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1. Introduction 

A wide range of studies have concluded that anthropogenic greenhouse gas increases have very likely 
caused most of the warming on global and continental scales since the middle of the twentieth century, and 
that further warming over the next century is expected (Hegerl et al. 2007).  This conclusion is not necessarily 
“actionable” by local governments and policy makers without more precise predictions on smaller spatial and 
temporal scales. The question arises as to what are the shortest space and time scales for which detection, 
attribution, and prediction are possible. One may also question whether the role of separate forcings, such as 
the role of greenhouse gases, aerosols, solar variability, can be investigated in specific climate events. 
Another complication is whether the indices for climate events have been selected specifically for their 
extreme nature, leading to selection bias.  Also, pre-selecting indices (e.g., based on spatial average) may lead 
us to overlook certain kinds of important events.  This study proposes an objective framework for addressing 
the above questions by identifying components that maximize the signal-to-noise ratio of an externally forced 
event. 

2. Method 

Assuming forced climate variability (i.e., response to external natural and anthropogenic forcing, 
including anthropogenic, volcanic and solar forcing) is an independent and additive perturbation to internal 
unforced variability, the total variance equals the sum of the variances due to forced and unforced 
components. Therefore, the variance of forced runs ought to be larger than the variance of unforced runs, 
since the forced runs contain an “extra” component of variability relative to the unforced runs.  Moreover, 
components whose forced variance differs as much as possible from the unforced variance define components 
in which the forced response is most easily distinguished from unforced variability. Therefore, we seek the 
component that maximizes the ratio of forced variance to unforced variance. It can be shown that maximizing 
the variance ratio leads to the generalized eigenvalue problem (Noble and Daniel 1988; DelSole and Tippett 
2009) 

ΣF

^
q = λ ΣU

^
q ,        (1) 

where ΣF

^

and ΣU

^

are sample covariance matrices of forced and unforced runs respectively. The eigenvalue 
λ turns out to be the variance ratio corresponding to eigenvector q. Equation (1) has more than one 
eigenvalue and eigenvector. Each eigenvector corresponds to a discriminant component. It is convention to 
order eigenvectors in decreasing order of their eigenvalues, such that the first eigenvector maximizes the 
variance ratio, the second eigenvector maximizes the variance ratio subject to being uncorrelated with the first, 
and so on.  The time series associated with forced and unforced runs are  

r F = Fq   and  r U = Uq ,      (2) 

where F and U are matrices containing the (centered) time series for the forced and unforced simulations, 
respectively.  It is shown in Jia and DelSole (2011) that the pattern given by  
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 (3) 

maximizes the mean statistic used 
to perform detection analysis in 
optimal fingerprinting analysis, 
and therefore maximizes 
detectability in the models. It 
follows that if no significant 
pattern can be found, the role of 
external forcing cannot be 
distinguished from internal 
variability. 

3. Models and data 

The data set used in this study 
is from the Coupled Model 
Intercomparison Project phase 3 
(CMIP3) multimodel dataset. The 
3-month means of surface air 
temperature and precipitation 
from the twentieth century runs 
(i.e., forced runs) and pre-
industrial control runs (i.e., 
unforced runs) were analyzed. All 
fields were interpolated to a 
common 72 x 36 grid.   

All statistical quantities are 
estimated in a multi-model sense; 
more precisely, the covariance matrices from different model simulations are averaged together.  Only the last 
300 years of unforced runs were used. The first half of the 300-year data was used as training data to 
maximize the variance ratio, and the second half was reserved for verification. Only one unforced run from 
each model was used as training. Models with significant trends in unforced runs, and significantly different 
variances compared to other models, were omitted. This screening procedure leads to a selection of eight 
models (GFDL-CM2.0, GFDL-CM2.1, IPSL-CM4, MIROC3.2 (medres), ECHO-G, MRI-CGCM2.3.2, 
CCSM3, UKMO-HadCM3). The selected unforced runs from each model were first centered with respect to 
each model’s mean, and then lined up in temporal dimension to generate multi-model training and verification 
datasets. 

For the forced runs, we used a maximum of five ensemble members in each model, and if the ensemble 
members are less than five in a model, we used all available members. One member of each model was used 
as training data to maximize the variance ratio, and the remaining members were used as verification data. 
Each member was centered with respect to the mean of the run.  Similarly, members of eight models were 
lined up to form multi-model training and verification datasets. 

To mitigate overfitting, we reduced the dimension of the data by projecting the data onto the leading 30 
principal components. This study shows results only from independent verification data. 

4. Results 

4.1 Identifying forced response of continental surface air temperature in JFM 

Fig. 1  Time series of the leading component of JFM mean surface air 
temperature in each forced ensemble member (thin grey curves) over 
six continents in independent verification data. The thick black curve 
in each panel shows the multi-model mean time series. 
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We first identify the 
component that maximizes the 
ratio of forced-to-unforced 
variance of JFM mean surface 
air temperature in training data 
over six continents. The 
resulting components were 
then projected onto the 
verification data to determine 
the variance ratios.  According 
to the standard F-test, only the 
ratio of the leading component 
is well above the 5% 
significance level for all six 
continents except Europe (not 
shown).  Thus, except for 
Europe, the forced response is 
distinguishable from unforced 
variability. The fact that 
Europe has no significant 
variance ratio implies that it is 
impossible to detect a forced 
response in these models over 
Europe based on JFM mean 
surface air temperature.  
Furthermore, since the 
response is not detectable in 
this “perfect model scenario”, 
there is no reason to expect it to be detectable with real observations.  Our conclusion pertains to seasonal 
mean response, whereas most previous studies, which claim that a forced response is detectable over Europe, 
employ longer-term means (for instance, Fig. 1 of FAQ 9.2 in Hegerl et al. (2007) is based on ten-year 
means). 

