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1. Introduction 

The interpretation of drought signals has proven to be difficult because of a general lack of ground-based 
“truth” metrics available at continental scales; therefore, forecasters must rely on a convergence of evidence 
strategy using multiple drought index datasets. Standard indicators currently used in drought monitoring focus 
on different components of the water budget: precipitation, soil moisture, groundwater, runoff and streamflow. 
The goal of our NOAA CPO-funded project is to develop a thermal-based drought index based on estimates 
of the actual to potential evapotranspiration ratio provided by the Atmosphere Land-Exchange Inverse 
(ALEXI) model (Anderson, et al., 2007a,b; 2011), focusing on the water-use component of the hydrologic 
cycle.   

Current drought indices include precipitation-based analyses (e.g., Standardized Precipitation Index (SPI; 
McKee et al. 1995); the Palmer indices (Palmer 1965)), and satellite-based vegetation/TIR indices (e.g., 
Vegetation Health Index (VHI; Kogan 1997); VegDRI (Brown et al. 2008)), along with soil moisture and ET 
datasets generated with land-surface models (LSMs) in the National Land Data Assimilation System 
(NLDAS; Mitchell et al. 2003). Each of these index classes has issues: datasets like NLDAS and SPI require 
precipitation and/or soil texture fields that are difficult to observe/specify accurately over large spatial 
domains; while empirical TIR-based drought indices currently in use (like the VHI) do not account for 
important forcings on land-surface temperature (LST) (e.g, available energy, atmospheric demand), and can 
therefore generate spurious drought detections under certain circumstances – particularly at high latitudes 
(Karnieli et al. 2006; Karnieli et al. 2010). 

In contrast, diagnostic LSMs based on TIR remote sensing of LST, like ALEXI, require no information 
regarding antecedent precipitation or soil moisture storage capacity - the current surface moisture status is 
deduced directly from the remotely sensed radiometric temperature signal. This results in a seamless 
implementation over the continent, unaffected by discontinuities in soils and precipitation dataset collected by 
individual countries.  In contrast with the VHI, ALEXI is based on energy balance, so radiation, atmospheric 
and soil moisture controls are all considered in the interpretation of the LST signal.  The TIR remote sensing 
data used in the Evaporative Stress Index (ESI) also provide information about non-precipitation related 
moisture inputs to the land-surface system arising from processes such as irrigation, shallow groundwater 
sources, and lateral flows – processes that must be known a priori and modeled explicitly in prognostic LSMs 
(such as in NLDAS) but may significantly mitigate drought impacts during local rainfall deficits. And 
whereas vegetation index (VI) is a relatively slow response variable to moisture deficits, showing decline only 
after the damage has been done, thermal remote sensing has the potential to provide valuable drought early 
warning preceding detectable degradation in VIs. 
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2.  Model methodology  

The ALEXI surface energy balance model 
(Anderson et al. 1997, 2007a; Fig. 1) was 
specifically designed to minimize the need for 
ancillary meteorological data while maintaining 
a physically realistic representation of land-
atmosphere exchange over a wide range in 
vegetation cover conditions.  It is one of few 
land-surface models designed explicitly to 
exploit the high temporal resolution afforded by 
geostationary satellites. 

a. Interpretation of the thermal land-surface 
signature 

Surface energy balance models estimate ET 
by partitioning the energy available at the land 
surface (RN – G, where RN is net radiation and 
G is the soil heat conduction flux, in Wm-2) into 
turbulent fluxes of sensible and latent heating (H 
and λE, respectively,Wm-2): 

RN – G = H + λE                                 (1) 
where λ is the latent heat of vaporization (J kg-1) 
and E is ET ( kg s-1 m-2 or mm s-1).  The land-
surface representation in ALEXI model is based 
on the series version of the two-source energy 
balance (TSEB) model of Norman et al. (1995), 
which partitions the composite surface radiometric temperature, TRAD, into characteristic soil and canopy 
temperatures, TS and TC, based on the local vegetation cover fraction apparent at the thermal sensor view 
angle, f(θ):   

TRAD ≈ { f(θ)Tc + [1 - f(θ)] Ts }             (2) 

