

NAWIPS Migration

 High-Level Software
Information Exchange and Design

Document

Systems Integration Branch
NCEP Central Operations

National Centers for Environmental Prediction

Nov 18, 2008

2

Contents

 Purpose

 Data Decoders

 NMAP Perspective in CAVE and GEMPAK Command Line Interface

 Product Generation (PGEN)

 Appendix A: New decoder plug-ins

 Appendix B: Acronyms

3

Purpose

In an effort to mitigate the risk associated with a fluctuating AWIPS2 baseline, the NCO/SIB has
identified those areas within the TO9 architecture that will be extended, leveraged, or otherwise
influence, the NAWIPS-to-AWIPS2 software migration. This identification will serve as a basis
for future technical interchange meetings (TIMs) with Raytheon (RTS) as well as provide a
documented guideline for continued agile development within the planned NAWIPS migration
activities.

The information is organized by primary areas of migration:

• Data decoders
• NMAP perspective in CAVE / GEMPAK
• Product Generation (PGEN)

Within each area of migration, the following information is presented:
• High-level description of the anticipated development approach,
• Leveraged Java classes (interface, abstract and other Java classes),
• Services involved,
• Approach to testing

4

Data Decoders

I. Development approach: Decoder plug-in creation and unit (developer) testing

Raytheon's Plug-In Creator in Eclipse is used to set up the initial source and configuration files.
The Creator tool creates the Postgres table definition in XML for the main table. Child tables are
added manually if needed. The Creator tool also provides an initial Hibernate and an initial JiBX
mapping between the Java record object and the database table. As of TO9, SIB/NCO is
leveraging Raytheon's database mapping mechanism to persist the data to the Postgres database.
The new plug-in will be added to “deployment.properties” and Ant will be used to build it. To
test the plug-in, the Postgres database, Apache ActiveMQ, and the Mule (Camel) ESB will be
started up and running and then data will be ingested by copying the file(s) into directory
$AWIPS2/edex/opts/data/sbn/[new plug-in], where $AWIPS2 is the local installation directory
for EDEX.

II. Raytheon's Java classes leveraged by NCO/SIB

The NCO/SIB develops the new plug-ins under Raytheon's AWIPS EDEX framework. The new
Java classes may implement the interfaces and/or extend the abstract classes provided by
Raytheon. NCO/SIB tries to leverage the utility functions or tools in the software development.
The tables on the following pages summarize the Java classes that have been leveraged by
NCO/SIB.

Interface Description
IDecoderGettable Gets values and units of a String parameter. This interface is

implemented through “PluginDataObject” which is used by
Record class.

IRecordSeparator Separates the contents of a multi-record data file into single
records for processing. Used by decoder's Separator class.

IPersistableDataObject Provides a read only interface for the Persistable Data Object
class.

IMessageDecoder Sets the message received from Mule (Camel). This interface is
implemented by various decoder plug-ins, e.g., Watch and
Warning.

Abstract Description
AbstractDecoder Provides logging support and class variables used in child classes.
AbstractMessageDecoder Extends its super class, “AbstractDecoder” and implemented by

various decoders, e.g., Flash Flood Guidance (FFG).

5

Abstract Description
PersistableDataObject A root class for any object being persisted in the database which

uses Hibernate.
PluginDataObject

Abstract class from which all plug-in specific data types inherit. A
decoder plug-in specific data type is a class found in each plug-in
with the naming convention of plug-in type record.

Java Class Description
CoreDao The base implementation of all DAOs to provide basic database

interaction functionality necessary to most persistable data types.
Used by decoder plug-ins to retrieve data objects from database.

DataAccessLayerException An exception class for data access errors.
DaoConfig Configuration settings for a data access object. Used by decoder

plug-ins to correctly instantiate a valid data object.
DecoderException An exception class for decoder processing errors. Used by decoder

plug-ins to catch errors during the decoding process.
ObsCommon Constructor for DataURI construction through a base class used

by the notification service while invoking a new decoder plug-in.
TableDefinition A container class for a table definition. Used by the Record class.

Util/Tool Description
IDecoderConstants Defines static byte, String and numerical constants which are

used throughout the decoder plug-ins.
Util Contains static members and utility methods: ranging from

formatting a Calendar object to marshaling a XML file. Methods
may apply to new decoder plug-ins.

