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Emission Processing

• Emission Processing is a component of 
PREMAQ  (pre-processor to CMAQ)

Point Source and Biogenic Source processing 
from SMOKE

Area Sources (no meteorological modulation) 
computed in SMOKE outside of PREMAQ

Mobile Sources (nonlinear least squares 
approximation to SMOKE/Mobile6)



Area and Biogenic Sources
• Area Sources: Computed outside of PREMAQ

2001 NEI version 3 inventory used. (CAIR) No 
changes made to inventory.
Replaced year specific with average (1996-2002) 
estimates for fires 

• Biogenic Sources: BEIS3.13 included directly 
into PREMAQ.

• Canadian Inventory: 1995 used (includes all 
provinces)

• Mexican Inventory: BRAVO 1999 used for 
point sources



Mobile Sources

• SMOKE/MOBILE6 not efficient for real-time 
forecasting

• SMOKE/MOBILE6 used to create retrospective 
emissions for AQF grid

2006 (projected from 2001) VMT data used for input to 
Mobile 6
2006 Vehicle Fleet used for input to Mobile 6

• For 13 counties in Metropolitan Atlanta area, 
VMT based on 2005 run of a travel demand 
model and Mobile6 inputs from Georgia DNR



Mobile Sources

• Regression applied at each grid cell at 
each hour of the week for each species to 
create temperature/emission relationship

• Mobile Source emissions calculated in 
real-time using this derived 
temperature/emission relationship
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• For California used 2001 mobile estimates from 
CARB



NE Domain Mobile6 vs. Regression: NOx

Monday Saturday



NE Domain Mobile6 vs. Regression: VOC

Monday Saturday



Point Sources
• 2004 Continuous Emissions Monitoring for NOx and SO2

Monthly temporal profiles on a state-by-state basis  
derived from 2004 CEM

• For other pollutants and non-EGU: 2001 NEIv3
Georgia non-EGU based on 2002 inventory from 
GADNR

• Modified EGU NOx emissions using DOE’s Annual 
Energy Outlook (Jan. 2006)

• Calculated 2006/2004 NOx and SO2 annual emission 
ratios on a regional basis (from DOE data)

Exception California
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CMAQ Configuration

• Advection
Horizontal: Piecewise Parabolic Method
Vertical: Upstream with rediagnosed vertical velocity to satisfy 
mass conservation

• Turbulent Mixing
K-theory; PBL height from WRF-NMM
Minimum value of Kz allowed to vary spatially depending on 
urban fraction (furban)

• Kz = 0.1 m2/s, furban = 0
• Kz = 2.0 m2/s, furban = 1

allows min. Kz in rural areas to fall off to lower values than urban 
regions during night-time

prevents precursor concentrations (e.g., CO, NOx) in urban 
areas from becoming too large at night; reduced mixing intensity) 
in non-urban areas results in increased night-time O3 titration 



CMAQ Configuration (contd.)
• Gas phase chemistry

CB4 mechanism with EBI solver
Below cloud attenuation based on ratio of radiation 
reaching the surface to its clear-sky value

• Closer linkage with the NAM fields 

• Cloud Processes
Mixing and aqueous chemistry
Scavenging and wet deposition
Sub-grid scheme based on modifications to RADM formulation; 
“switch-off” entrainment from above clouds

• Used in Eastern U.S. (3x) domain
“In-cloud” mixing based on the Asymmetric Convective Mixing 
(ACM) model (Pleim and Chang, 1992, JGR)

• Used in Continental U.S. (5x) domain



CMAQ Configuration (contd.)
• Deposition

Dry : M3dry modified to use WRF land surface parameters
Changes in WRF-LSM impact Vdo3 (relative to Eta)

• Persistent sink for O3 – can impact predicted O3

ETA

WRF

ETA

WRF

O3 Deposition Velocity Stomatal Conductance
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• Trimodal size distribution
• Aitken (0-0.1 µm), Accumulation(0.1-2.5 µm), 

and Coarse
• Gas/particle interactions treated

for fine modes only – ISORROPIA
instantaneous equilibrium

• Fine-modes coagulate
• Coarse mode, fine EC (black) &

other fine PM (brown) are inert

CMAQ Configuration: Aerosols

Binkowski and Roselle, JGR, 2002



Structural Enhancements
• Included layer dependent advection time-step 

calculation
Improves model efficiency

• Coupling between WRF-NMM and CMAQ
“Loose-coupling” (used in Operational 3X)

• Similar to previous Eta-CMAQ linkage 
• WRF-NMM and CMAQ coordinate and grid structures are 

different. Interpolation of meteorological inputs to the CMAQ 
grid and coordinate

“Tight-coupling” (implemented in Experimental 5X)
• Step 1: Coupling in the vertical implemented this summer

– CMAQ calculations on the same vertical coordinate as WRF-
NMM

• Step 2: Modifications to CMAQ to facilitate calculations on 
native WRF-NMM horizontal grid

