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1. Basics 

Given is a data set X(s,t) at discrete positions in time (equidistant 1 ≤ t ≤ nt) and space(1 ≤ s ≤ ns). 
The concept of EOFs is such that the data set X(s,t) can be written as 

X (s, t) = ∑m αm(t) em(s)                                                                   (1) 

where both  
 ∑t αm(t) αn(t) = 0                                                                 (1a)  
and  
 ∑s w(s) em(s) en(s) = 0                                                                 (1b)   

for any pair n ≠ m. One EOF, mode m, consists of a time series αm(t) and a space pattern em(s).  w(s) 
is a weight that varies in space (depending on the type of grid or the station distribution used). The 
summation over m has to be over a sufficient number of modes (<= the smaller of nt and ns ) to 
achieve the equal sign in Eq(1).  Orthogonality of the set αm(t)  alone (1b), or the set em(s) alone (1a), 
is sufficient to satisfy (1) – the bi-orthogonality (both (1a) and (1b) valid) is one of the features that 
makes EOFs unique compared to other orthogonal functions. 
2. Orthogonality relations 

Multiply the lhs and rhs of (1) by αk(t) and sum over all times t (k is a specific mode number). Using (1a) 
the result is: 
 em(s) = ∑t αm(t) X (s, t) / ∑ t α2

m(t)                                        (2a) 

Likewise, multiply the lhs and rhs side of (1) by ek(s) and sum over all space s with weight w(s). Using (1b) 
the result is: 

 αm(t) = ∑s  w(s) em(s) X (s, t) / (∑s w(s) e2
m(s))                                       (2b) 

The above are the orthogonality relationships we will employ in the iteration. They state, (2a), that the 
space pattern of a particular mode can be calculated by projecting the data X onto the time series of that mode, 
and (2b) that by projecting the data X onto a space pattern the associated time series can be retrieved. These 
calculations are quite simple. 

3. The iteration method   

The above is abstract since we don’t know yet the EOFs. We only know the data X(s,t). Now randomly 
pick (or make) a guess time series α0(t), and stick into (2a). This yields a pattern, the starting guess for the 
space pattern, denoted as e0(s). Stick e0(t) into (2b). This yields α1(t). This two-step process is counted as one 
iteration. With only a few more iterations one generally converges quickly to the first EOF α1(t), e1(s). We 
now form a reduced data set as   

Xreduced(s,t) = X(s,t) - α1(t) e1(s)   (3)  

and repeat the procedure. One now finds mode#2, reduces further etc. It does not matter whether one starts the 
iteration with a guess time series or a guess spatial map. 
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The above describes tersely how a number of (leading) EOFs can be calculated rather quickly. Some 
examples are given in Appendix II. Please note that EOFs can thus be calculated without explicitly evaluating 
the covariance matrix. 

4. Discussion 

The iterative method of calculating EOFs is not widely known in meteorology and climatology. The 
above was described once before in an appendix in an earlier paper (Van den Dool et al. 2000) and possibly 
elsewhere even earlier. A paper by Baldwin et al. (2009) drew attention to iterative projection methods as 
being particularly useful for calculating EOFs from VERY LARGE data sets. Why? Commonly known and 
widely used methods determine EOFs as eigenvectors of the covariance matrix, but to determine the 
covariance matrix is a huge computational task when the dimensions of the data matrix X are very large. This 
situation arises for any modern Reanalysis, even for a single variable.  

Some in the audience of CDPW#36 thought of the above projection method (a ping-pong between (2a) 
and (2b)) as simple and instructive, and therefore useful regardless of the size of the problem. Advantages in 
terms of CPU are none (to write home about) for a small problem, but at least the code is short. The iteration 
is a factor 30 faster (than the route via the covariance matrix) for a problem where ns and nt are order 4000. 
When ns and nt go higher (10,000 or 100,000) the covariance matrix method quickly becomes ‘impossible’ 
(depending on computer and smarts of programmer), while iteration is still possible (although not 
inexpensive). 

Why does the iteration method work? Apparently, the reason is the same as the reason why the “power 
method” works. Suppose we do know the (real, square and symmetric) covariance matrix Q = either XTX or 
XXT. A guess e0(s) can always be written as a linear combination of projections onto the unknown EOFs:  

e0(s) = ∑m αm em(s)                                                                             (4) 

Keep in mind Q em = λm em by definition. Execution of Q e0  (which is done for the power method) thus yields 
∑m λm αm em(s), i.e. the projection onto em(s) gets multiplied by the eigenvalue of that mode during each 
iteration. Consequently the projection onto the gravest modes is amplified relative to the lesser modes, and the 
iteration converges to mode#1. In the classic power method this process may require renormalizations, but 
with (2a)-(2b) this is done automatically. Curiously, iteration works for the same reason as the power method 
even though Q is not calculated. 