WMOHeader A WMO header parser that is leveraged by the decoder team

III. Services involved: Data ingesting, processing and storage

In the process of software development, NCO/SIB uses Eclipse IDE to develop, test and
implement the new plug-in into the AWIPS2 system. Before the final commit to Subversion, we
conduct vigorous unit and integration testing which uses all the services, Postgres database,
ActiveMQ, Mule (Camel), and Tomcat for web testing interface. The following table
summarizes these tools leveraged by NCO/SIB.

Service/Tool Description
Services IngestSrv, indexSrv, stagingSrv, archiveSrv, notifySrv,

productSrv, monitorSrv

6

Service/Tool Description
Postgres Database
Tomcat Web server

ActiveMQ Java messaging system broker
Mule -> Camel Enterprise service bus

Ant Build scripting
Eclipse IDE Java integrated development environment

IV. Approach to testing

Our test objective for decoder development is to verify proper ingest and decode without errors,
and to compare the decoded values in AWIPS2 with the decoded values in N-AWIPS for
consistency. The GEMPAK data files corresponding to the same date(s) and time(s) will be used
here for comparison. The type of data (entries, results, and a pass/fail grade of each test step) will
be recorded.

To test the plug-in, the Postgres database, Apache ActiveMQ, and the Mule (Camel) ESB will be
started up and running. Data will be ingested by copying the files into the directory
$AWIPS2/edex/opts/data/sbn/[new plug-in], where $AWIPS2 is the local installation directory
for EDEX.

Following integration and regression testing of the build, our testing activities will primarily be
performed automatically. For each decoder, we will have an approach that compares the
AWIPS2 database against the baseline GEMPAK data files. Testing scripts will be run
automatically via Hudson each time the system is built. Comparisons between the two data
sources will also be made automatically with results flagged and posted on Hudson for
examination and review by all team members. Negative test results will be communicated
immediately to select team members such as the team lead.

7

NMAP Perspective in CAVE and GEMPAK Command Line Interface

I. Development approach

There are several principle areas of discussion that bear on RTS-provided functionality. These
are discussed below. Much of the actual NMAP perspective development, however, will be
directed to implementing NMAP-specific functionality within the perspective framework that
does not leverage AWIPS2 baseline code. This includes scientific algorithms, NMAP-style data
selection and timeline implementations, and other capabilities unique to the National Centers.

Replicating GEMPAK functionality in the AWIPS2 environment will allow the forecasters to
run existing batch scripts with little or no changes. The GEMPAK applications need to access
and display data in the same manner as the NMAP perspective. Therefore, much of the
discussion about NMAP pertains to GEMPAK. There will be additional source developed by the
SIB that creates a command line interface for obtaining user input.

Database Access

While the details of specific queries for data available from the database will vary depending on
the context of the request and the type of data being requested, the purpose of this discussion is
to identify common points of interface to RTS-provided code for a typical implementation
covering a range of such scenarios.

The following two phases, in particular, are both observed within RTS-provided CAVE code (for
example, the Volume Browser, in both its forms), and have already been used in successful pilot
demonstrations of NMAP-like extensions to CAVE:

1. Performing a catalog query to determine what specific data sets are available

While the details are many, this basically involves:
a. Creating a CatalogQuery object (that is,

com.raytheon.viz.core.catalog.CatalogQuery),
b. Assembling a list of “query terms” (a map of property names to associated

RequestConstraints) to define the parameters of the query, and
c. Calling CatalogQuery.performQuery() with the query term list as input, and

examining the returned String which indicates what (if anything) was found.

2. Requesting the specific set(s) from those now known to be available, by

a. Putting together one or more LayerProperty objects – or a script – to describe
the DB request,

b. Creating a RequestJob object (com.raytheon.viz.ui.jobs.RequestJob), feeding its
constructor the (list of) LayerProperty object(s) – or the script, and

c. Calling RequestJob.schedule() to fire off the request (asynchronously, in a
separate thread)

8

Localization

Preliminary requirements analysis has identified a need to store, retrieve, and use
localization/personalization preferences for various operational settings in the migrated NMAP
program.

These preferences will need to reflect localization at various levels: The National Centers
(NCEP) may have common needs that collectively differ from those of initial AWIPS2 users
(WFOs/RFCs); the individual Centers will each have their own unique operational emphases;
subunits (“desks”) within each Center may further focus on specific geographical areas or other
requirements; and finally, specific users will want to tailor their own individual preferences.