(Fig. 1), where f(θ) can be related to leaf area index (LAI) using Beer’s law.  Eq. 2 is a linear approximation 
to an aggregation of surface radiance values.  With information about TRAD, LAI, and radiative forcing, the 
TSEB evaluates the soil (subscript ‘s’) and the canopy (‘c’) energy budgets separately, computing system and 
component fluxes of net radiation (RN = RNC + RNS), sensible and latent heat (H = HC + HS and λE = λEC + 
λES), and soil heat (G).  Importantly, because angular effects are incorporated into the decomposition of TRAD, 
the TSEB can accommodate TIR data acquired at off-nadir viewing angles by geostationary satellites. The 
TSEB has a built-in mechanism for detecting thermal signatures of stress in the soil and canopy.  An initial 
iteration assumes the canopy transpiration (λEC) is occurring at a potential (non-moisture limited) rate, while 
the soil evaporation rate (λES) is computed as a residual to the system energy budget.  If the vegetation is 
stressed and transpiring at significantly less than the potential rate, λEC will be overestimated and the residual 
λES will become negative.  Condensation onto the soil is unlikely midday on clear days, and therefore λES < 0 
is considered a signature of system stress.  Under such circumstances, the λEC is iteratively down-regulated 
until λES  ~ 0 (expected under dry conditions). 

b. ALEXI Evaporative Stress Index   

The Evaporative Stress Index (Anderson et al. 2007 a, b; 2011) represents standardized anomalies in the ratio 
of actual-to-potential ET, fPET = ET/PET, where ET and PET are instantaneous clear-sky estimates at shortly 
before local noon, retrieved using the ALEXI algorithm.  Normalization by PET serves to minimize 
variability in ET due to seasonal variations in available energy and vegetation cover, further refining focus on 
the soil moisture signal.  Limiting the assessment to clear-sky conditions separates signals of soil moisture 
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Fig. 1  Schematic diagram representing the ALEXI 
modeling framework, highlighting fluxes of sensible 
heat (H) from the soil and canopy (subscripts ‘s’ and ‘c’) 
along gradients in temperature (T), and regulated by 
transport resistances RA (aerodynamic), Rx (bulk leaf 
boundary layer) and RS (soil surface boundary layer).   
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variability from that of cloud climatology.  To highlight differences in moisture conditions between years, 
standardized anomalies in fPET are expressed as a pseudo z-score, normalized to a mean of zero and a standard 
deviation of one with respect to baseline fields describing “normal” (mean) conditions over the period of 
record. 

 c. Model archive generation 

Input datasets required by ALEXI are listed in Table 1. The sources of input data are a mix of operational 
inputs that are available daily (GOES Sounder / insolation and North American Regional Reanalysis (NARR) 
model output), and MODIS land products (such as LAI and albedo), which are routinely generated but 
available with a several week time lag.  The ALEXI domain covers the CONUS at a spatial resolution of 10 
km and a temporal resolution of 1 day. 

Data Purpose Source Spatial 
Resolution 

Temporal 
Resolution 

LST ΔTrad, RN GOES  10 km 1 hr 
LAI Trad partitioning MODIS 0.01° 8-day 
Insolation RN GOES  20 km 1 hr 
Longwave radiation RN GOES  20 km 1 hr 
Albedo RN MODIS 0.05° 16-day 
Wind Speed Aerodynamic resistances NARR 32 km 3 hr 
Atmos lapse [dθ/dz] ABL growth model NARR 32 km 3 hr 
Landcover type Canopy characteristics UMD 0.01 fixed 

Table 1  Primary inputs used by the current CONUS ALEXI ESI system. 
3.  Results 

An intercomparison study of ALEXI ESI and a suite of drought indices (Table 2) was conducted from 
2000 to 2011 over the CONUS, focusing on the primary growing season for most of the United States (April 
– October).  As is the case with ESI, standardized anomalies were computed for each drought index. 
Temporal and spatial correlations between index anomalies were examined to assess the similarity between 
drought indices in their ability to rank drought severity and to visualize spatial patterns in index congruity. 

Index Acronym Type 
U.S. Drought Monitor USDM Multi-index synthesis 
Evaporative Stress Index (X-month composite) ESI-X Remote sensing of fPET 
Vegetation Health Index VHI Remote sensing of LST, VI 
Standardized precipitation index (X-month composite) SPI-X Precipitation 
Palmer Z Index Z Precipitation + storage 
Palmer drought severity index PDSI Precipitation + storage 
Palmer modified drought index PMDI Precipitation + storage 
Palmer hydrologic drought index PHDI Precipitation + storage 
Noah-LDAS evapotranspiration Noah-ET Land surface model 
Noah-LDAS soil moisture Noah-SM Land surface model 

Table 2  Drought indices included in the intercomparison study. 

Drought features in the USDM classifications are generally reflected in one or more of the other indices 
but to varying degrees depending on drought type and time scale. Figure 2 shows the seasonal anomalies for a 
selection of drought indices listed in Table 2 for the study period of 2000 to 2011. In general, ESI reproduces 
patterns evident in the precipitation-based indices, indicating the value of the LST signal as a surface moisture 
proxy. For example, the thermal band inputs to ALEXI capture the major drought events in 2002 and 2007, 
even in the eastern United States, an area in which dense vegetation is dominant during the warm season. This 
is particularly important because standard soil moisture retrievals based on microwave remote sensing tend to 
lose sensitivity due to strong attenuation of the surface soil moisture signal by the overlying vegetative 
canopy. However, in this case, the thermal signal is able to detect vegetation stress related to root zone soil 
moisture deficits and elevated canopy temperatures. 
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Fig. 2  Seasonal (Apr-Oct) anomalies in US Drought Monitor classes, ESI, Noah soil moisture, Noah 

evapotranspiration and SPI-3. 