Theoretically the iteration method may fail, if, for instance, we have two EOF modes with EXACTLY 
identical eigenvalue. This never happens. Likewise, if we came up with a guess that has no projection onto 
any mode the method will fail. No worry about that either on finite precision machines. What is a problem is 
that after calculating ten or a hundred EOF modes, the remaining spectrum is very flat, and convergence of 
the iteration becomes slower and slower. One would have to iterate longer and longer for less and less added 
variance. This circumstance kills the method as an improvement over the covariance matrix based approach 
when too many modes are required. Truncation is in order somewhere. 

In Toumazou and Cretaux (2001) some sort of attempt is made to systematically list EOF calculation 
methods. According to these authors there are three groups of approaches. The first is to (i) calculate singular 
vectors from the rectangular asymmetric X. The second and third group of methods use directly or indirectly 
(properties of) the square symmetric and real covariance matrix to apply either (ii) the eigenmode method 
called QR method, or (iii) a Lanczos strategy. It is not 100% clear where the iterative projection described in 
the above fits in this list, and whether Toumazou and Cretaux’s list is even complete. Iterative projection 
appears closest to the Lanczos method. Incidentally, the connection between eigen vectors of the covariance 
matrix and singular vectors of the data matrix is given in Appendix I. 

Acknowledgement.  Discussions with Gaby Hegerl and Chris Bretherton (in about 2001) clarified why the 
iteration method works. The paper by Mark Baldwin in 2009 gave impetus to apply the iteration method to a 
huge data set like Reanalysis data. I do acknowledge heroic attempts by Bob Kistler, using all the computer 
tricks known to mankind, to calculate Q. Suranjana Saha made the CFSR data available. Input by Michael 
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Tippett on a systematic list of EOF methods is much 
appreciated. The appendix was copied (and adjusted) from 
Wikipedia. 
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Appendix I: 

Formally, the singular value decomposition of an nt×ns 
real matrix X is a factorization of the form X = U Σ 
VT ,where U is an ns×ns real matrix, Σ is an ns×nt diagonal 
matrix with nonnegative real numbers on the diagonal, and 
VT (the transpose of V) is an nt×nt matrix. The diagonal 
entries Σi,i of Σ are known as the singular values of X. The 
m columns of U and the n columns of V are called the left 
singular vectors and right singular vectors of X, 
respectively. 

Singular value decomposition and eigen-
decomposition are closely related. Namely: The left 
singular vectors of X are eigenvectors of XXT . The right 
singular vectors of X are eigenvectors of XTX. The non-
zero singular values of Σ are the square roots of the non-
zero eigenvalues of XTX or XXT  

Appendix II: Some examples  

First is a low resolution example when the covariance 
matrix can comfortably be calculated.  We use JFM 
seasonal Z500 mean over the period 1948-2011 at 2.5 
degree grid north of 20ºN.  There are 64 time levels and 
144*29=4176 gridpoints, a ‘small’ problem nowadays. 
Fig.1 shows that the first four EOFs are the same for the 
covariance matrix method (top) and iteration method 
(bottom). This result establishes that the iteration methods 
(a completely different code) works.  The reader will also 
recognize renditions of the NAO and PNA as the first two 
modes. 

Fig.1 The first four EOFs for three month mean JFM Z500 for the area 20ºN-pole, and 1948-2011. The four 
panels on the top (bottom) are calculated as eigenvectors of the covariance matrix (based on iteration). Blue 
is negative, red positive. The space patterns are normalized, so the decreasing variance can be seen in the 
smaller amplitude of the time series. 
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Figure 2 shows the successive states obtained by the first four iterations. We start from an absurd first 
guess (upper left), a wheel, that after just one iteration already takes on the familiar features of the first EOF 
looking like the NAO. Both in terms of space pattern and time series we quickly arrive at the first EOF, which 
was given in upper left in Fig.1. Regardless of the first guess we always converge to the first EOF, although it 
may take more iterations if the first guess happens to be close to the 2nd EOF (the PNA); example given in 
CDPW ppt, but not shown. 

Figure 3 is testimony that we achieved 
something rather unlikely, namely we calculated 
the first 200 EOFs of a data set of year-round daily 
(1979-2010; nt = 11688) global full resolution 2 
meter temperature data (at ns = 663552 Gaussian 
gridpoints) produced by CFSR (Saha et al. 2010). 
To be frank: we did the iteration at lower spatial 
resolution for speed, and made only the final 
iteration on full resolution. We are not sure that 
these are the true EOFs beyond about mode#25, 
because convergence appears to be an issue. This 
qualified success is nevertheless noteworthy and 
may potentially be considered a big plus for data 
compression and data transmission issues. 

 

 

 

Fig. 2  Successive states obtained by iteration starting 
with an arbitrary (even non-meteorological) field in 
the upper left (a ‘wheel’). The time series in the 
upper left shows small projections onto the first 
guess space patterns – but this is enough to make 
just a single iteration very efficient.  The path to 
EOF#1 appears very quick. 

Fig. 3  The variance explained (EV) of daily year-
round global 2 meter temperature (given on a 
T384 grid, 1979-2010) by EOF modes calculated 
one by one by the iteration method. The blue 
line is EV by mode, the red line cumulative. The 
high EV of the first mode (>70%) is reflective of 
the role of the enormous annual cycle in T2m on 
earth.  