For this reason, we plan to leverage the hierarchical localization system implemented by RTS
and incorporated into the AWIPS2 baseline, which closely matches the above requirements.
This system provides hierarchical localization preferences at three fixed levels (on the CAVE
side): “base”, “site”, and “user”. At this point we plan to adapt our requirements (slightly) to
work within these three levels, since they are solidly built into the provided code base. That is,
adding additional levels is probably impractical, but we expect to be able to accommodate our
needs within the provided structure.

Since the RTS-provided CAVE localization mechanism is compatible with the underlying JFace
preference mechanism, GUI extensions (via CAVE Preferences…) are expected to be
straightforward. The separate EDEX (server-side) localization (which provides two-level
[“base”/”site”] configuration during installation) may also be utilized if needed.

Locator / Seek Functionality

The locator text box at the lower right corner of current NMAP main window displays cursor
location information, including latitude/longitude, or the name of the bounded geographic region,
like county name.

In CAVE, the bottom bar is JFace 'status line', which displays D2D message box, Radar message
box, and current time. The 'status line' is perspective-dependent. We are going to create NMAP-
perspective 'status line' containing the Locator text box as well as ERROR message box, the
image property control box, the Product Generation activity information box, VGF file name,
and the loading data frame information box.

Map Selection

Several AWIPS2 files and classes will be leveraged. JiBX XML files for Java Bundle objects
will be used for existing CAVE overlays. They will reference existing CAVE resources and data
files but they will be modified to include environment variables for the user selectable display
attributes which are hard-coded in CAVE. Other NMAP overlays will be implemented with new
JiBX Bundle files and a new NmapOverlay resource for the NMAP data files.

The standard map backgrounds will also be implemented by creating bundle files. A Map

9

Selection dialog will be created using the SWT GUI toolkit and the JFace to select and preview
the map. This will implement the IDisplayPaneContainer interface. This with the LoadBundle
class method will be used to display the map background bundles. CAVE's
CreateProjectionDialog may be leveraged to allow for custom map projections to be created.

Parameter and Grid Calculations

The National Center forecasters require the GEMPAK parameter and grid calculations to
produce guidance and products. Therefore, these meteorological calculations will be added to the
AWIPS2 environment to allow the forecasters to perform their normal functions. The
development of the GEMPAK Calculations (GemCalc) will parallel the work already done for
meteoLib. However, instead of wrapping FORTRAN or C code, SIB’s intention is to implement
the calculations utilizing the NumPy Python library with a Java controller. This will be similar to
the implementation of the smartTools for GFE.

GEMPAK data access forward-compatibility

New GEMPAK Data Management (DM) functions for database access (DB layer) will perform
the following tasks:

• generate user scripts in the admissible scripting language (JavaScript/Python/other) for a
specific data manipulation:

- querying;
- reading;
- decoding;
- processing the response.

• send the generated script to the microEngine end-point;
• receive response from the microEngine;
• store the response in the GEMPAK data management structures.

microEngine library scripts (written in JavaScript/Python/other) to handle requests sent by the
user scripts, generated by the database access function will need to be added in the appropriate
directory:

• edex/opt/data/utility/edex_static/base/python for python scripts;
• edex/opt/esb/js for JavaScript.

Additional Java classes might need to be created by extending an abstract ScriptTask
(com.raytheon.edex.uengine.js.tasks.ScriptTask) class and implementing the execute method as
needed.

II. Raytheon's Java classes leveraged by NCO/SIB

The NCO/SIB develops the new plug-ins under Raytheon's AWIPS EDEX framework. The new
Java classes may implement the Interface classes and/or the Abstract classes provided by

10

Raytheon. NCO/SIB tries to leverage the utility functions or tools in the software development.
The tables on the following pages summarize the Java classes that have been leveraged by
NCO/SIB.

Package Description
com.raytheon.viz.core.localization Classes supporting hierarchical localization for CAVE.
com.raytheon.viz.core.preferences Classes paralleling CAVE Preferences… entries
com.raytheon.edex.utility (3) Utilities including various server-side localization-

related classes.
com.raytheon.edex.db.*, esp.
com.raytheon.edex.db.query

Server-side (EDEX) DB related packages, if needed
for direct access (not envisioned in above scenarios,
which go through existing CAVE-side interfaces.

com.raytheon.viz.core.catalog Classes related to DB catalog and queries.
com.raytheon.viz.ui.jobs Home of RequestJob class (below).
com.raytheon.viz.core.* Areas of the code that perform calculations prior to

plotting point or grid data

Interface Description
ILocalizationAdapter “…a single, unified interface for localization interactions with the

appropriate back end (CAVE or EDEX)…”
IPathManager “A generalized interface for constructing LocalizationFiles.”