Of the products included in the intercomparison, Noah soil moisture anomalies were found to be the most 
similar to the USDM with respect to temporal correlation (averaged over CONUS).  The ALEXI 2-month ESI 
composite (ESI-2) shows higher average temporal correlations with the USDM than do the precipitation 
indices of shorter or comparable time scales (Z and SPI-1 to SPI-3).  ESI-2 also outperforms Noah ET 
anomalies and VHI in terms of correlation with USDM. The strongest correlations between ESI and USDM 
are observed over the Great Plains and in the southeastern United States. These are areas identified by 
Karnieli et al. (2010) where LST and NDVI tend to be anticorrelated, indicating moisture-limiting (as 
opposed to energy limiting) vegetation growth conditions. In these areas, ET will be most sensitive to 
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changing root-zone soil moisture condition, and subsequently providing indications of drought. There are also 
regions where ESI shows reduced correlations with the USDM, e.g. over the Mississippi River basin, where 
shallow water tables and intensive irrigation tend to decouple ET rates from precipitation to some extent. ESI 
also shows lower correlations with the USDM over the Everglades in southern Florida, an area which is 
largely inundated with water over much of the year, and ET variations at the seasonal scale may be more 
related to climatic variability than to moisture availability. Finally, lower correlations are also found in the 
northern states where, particularly in early spring, ET is driven more by radiation and climate and is less 
tightly coupled with moisture conditions. 

 
Fig. 3  Monthly USDM drought classification and anomalies in USDM, ESI-2 Noah soil moisture, Noah 

evapotranspiration, and SPI-3 for 2011. 

Spatial anomaly correlations were also computed to assess how well the indices agree on a spatial rather 
than temporal scale. On a seasonal (April-October) time-scale, all indices show the weakest correlations in 
2003 during the long-term hydrologic drought event in the western CONUS, which is captured only by 
indices with time constants exceeding one year. The highest correlations, among all indices, is found during 
2007 where there was a strong contrast in moisture conditions, with extensive drought conditions across the 
southeast US and anomalously wet conditions in the south central US.  At the monthly time-scale, 
correlations between ESI-2 and the USDM are the weakest during April and May, likely due to poor temporal 
sampling in the ESI related to increased snow and cloud cover. However, spatial correlation with ESI-2 
increases throughout the warm season as ET becomes more closely coupled to moisture conditions. 

In contrast, correlations between the short-term precipitation indices (Z, SPI-2, SPI-3) and the USDM 
tend to degrade in August and September. An example of the monthly comparison of spatial anomalies 
between the USDM and ESI-2 is shown in Figure 3 for the year 2011. All five drought indices show excellent 
agreement with the extent and severity of the drought conditions across much of the south central US. 
However, an area of disagreement between ESI-2 and the USDM is evident in southern GA, where the 
USDM shows more severe drought conditions than is shown in ESI-2 during the period from May to August. 
ESI-2 does show small areas of dry conditions in May and June, yet conditions return to near normal during 
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July and August, before a rapid expansion of dry conditions in September through October. The improvement 
shown in July may be related to several precipitation events which likely lead to a replenishment of root-zone 
soil moisture and a decrease in vegetation stress. This is to some extent shown in both Noah SM and ET 
anomalies which showed slight improvement in July and August, although both Noah indices still had 
stronger negative anomalies than ESI-2 during both months. However, as dry conditions returned in August, 
root-zone soil moisture deficits likely increased and lead to a rapid appearance of significant dry anomalies in 
ESI-2 as shown in September and October. 

A few caveats must be considered in this case, first, the USDM in not independent of many of the indices 
listed in Table 2, as they are commonly used in the construction of USDM drought classifications. ALEXI 
ESI was not used in the USDM classification process during the period of record in this analysis, and 
therefore is wholly independent. Second, the USDM drought classes incorporate information relevant to 
different kinds of drought over varying timescales, and we cannot expect a single indicator to agree perfectly 
with the USDM.  For example, socioeconomic drought features in the USDM may indicate increased human 
demand for water rather than natural hydrological deficits. A more detailed analysis of all the drought index 
intercomparison results can be found in Anderson et al. (2011). 

