:
Name Type Description
sbnDir File Directory containing the data ingest

endpoints.
lstArchiveDirectories List<String> List of archive directories to replay.

Notes:

1. As currently implemented, there is no mechanism to terminate the playback.
2. There may also be problems replaying the archive at the time data is being

archived.

3.27 ReprojectImage Task
Package:

com.raytheon.edex.uengine.tasks.process

Description:
Converts a BufferedImage object containing an image to lat/lon projection.

Return:
execute() returns a BufferedImage object in the new projection.

Usage:
// single query result obtained using the TermQuery task.
var query;
var geom. = query.getSpatialInfo().getMapGeom();
var crs = query.getSpatialInfo().getCrsObject();
// contains the BufferedImage from executing ColorMapImage.
var buffered;
// create the task to perform the reprojection
var projector = new ReprojectImage(buffered,geom.,crs);
// reproject the image
var projected = projector.execute();

Constructors:
ReprojectImage(BufferedImage image, GridGeometry2D geom,
 CoordinageReferenceSystem crs)

Class Attributes:
Name Type Description
crs CoordinateReferenceSystem The CRS for the image.
gridGeometry GridGeometry2D Geometry for the image.
image BufferedImage The image to convert.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 26
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Notes:
1. This is a prototype task created as a proof of concept demonstrating specific

processing that can be performed on image data. It should not be considered ready
for use and may be removed from its package in the future.

3.28 Shapefile Task
Package:

com.raytheon.edex.uengine.tasks.output

Description:
Writes the contents of a GeometryCollection object to a shape file.

Return:
execute() returns the location of the shape file as a URI.

Usage:
N/A

Constructors:
ShapeFIle(GeometryCollection collection, Map attributes, String prefix)

Class Attributes:
N/A

Notes:
1. This is a prototype task created as a proof of concept demonstrating specific

processing that can be performed on data. It should not be considered ready for
use and may be removed from its package in the future.

3.29 ShapeFileQuery Task
Package:

com.raytheon.edex.uengine.tasks.query

Description:
Queries a shape file based on a bounding box.

Return:
execute() returns a Map<String, List<Object>> object containing the results of the
query.

Usage:
N/A

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 27
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Constructors:
ShapeFileQuery(String path, double minLat, double maxLat,
 double minLon, double maxLon)

Class Attributes:
N/A

Notes:
1. This is a prototype task created as a proof of concept demonstrating specific

processing that can be performed on data. It should not be considered ready for
use and may be removed from its package in the future.

3.30 SpatialQuery Task
Package:

com.raytheon.edex.uengine.tasks.obs

Description:
Performs a query for station data within a bounding box. The bounding box is
defined by upper left and lower right lat/lon pairs, which are assumed to be in a
cylindrical projection. Once the station data has been obtained, the script can
extract the appropriate information, normally the station ID, to perform further
queries.

Return:
execute() returns a List of ObStation objects.

Usage:
This example is a JavaScript snippet that performs a spatial query. It is typical of
code used in a number of data retrieval scripts.

// create the task to perform the spatial query
var spatial = new SpatialQuery();
// sets the bounds for the query
spatial.setUpperLeftLat(42.00);
spatial.setUpperLeftLon(-96.50);
spatial.setLowerRightLat(41.00);
spatial.setLowerRightLon(-95.50);
// perform the query
var results = spatial.execute();

Constructors:
SpatialQuery()

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 28
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Class Attributes:
Name Type Description
upperLeftLat double Latitude of upper left point.
upperLeftLon double Longitude of upper left point.
lowerRightLat double Latitude of lower right point.
lowerRightLon double Longitude of lower right point.

3.31 StopLightImage Task
Package:

com.raytheon.edex.uengine.tasks.process

Description:
Converts gridded data into a “red-yellow-green” stoplight chart. The data is
partitioned into deciles; D0 – D9. Data in D0 & D9 are remapped to 2.0, those in
D1 & D8 are remapped to 1.0. The remaining deciles are remapped to 0.0. When
a three-color (red-yellow-green) color map is applied, the result is a stop chart
from the grid.

Return:
execute() returns a FloatDataRecord containing the remapped data.

Usage:
This example is a JavaScript snippet showing the conversion of data to a stop
light.

// single record obtained using the FileIn task.
var data;
// create the task to convert the data
var converter = new StopLightImage(data);
// convert the data
var stopLight = converter.execute();

Constructors:
StopLightImage(IDataRecord data)

Class Attributes:
None.

Notes:
1. This is a prototype task created as a proof of concept demonstrating specific

processing that can be performed on grid data. It should not be considered ready
for use and may be removed from its package in the future.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 29
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

3.32 SystemLog Task
Package:

com.raytheon.edex.uengine.tasks.process

Description:
Allows a µEngine script to write a message to the EDEX system log. Messages
may be logged at the standard LOG4J levels of debug, info, error, warn, and fatal.
Log messages have a format similar to

<<LEVEL>> <<date>> <<time>>
[Awips.Edex.Service.ProductSrv.2] SystemLog: <<your message
here>>

Actual logging of messages depends on the configured logging level for the
Product Server.