Follows base/site/user hierarchy.
IDecoderGettable Gets values and units of a String parameter. This interface is

implemented through “PluginDataObject” which is used by
Record class.

IRecordSeparator Separates the contents of a multi-record data file into single
records for processing. Used by decoder's Separator class.

IPersistableDataObject Provides a read only interface for the Persistable Data Object
class.

IMessageDecoder Sets the message received from Mule (Camel). This interface is
implemented by various decoder plug-ins, e.g., Watch and
Warning.

Java Class Description

11

CAVELocalizationAdapter “Provides a single interface to CAVE that provides
localization services.”

HierarchicalPreferenceStore Defines the hierarchical preference store for CAVE, with
the base/site/user scopes.

LocalizationManager Centralized control for CAVE localization processes.

LocalizationPreferences Implements CAVE Preferences… “localization” panel,
via JFace preferences and field editors.

LocalizationContext Associates localization level and type with named
context.

LocalizationFile “Represents a file in the localization system.”

PathManager “A generalized implementation for interfacing with
LocalizationFiles.”

CatalogQuery Defines and executes a specific catalog request.

DbQuery General database query (on the CAVE side).

LayerProperty Defines characteristics of a layer to be created within
CAVE; can be passed to constructor of RequestJob used
to build that layer.

ScriptCreator Creates MicroEngine scripts “on the fly”.

RequestJob Defines job to request products from EDEX.

RequestConstraint Constraint (<, >, ==, !=, etc.) on a specific request
parameter.

GLMapEditor

Defines GL-based map editor

IDisplayPane Interface for display pane

PixelExtent Define the coverage of an object in pixel space

VizApp General purpose utility method class

com.raytheon.viz.core.drawables.*

General package for renderable displays

MapDescriptor Map Descriptors containing a list of map resources and
their attributes as well as attributes and functions related
to the map itself

12

AbstractEditor Provides the basic for the editor

MouseInspectAdapter Provides mouse inspect/hint support in the editor

ToolManager handle the tool registrations and activations

AbstractRightClickAction Base class for right click actions

com.raytheon.viz.awipstools.ui.* awips tools

com.raytheon.viz.satellite satellite resources

III. Services involved: Data ingesting, processing and storage

In the process of software development, NCO/SIB uses Eclipse IDE to develop, test and
implement the new plug-in into the AWIPS2 system. Before the final commit to Subversion, we
conduct vigorous unit and integration testing which uses all the services, Postgres database,
ActiveMQ, Mule (Camel), and Tomcat for web testing interface. The following table
summarizes these tools leveraged by NCO/SIB.

Service/Tool Description
Services IngestSrv, indexSrv, stagingSrv, archiveSrv, notifySrv,

productSrv, monitorSrv
Postgres Database
Tomcat Web server

ActiveMQ Java messaging system broker
Mule -> Camel Enterprise service bus

Ant Build scripting
Eclipse IDE Java integrated development environment

IV. Approach to testing

Our test objective for localization/preference management is to verify proper store, retrieve and
use localization/preference without errors. Three-level testing will be performed on the
hierarchical localization of the AWIPS2 baseline.

Our test objective for NMAP perspective is to verify that the locator contains all text boxes
properly; the seek function of calculating, drawing, storing and displaying properly; AODT
dialog can display, save and print results properly; and the cold height function can be invoked,

13

configured and display results properly.

Testing of the GEMPAK command line interface will be accomplished by running side-by-side
with the current GEMPAK applications. Select scripts from the National Centers will also be
tested, after determining the extent of the changes necessary to make them execute properly.

The parameter and grid calculations will be independently tested by comparing the results to
existing GEMPAK calculations.

To test the NMAP perspective and GEMPAK command line interface, the Postgres database,
Apache ActiveMQ, the Mule (Camel) ESB, and CAVE will be started. Following integration
and regression testing of the build, our testing activities will primarily be performed
automatically. Manual Testing will be performed based on case-by-case situation. RCP
Application Test System (RATS) will be implemented to support black-box testing of NMAP by
scripting user actions (e.g. button clicks) on the CAVE GUI, and for other applications
constructed using the Standard Widget Toolkit (SWT). Testing scripts will be run automatically
via Hudson each time the system is built, with results flagged and posted on Hudson for
examination and review by all team members. Negative test results will be communicated
immediately to select team members such as the team lead.