4. Future Work 

The final year of our NOAA-CPO project will mainly focus on two core objectives: (1) developing an 
open interface with end-users at the Climate Prediction Center (CPC) and the National Drought Mitigation 
Center (NDMC) to provide feedback on the use of ESI maps and (2) automating the ALEXI ESI system to 
provide weekly ESI maps to the National Integrated Drought Information System (NIDIS) portal and end-
users at CPC and NDMC. Figure 4 shows an example of the ALEXI ESI website developed to provide ESI 
maps to end-users at CPC and NDMC. The website will be open to the entire drought community during the 
spring of 2012 and through the NIDIS portal at (www.drought.gov). 

 
Fig. 4  Screenshot of the ALEXI Evaporative Stress Index (ESI) website developed at the USDA Hydrology 

and Remote Sensing Lab. 

Furthermore, the use of ALEXI as a proxy for soil moisture conditions will be expanded to produce an 
operational data assimilation system for the optimal assimilation of thermal and microwave soil moisture into 
the Noah LSM component of the NLDAS towards the goal of improved LSM-based drought monitoring. As 
mentioned earlier, ALEXI has been shown to perform well over densely vegetation regions such as the 
southeast US, an area in which microwave retrievals can suffer from significant vegetation-related errors. 
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Therefore, thermal and microwave retrievals methods have been shown to be quite complementary: thermal 
methods provide soil moisture information over a wide range of vegetation conditions, while microwave 
methods provide high temporal information (can retrieve through cloud cover) over areas of low vegetation 
cover (Hain et al. 2001). Finally, although this application of ESI focused solely on the CONUS, ALEXI 
domains are currently being developed both on a global scale (spatial resolution of 0.25°) and on a regional 
scale (e.g., Europe, Africa, and Australia; spatial resolution of 3 to 10 km), facilitating production of ESI 
maps over these domains in the near future. 

References 

Anderson, M. C., J. M. Norman, G. R. Diak, W. P. Kustas, and J. R. Mecikalski, 1997: A two-source time-
integrated model for estimating surface fluxes using thermal infrared remote sensing.  Remote Sens. 
Environ., 60, 195-216. 

Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. P. Otkin, and W. P. Kustas, 2007a: A climatological 
study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote 
sensing: I. Model formulation.  J. Geophys. Res., 112, D10117, doi:10110.11029/12006JD007506. 

Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. P. Otkin, and W. P. Kustas, 2007b: A climatological 
study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote 
sensing: II. Surface moisture climatology.  J. Geophys. Res., 112, D11112, 

      doi:11110.11029/12006JD007507. 
Anderson, M. C., C. R. Hain, B. D. Wardlow, A. Pimstein, J. R. Mecikalski and W. P. Kustas, 2011: 

Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental 
United States.  J. of Climate, 24, 2025-2044. 

Brown, J. M., B. D. Wardlow, T. Tadesse, M. J. Hayes and B. C. Reed, 2008: The vegetation drought 
response index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. 
GIScience Remote Sens., 45, 16-46.  

Hain, C. R., W. T. Crow, J. R. Mecikalski, M. C. Anderson, and T. Holmes (2011), An intercomparison of 
available soil moisture estimates from thermal infrared and passive microwave remote sensing and land 
surface modeling.  J. Geophys. Res., 116, D15107, doi:10.1029/2011JD015633. 

Karnieli, A., N. Agam, R. T. Pinker, M. C. Anderson, M. L. Imhoff, G. G. Gutman, N. Panov, and A. 
Goldberg, 2010: Use of NDVI and LST for assessing vegetation health: merits and limitations.  J. Climate, 
23, 618-633. 

Karnieli, A., M. Bayasgalan, Y. Bayarjargal, N. Agam, S. Khudulmur, and C. J. Tucker, 2006: Comments on 
the use of the Vegetation Health Index over Mongolia.  Int. J. Remote Sensing, 27, 2017-2024. 

Kogan, F. N., 1997: Global drought watch from space.  Bull. Amer. Meteorol. Soc., 78, 621-636. 
McKee, T. B., N. J. Doesken, and J. Kleist, 1995: Drought monitoring with multiple time scales. Paper 

presented at AMS Ninth conf. on Applied Climatology, Dallas, TX. 
Mitchell, K. E. and Coauthors, 2003: The multi-institution North American Land Data Assimilation System 

(NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological 
modeling sytem.  J. Geophys Res., 102, doi:10.1029/2003JD002823.  

Norman, J. M., W. P. Kustas, and K. S. Humes, 1995: A two-source approach for estimating soil and 
vegetation energy fluxes from observations of directional radiometric surface temperature.  Agric. For. 
Meteorol., 77, 263-293. 

Palmer, W.C., 1965: Meteorological drought. Research Paper No. 45, U.S. Weather Bureau, NOAA Library 
and Information Services Division, Washington, D.C. 20852, 58p. 

 