Return:
execute() returns a null object.

Usage:
This example is a JavaScript snippet that logs a message to the EDEX system log.

// create the logger
var logger = new SystemLog();
// log a message
logger.log("info", "This is a log message.");

Constructors:
SystemLog()

Class Attributes:
None.

3.33 TableQuery Task
Package:

com.raytheon.edex.uengine.tasks.query

Description:
Allows the Micro Engine script to perform a select style query against any table in
any database. The main restriction here is that the table in question must be
mapped to a class via a Hibernate mapping for the query to execute. The class
name provided to the constructor must be fully qualified.

The effect of this task is similar to the SQL SELECT statement.

Return:
execute() returns a List<?> containing the result set. Each object in the result set
has its identifier field set to the class name associated with the table.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 30
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Usage:
This example is a JavaScript snippet that performs a search for all standard text
products for KOKX.

// set the database and className
var database = "fxatext";
var className =
"com.raytheon.edex.db.objects.fxa.StdTextProduct";
// create the task to perform the query
var query = new TableQuery(database,className);
// set the query parameters
query.addParameter("site","KOKX");
// perform the query
var result = query.execute();

Constructors:
TableQuery(String database, String className)

Class Attributes:
None.

Notes:
1. This task should be used only when TermQuery is inappropriate.

3.34 TableUpdate Task
Package:

com.raytheon.edex.uengine.tasks.process

Description:
Performs an update of an entry in a database table. May update any table in any
available database; however, there must be a Hibernate binding between the table
and a class derived from PersistableDataObject. This task will either update the
corresponding row of the table or create a new row for the object. Note: the class
name must be fully qualified.

The effect of this task is similar to the SQL UPDATE statement.

Return:
execute() returns an AbstractResponseMessage object. If the update fails, it is a
ResponseMessageError containing an error message and the exception that caused
the failure. If the update is successful, it is a ResponseMessageNull with a success
message.

Usage:
This example is a JavaScript snippet that updates the satellite metadata table.

// contains XML representing a row of the table – previously
determined

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 31
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

var xml;
// set the database and className
var database = "metadata";
var className =
"com.raytheon.edex.plugin.satellite.SatelliteRecord";
// create the task to perform the update
var query = new TableUpdate(database,className,xml);
// perform the update
var result = query.execute();

Constructors:
TableUpdate(String database, String className, String xml)

Class Attributes:
None.

3.35 TermQuery Task
Package:

com.raytheon.edex.uengine.tasks.query
Description:

Performs a query for selected metadata from the database. For this task, the query
is tied to the data-type plug-in name rather than the table name. This allows the
script writer to setup the query without knowing as much about the underlying
structure of the database. This task can be used for either one time queries or to
setup subscriptions.

Return:
execute() returns a List<?> containing the data objects representing the results of
the query. The return may be either null or an empty list. Either one indicates that
no results are available. The script code must check the return for a null or empty
value.

Usage:
This example is a JavaScript snippet that uses TermQuery to obtain metadata
from the database. It illustrates a common pattern for visualization product
creation.

// basic parameters for TermQuery
// – these are normally passed into the script from the client
var plugin;
var fielded;
var queryID;
// create the task to perform the query
var query = new TermQuery(plugin, fieldID, queryID);
// add one or more query parameters – may be passed to script
var name; // contains the field name
var value; // contains the field value
query.addParameter(name,value);
// execute the query
var result = query.execute();

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 32
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

// check for and handle empty results
if (result == null || result.size() == 0) {
 var resp;
 resp = new MakeResponseNull("Query returned 0 results.",
query);
 return resp.execute();
}
// process the (valid) result set

Constructors:
TermQuery(String plugin)
TermQuery(String plugin, String subscriptionField, String subscriptionID)

Class Attributes:
Name Type Description
plugin String The name of the data-type plug-in to query.
subscriptionField String Identifies the database field used to identify

the key field for subscriptions.
subscriptionID String The value of the subscription field to match

when fulfilling a subscription.

Notes:
1. The second constructor is intended for scripts that support auto product creation

via subscription. This mode is not currently used in supporting CAVE.

3.36 VtecObjectQuery Task
Package:

com.raytheon.edex.uengine.tasks.vtec

Description:
Performs a “by example” query in the VTEC database. (In a “by example” query,
a partially populated object is created and passed to Hibernate as an example of
the objects to return. The result is similar to executing a SQL SELECT query.)
This task interacts with the VTEC server to set up the example object and obtain
the query results. Unlike TermQuery, it does not interact directly with the
database. Unlike direct database interactions, this task returns a list (possibly
empty) so a null check on the results is not required.