For DM forward-compatibility, user script generation tests as well as interaction with the
AWIPS2 dataflow can be performed by the Raytheon-provided AWIPS Test Driver web
interface.
Testing of each individual database access layer function can be performed by expanding the
existing testing program for the data management library.
Integration testing can be done by running GEMPAK program and selecting the same data from
two different sources – current GEMPAK data files, and AWIPS2 database and performing
comparisons between the results.

14

 Product Generation (PGEN)

I. Development approach

PGEN will be invoked by an Eclipse AbstractHandler class that is registered with the
org.eclipse.ui.handlers extension point. This implementation will allow flexibility in how PGEN
is invoked. That is, product generation could then be started by any desired button or menu or
even in code from any perspective that wanted to use it. The PGEN Palette is the starting point
for product generation and will be implemented as an Eclipse View registered with the
org.eclipse.ui.views extension point. Implementing the PGEN Palette as a View provides a few
nice features inherently. For example, the Palette could be resized and moved to any location in
CAVE and could even be detached as a separate window. In addition, when the Palette View is
closed, Eclipse will take care of disposing the widgets in the palette for us.

The PGEN Palette will be implemented by creating extension-points that can be used to add
buttons to the palete. When the Palette is launched (view is opened), only buttons registered
with the pgen.palette extension point will be displayed on the palette. This implementation will
make it easy to add new object types and functionality to PGEN, as well easy customization of
the Palette for different sites.

The JFace toolkit will be used for dialog windows and viewers when appropriate. The Standard
Widget Toolkit (SWT) will be used for all other GUI objects.

The PGEN resource class will manage PGEN products and their geographic objects. The
PGEN resource class will implement Raytheon's IVizResource interface and
IProjectableResource interface, and there will be only one instance of PGEN resource per CAVE
main window. When PGEN is invoked, all editors in the current workbench window will be
checked to see if there already exists an instance of PGENResource. If none is found, a new
instance will be created and it will be added to the ResourceList in each of the existing editors in
the current CAVE window.

The PGEN resource will maintain a list of products associated with the resource and manage
which geographic objects are displayed and when. The paint method in the PGEN resource class
will coordinate the display geographic objects in the editor window. The specific draw functions
will be delegated to displayable classes by the paint method.

The display of objects, including ghostlines and handlebars, will not be drawn directly to the GL
canvas. Rather, changes will be made to the objects managed by the PGEN resource, and then
an editor refresh will be requested. This allows the DrawCoordinatorJob to initiate all the
displays to the current Map Editor, and then the PGEN resource can control what to display.

The geographic objects will use existing classes that interface with the OpenGL such as
GLTarget, GLWireframeShape, and GLShadedShape.

Product Generation reads a variety of configuration information from text files. To maintain
consistency with the architecture, the tables will be converted to XML, and the appropriate Java

15

classes that access the XML files will use JiBX to map the XML values to Java objects. It has
been mentioned that Raytheon is investigating the replacement of JiBX with JAXB in future task
orders. If that occurs, we will also change our XML file access to JAXB to maintain
consistency.

II. Raytheon's Java classes leveraged by NCO/SIB

The NCO/SIB develops the new plug-ins under Raytheon's AWIPS EDEX framework. The new
Java classes may implement the Interface classes and/or the Abstract classes provided by
Raytheon. NCO/SIB tries to leverage the utility functions or tools in the software development.
The tables on the following pages summarize the Java classes that have been leveraged by
NCO/SIB.

Interface Description
IVizResource Interface required to display a Resource
IProjectableResource Used to support reprojecting Resources onto a different CRS

Abstract Description
AbstractModalMapTool Used to create new Tools to interact with the Map Editor

Java Class Description
GLWireframeShape A series of line segments suitable for displaying
GLShadedShape Filled shapes suitable for displaying

III. Services involved: Data ingesting, processing and storage

In the process of software development, NCO/SIB uses Eclipse IDE to develop, test and
implement the new plug-in into the AWIPS2 system. Before the final commit to Subversion, we
conduct vigorous unit and integration testing which uses all the services, Postgres database,
ActiveMQ, Mule (Camel), and Tomcat for web testing interface. The following table
summarizes these tools leveraged by NCO/SIB.