The fact that only one significant variance ratio can be found in other continents implies that 1) detection 
of a forced seasonal response pattern in the other continents is possible, and 2) separating the response to 
different forcings using JFM mean surface air temperature pattern alone will prove difficult, because the 
similarity of the responses is so great that the responses can be compressed into a single pattern. Therefore, if 
there are more than one response patterns, they all project on the leading component, and will be collinear and 
hence difficult to separate. 

We emphasize that our analysis is based only on JFM mean spatial structure, i.e., no time lag information 
is taken into account.  This allows us to apply detection and attribution on seasonal scale, but it limits our 
ability to attribute anomalies to specific forcings.  Previous studies that attribute temperature changes to 
distinct forcings were based on both spatial and temporal information (Stott 2003; Zwiers and Zhang 2003). 

The time series of the leading component for forced runs are shown in Fig. 1. The time series of the 
ensemble mean (thick black curve) shows an increasing trend in each continent except Europe. No significant 
trend in Europe is consistent with the fact that the corresponding variance ratio is insignificant. The spatial 
patterns of the leading component (Fig. 2) are of single sign.  The positive sign associated with the increasing 
trend in each continent indicates warming on continental scales. Largest amplitudes are concentrated in high 
latitudes of North America. 

4.2 Identifying forced response of continental surface air temperature in JAS 

Fig. 2  Spatial pattern of the leading 
component of JFM mean 
surface air temperature in 
verification data. The spatial 
pattern has units of degree 
Kelvin and indicates deviations 
from the time mean. 
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We repeated the above 
analysis except this time for JAS 
mean surface air temperature. 
Only the ratio of the leading 
component is well separated from 
the others and is statistically 
significant in each continent 
except Europe (not shown). The 
time series of the leading 
component for forced runs (Fig. 3) 
reveal increasing trends in all 
continents except Europe. The 
trends are generally larger in JAS 
than in JFM.  The lack of obvious 
trend in Europe is consistent with 
the fact that Europe has no 
significant variance ratio.  
However, the forced time series in 
Europe does show an increasing 
trend in the last two decades of 
the twentieth century. It is 
possible that the trend is real, but 
that the short time for which the 
forced response is distinguishable 
from unforced variability leads to 
small (and statistically 
insignificant) variance ratio. 

The spatial patterns of the 
leading component, shown in Fig. 
4, are of positive sign, as those in 
JFM. The positive sign in spatial 
pattern associated with the increasing trend in forced time series indicates warming on continental scales. The 
largest amplitudes are concentrated in high latitudes of North America in JFM, but in the interior of the 
continent in JAS. 

We have tested that the variance ratios determined by projecting vector q onto verification data are larger 
than the ratios of continental averages for all seasons and all continents, except for Europe (not shown). 

4.3 Identifying forced response of seasonal precipitation 

As for precipitation, none of the variance ratios of JFM and JAS mean precipitation are significant at a 
5% level in any continent, implying that the forced response of seasonal mean precipitation is not detectable. 
This conclusion is somewhat at odds with Zhang et al. (2007), who claim that anthropogenic forcing has had 
a detectable influence on observed changes in precipitation.  Although Zhang et al. (2007) use land averages 
in zonal bands while we use continental patterns, we have repeated our analysis for global domains and zonal 
bands and still find only marginal-to-no significant component. A key difference between the two studies is 
that Zhang et al. (2007) test a trend pattern, which includes decadal scale information of the response, 
whereas here we test a seasonal mean pattern.  Nevertheless, the fact that no significant forced response for 
precipitation can be found suggests that the precipitation trend must be weak, if it exists at all.  This is in fact 
the case, as Zhang et al. (2007) use scaling factors around 5-10 to match modeled trends with observed trends. 
It is not surprising that different statistical procedures produce different conclusions for weak signals. 

5. Summary 

Fig. 3  Time series of the leading component in forced runs over six 
continents in independent verification data, as in Fig. 1, but for JAS 
mean surface air temperature. 
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This study addresses the limit to 
which the response to anthropogenic 
and natural forcing can be 
distinguished from unforced variability 
on seasonal and continental scales. 
Only one statistically significant forced 
pattern of seasonal mean surface air 
temperature can be identified in each 
season and continent (except Europe, 
which has no significant forced 
response), implying that detection of 
anthropogenic and natural forcing of 
temperature on seasonal and 
continental scales is possible. The 
pattern in each continent is of single 
sign and consistent with long-term 
warming, but varies with season.  
However, the fact that only one 
significant pattern was obtained implies 
that different forcings produce similar 
patterns that may be difficult to 
separate in an attribution analysis on 
seasonal and continental scales.   No 
significant forced pattern of seasonal 
mean precipitation could be identified, 
implying that detection of 
anthropogenic and natural forcing of 
precipitation is not generally possible 
on seasonal and continental scales.  The 
forced response identified in this study provides the basis for detection and attribution studies on seasonal 
scales, for instance, in the detection and attribution of observed extreme events. 
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Fig. 4  Spatial pattern of the leading component of JAS mean 
surface air temperature in verification data. The spatial pattern 
has units of degree Kelvin and indicates deviations from the 
time mean. 