– Stay tuned
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WRF-NMM Hybrid Vertical Coordinate System
“Tightly Coupled”
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Tightly Coupled System
Conversion to use WRF-NMM vertical coordinate in PREMAQ and CMAQ



Comparison of Experimental and Operational Forecasts
Mean over sites within Operational 3x Domain

5X under-predictions at peak values 



Comparison of Experimental and Operational Forecasts

Operational (3X) Developmental (5X)

5X vs. 3X: Regionally lower O3; under-prediction of peak values 



Diagnosing the low-bias in Experimental 5X Runs

Black (Loose), Red (Tight w/ISOP error), Green (Corrected Tight)
California Sub-domain average time series: July 18-19, 2006

Isoprene

NTR

Ozone

NTR: Inert organic nitrate in CBM-IV



Correcting the low-bias in Experimental 5X Runs

Loose Old Tight IsopreneFix Tight 

Max.-8hr  O3:  7/19/06



Correcting the low-bias in Experimental 5X Runs

Max. 8 O3
7/19/06

Loose

Old Tight

Isoprene Fix Tight 



Improvements from Tight Coupling
Mass-consistent advection

Vertical Velocity Cross-sections

Tight coupling helps reproduce WRF-NMM vertical velocity fields with higher fidelity
Note: Large discrepancies at model top in loose-coupling 



Lateral Boundary Condition Specification

• A key uncertainty in long term modeling over limited area domains
Determines “model background”

• Approach in Operational Runs: Combination of
Static default profiles

• “Clean” tropospheric background values
Top most CMAQ-layer: O3 profiles from NCEP’s Global Forecast 
System (GFS) model

• O3 is a 3-d prognostic variable
• Initialized with Solar Backscatter Ultra-Violet (SBUV-2) satellite 

observations
• Approach in Experimental Runs

Static default profiles
Added diagnostic tracers to quantify “model background” O3

• Tracked impact of lateral boundary conditions (surface-3km and 
3km-model top)



Modeled surface-level “background” O3

Average from July 1-August 22, 2006

Background O3 distributions are spatially heterogeneous



Components of modeled surface-level “background” O3

“Boundary Layer”
Surface – 3km

“Free Troposphere”
3km – Model top



Components Modeled “background” O3: Relative Contributions/Fraction

“Boundary Layer”
Surface – 3km

“Free Troposphere”
3km – Model top



Warm-season Under-prediction
Cool-season Over-prediction

Performance Summary for PM2.5 over a year: 2005

Captures day-to-
day variability



Performance Summary over a year: 2005

Larger errors at higher concentrations 

Winter high bias
•Possible measurement bias
•Role of dynamics
•Unspeciated “Other” PM is biased high 
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Model Performance Characteristics: Winter 2005 
Model and Observed Daily Average Surface PM2.5

Capture hot-spots, tendency to over-predict 
• possible role of mixing; Kzmin and/or PBL height ?



PM2.5 Compositional Characteristics
STN Measurements

Summer 2004 Winter 2005

• Reasonable representation of Inorganic 
compositional characteristics

• Sulfate fraction over-predicted
• Organic fraction under-predicted

• Nitrate is a bigger player
• Larger OC fraction 

• under-predictions at lower
concentrations 



June 24, 2005: Daily Avg. PM2.5

Without Fires With Fires Difference

Specification of “Real Time” Emissions
Testing HMS-HYSPLIT fire emissions algorithm

Cave Creek Complex fire began as two lightning-sparked fires on June 21, 2005. Became
second largest fire in Arizona history.



Fire plume signatures: June 24, 2005

Specification of “Real Time” Emissions
Testing HMS-HYSPLIT fire emissions algorithm

June 21-26, 2005 Daily Avg.: Southern NV sites

Real-time specification of fire emissions improves
PM forecast skill June 24, 2005



Summary/Looking Ahead
• AQF system transitioned to WRF-NMM

Growing pains with a new and evolving modeling system
• WRF-NMM based dry-deposition velocities are higher 

than those derived from Eta
Persistent sink- can systematically impact predicted O3

• Implemented the first step in tighter coupling between 
CMAQ and WRF-NMM computational grids 

CMAQ calculations using the WRF-NMM vertical coordinate
Modifications to CMAQ to use the E-grid and rotated lat/lon
coordinate underway

• Under-predictions for surface O3 in experimental 
predictions were found to arise from error in isoprene 
emission calculations

Un-initialized lat/lon fields



Summary/Looking Ahead
• Initial analysis of boundary tracers indicate that 

modeled O3 background values are strongly 
influenced by free tropospheric LBC values

Locations at which O3 is over-predicted generally also 
correspond to high background but low observed values

• Rigorous analysis of developmental PM simulations 
underway

Seasonal trends/biases similar to hind-cast CMAQ 
applications
Speciated PM verifications with surface network (STN, 
CASTNet, IMPROVE, SEARCH) and aloft (ICARTT) data

• Conducted initial testing of a methodology for 
specifying “real-time” fire emissions

Initial results are encouraging