Service/Tool Description
Services IngestSrv, indexSrv, stagingSrv, archiveSrv, notifySrv,

productSrv, monitorSrv
Postgres Database
Tomcat Web server

16

Service/Tool Description
ActiveMQ Java messaging system broker

Mule -> Camel Enterprise service bus
Ant Build scripting

Eclipse IDE Java integrated development environment

IV. Approach to testing

Each PGEN class will be accompanied with a JUnit test class when possible for use with
automated unit testing.

The integration test strategy will be similar to that of NMAP. In addition, there will be compare
and contrast of all generated text products from NAWIPS v5.11.4x.

17

Appendix A: New decoder plug-ins to be developed

New plug-ins Data Format Description
plugin-asigmet
(four decoders)

A including airmet reports (AIRM), convective sigmet
(CSIG), international sigmet (ISIG), non-convective sigmet
(NCON)

plugin-aww
(seven decoders)

A watch and warning: including flash flood watch reports
(FFA), WWUS6[1-5] and WWUS32 severe local storm
reports (SVRL), tornado, thunderstorm and flash flood
(WARN), watch county notification reports (WCN), watch
outline updates (WOU), winter storm reports (WSTM), and
WWUS40 tornado & severe TS watch box & WWUS8
status reports (WTCH)

plugin-ffg A flash flood guidance
plug-hrcn A tropical storm and hurricane forecast/advisory
plugin-idft A sea ice reports
plugin-igdr BU interim geophysical data record
plugin-mos
(three decoders)

A MOS decoders for text message, including GFS MOS
(GMOS), NGM MOS (NMOS), and extended GFS MOS
(GFSX)

plugin-rdf A regional digital forecast data
plugin-scd A supplemental climatological data
plugin-tama BU TAMDAR BUFR message
plugin-wcp A watch corner points message
plugin-satellite B McIDAS area files
plugin-radar B NIDS format
Notes: A: ASCII, B: binary, BU: BUFR

Plugin-Text: Text Processing for NWX Displays
Observed Data e.g., surface hourlies, sounding, synoptic reports
Public Products e.g., area/state forecast discussion, daily climo reports
Pt Fcst Products revised digital forecasts, point/area forecast matrices
Watches/Warnings e.g., severe TS/tornado/winter weather warnings
SPC Products e.g., day1, day2 & day3 outlook, meso discussions
TPC Products e.g., hurricane discussions, public/marine bulletins, recon flights
Tropical Pacific e.g., tropical weather outlook & summary

18

Plugin-Text: Text Processing for NWX Displays
Recon CARCAH e.g., vortex message, dropsonde data
Flash Flood e.g., flash flood guidance/watch/warning/statements
Marine e.g., coastal/offshore/high seas forecasts, plain language ship reports
Aviation Forecasts e.g., convective/international SIGMET, AIRMET
MOS NGM/NAM/GFS/GFSX/marine MOS, NGM/NAM guidance
HPC Products e.g., basic wx, QPF (with graphic), excessive rain, heavy snow
HPC Heat Index max/min/mean heat index
CPC Products e.g, 6-10 day discussion/forecast, 30/90 day forecast, UVI
Volcano Products volcano warnings, volcano ash advisory/forecast
Fire Wx Products e.g., fire weather forecasts, red flag warning/fire weather watch

19

Appendix B: Acronyms

AIRMET Airmen Meteorological Information
ASCII American Standard Code for Information Interchange
AWIPS Advanced Weather Interactive Processing System
BUFR Binary Universal Format Representation
CARCAH Chief Aerial Reconnaissance Coordination, All Hurricanes
CPC Climate Prediction Center
DAO Data Access Objects
DM Data Management
EDEX Enterprise Data Exchange
ESB Enterprise Service Bus
GFS Global Forecast System
HPC Hydrometeorological Prediction Center
IDE Integrated Development Environment
JiBX A framework for binding XML data to Java objects
McIDAS Man-computer Interactive Data Access System
MOS Model Output Statistics
NAM North American Mesoscale model
NAWIPS National Centers AWIPS
NCEP National Centers for Environmental Prediction
NCO NCEP Central Operations
NGM Nested Grid Model
NIDS NEXRAD Information Dissemination Service
NWX NAWIPS Weather (text display GUI)
PGEN Product Generation
QPF Quantitative Precipitation Forecast
RFC River Forecast Center
SIB Systems Integration Branch
SIGMET Significant Meteorological Message
SPC Storm Prediction Center
TAMDAR Tropospheric Airborne Meteorological Data Reporting
TIM Technical Interchange Meeting
TS Thunderstorm
UVI Ultraviolet Index
WFO Weather Forecast Office