Return:
execute() returns a List<Object> containing the desired VTEC objects.

Usage:
This example is a JavaScript snippet that obtains a list of available VTEC actions
from the VTEC database.

// create the task to perform the VTEC query
var request = new VtecObjectQuery("action");
// initialize the task

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 33
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

request.addProperty("request", "named");
request.setClientID("VTEC Action");
request.setCount(0);
request.setTimeOut(5000);
// perform the query
var results = request.execute();

Constructors:
VtecObjectQuery(String classToken)

Class Attributes:
Name Type Description
clientID String Client ID for the request.
count long Maximum number of items to return.
timeOut long Time (in milliseconds) to wait for a response

from the VTEC server.

Notes:
1. This task performs the bulk of its work by delegating the work to the VTEC

Server.

3.37 VtecQuery Task
Package:

com.raytheon.edex.uengine.tasks.vtec

Description:
Performs a basic (read-only) request to the VTEC Service. Essentially, this is a
“SELECT * FROM table” type query, where “table” is one of the VTEC tables in
the database. Rather than interacting directly with the database, this task interacts
directly with VTEC Server.

Return:
execute() returns a valid, but possibly empty, List<Object> containing the result
of the query.

Usage:
This example is a JavaScript snippet that performs a query for a list of VTEC
phenomena from the VTEC database.

// create the task to perform the request
var request = new VtecQuery();
// initialize the request
request.addProperty("request","named");
request.addProperty("class","phenomena");
request.setClientID("VTEC Client");
request.setCount(0);
request.setTimeOut(10000);
// execute the request

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 34
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

var results = request.execute();

Constructors:
VtecQuery()
VtecQuery(Message message)
VtecQuery(String command)

Class Attributes:
Name Type Description
clientID String Client ID for the request.
count long Maximum number of items to return.
timeOut long Time (in milliseconds) to wait for a response

from the VTEC server.

Notes:
1. This task performs the bulk of its work by delegating the work to the VTEC

Server.

3.38 VtecUpdateEvent Task
Package:

com.raytheon.edex.uengine.tasks.vtec

Description:
Performs an update of the VTEC Tracking Number (VTN) for a specific VTEC
event at a specific site. The VTN is updated by passing the request to the VTEC
Service.

Return:
execute() returns the response received from the VTEC Service.

Usage:
This example is a JavaScript snippet that sets the VTN for a blizzard warning
issued by KOAX to 10.

// create the task to perform the request
var request = new VtecUpdateEvent();
// set the properties to identify the VTEC event
request.addField(request.SITE, "KOAX");
request.addField(request.PHENOM, "BZ");
request.addField(request.LEVEL, "W");
// set the new values of the VTN
request.addField(request.VTN, 10);
// set the request timeout value
request.setTimeOut(10000);
// set the client ID
request.setClientID("VTEC Client");
// execute the request
var result = request.execute();

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008 35
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Constructors:

VtecUpdateEvent()

Class Attributes:
Name Type Description
clientID String Client ID for the request.
count long Maximum number of items to return.
timeOut long Time (in milliseconds) to wait for a response

from the VTEC server.

Notes:
1. This task performs the bulk of its work by delegating the work to the VTEC

Server.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-03.00 / 28 Feb 2008
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

A-1

Appendix A. References
The AWIPS EDEX:

1. The AWIPS EDEX code baseline is located on the Installer’s media. The code is normally
installed on a development computer. See the Release Notes (ReleaseNotes.txt) for more
information.

2. AWIPS EDEX documentation is located in the docs directory on the Resources CD delivered
under AWIPS SWCTR TO8 (Feb. 7, 2008).

3. JavaDoc is embedded in the baseline code. The web version is generated using the ANT
build script. See the “AWIPS ADE EDEX Build Procedure”
(AWIPS_ADE_EDEX_Build_Procedure.pdf), located on the Resources CD delivered under
AWIPS SWCTR TO8 (Feb. 7, 2008) for information on generating the browser viewable
JavaDoc.

MicroEngine Tasks

Contract DG133W-05-CQ-1067 / DCN AWP.TRG.SWCTR/TOT1-01.00 / 28 Feb 2008
Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

B-1

Appendix B. Acronym/Abbreviation List

ADE AWIPS Development Environment
ANT (not an acronym) Another Nifty Tool, a Java-oriented “build” tool
AWIPS Advanced Weather Interactive Processing System
EDEX Environmental Data Exchange
IDE Integrated Development Environment
JAR Java Archive
JDK Java Development Kit
JRE Java Runtime Environment
PC Personal Computer
SAPC Standard AWIPS Personal Computer
SOA Service Oriented Architecture
µEngine MicroEngine
XML Extensible Markup Language

