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The CWRF has been developed as the Climate extension of the Weather Research and Forecasting model 
(WRF, Skamarock et al. 2008) by incorporating numerous improvements in representation of physical 
processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including 
interactions between land–atmosphere–ocean, convection–microphysics and cloud–aerosol–radiation, and 
system consistency throughout all process modules (Liang et al. 2011). This extension inherits all WRF 
functionalities for numerical weather prediction while enhancing the capability for climate modeling. As such, 
it can be applied for seamless weather forecast and climate prediction. The CWRF has been built with an 
unprecedentedly comprehensive ensemble of alternative parameterization schemes for each of the key 
physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), 
microphysics, cloud, aerosol, and radiation, and their interactions. This facilitates the use of an optimized 
physics ensemble approach to improve weather or climate prediction along with a reliable uncertainty 
estimate. The CWRF also emphasizes the societal service capability to provide credible information for 
climate impacts analyses. For that, it has been coupled with detailed models of terrestrial hydrology, coastal 
ocean, crop growth, air quality, and recently expanding interactive water quality and ecosystem. Their outputs 
will form a scientific basis for decision makers to select optimal pathways to achieve economic, societal and 
environmental goals. 

The CWRF improvements have been accomplished through iterative, extensive model refinements, 
sensitivity experiments, and rigorous evaluations over the past 9 years under close collaborations between the 
Illinois State Water Survey in the University of Illinois at Urbana-Champaign (2003-2010), the Earth System 
Science Interdisciplinary Center (ESSIC) in the University of Maryland at College Park (2011 onward), the 
NOAA Air Resource Laboratory (ARL), and the NOAA Center for Atmospheric Sciences (NCAS). As a 
result, the CWRF has demonstrated greater capability and better performance in simulating the U.S. regional 
climate than the existing CMM5 (Liang et al. 2004b) and the original WRF. The present study provides an 
introduction of the CWRF for its application over the U.S., elaborating a few unique features that are relevant 
to providing credible model results for climate service. 

CWRF physical process representations   

Figure 1 illustrates the current CWRF physics options and executing structure (see all the abbreviations 
and acronyms listed after the References). There are seven major drivers that each controls multiple 
alternative schemes for the physical processes of cloud, aerosol, radiation, surface, PBL, cumulus, and 
microphysics, in the sequential order of computation. The first three drivers (cloud, aerosol, radiation) form 
the Cloud-Aerosol-Radiation (CAR) ensemble modeling system that incorporates over 1018 different ways to 
simulate interactions among cloud, aerosol and radiation, developed from seven packages available in the 
leading global and regional models around the world. This replaces the original WRF single radiation driver 
that consists of the CAM and AER packages, and the MISC schemes now obsolete. The surface driver 
manages all schemes handling surface and subsurface processes over land and oceans, as well as surface-
atmosphere flux exchanges. In particular, the CWRF adds the advanced CSSP and CROP for terrestrial 
hydrology and crop growth over land, and SOM and UOM for mixed-layer and upper ocean effects. The two 
urban schemes are separated from the NOAH and now work with all land surface schemes. All 7 surface layer 
schemes, originally tied to specific options, are now interchangeable for all surface and PBL schemes. The 
PBL driver hosts 7 WRF plus 2 new (CAM, UW) PBL schemes, all of which are integrated with the ORO 
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module accounting for orographic turbulence stress and gravity-wave drag. The cumulus driver provides the 
hub for 7 WRF plus 6 new (GR, ZML, CSU, GFDL, MIT, ECP) deep cumulus schemes, all of which are 
conjunctive with a shallow convection scheme (UW). A consistent switch is added to control whether shallow 
convection is activated internally in 8 deep cumulus schemes or done externally by the UW scheme. The 
microphysics driver harnesses 11 microphysics schemes of the WRF.  

 

Fig. 1  The schematic of the current CWRF physics options and executing sequence from the top down. 
The CAR ensemble system and all modules or schemes outlined in yellow are additions specifically 
developed for the CWRF, while others are inherited from the WRF. 

Importantly, we strove to make all alternative schemes in the CWRF fully coupled across all drivers with 
plug-and-play interfaces. Even without counting the grand CAR ensemble, the CWRF currently contains over 
106 configurations modeling the surface, PBL, cumulus, and microphysics processes and their interactions. To 
achieve this, substantial efforts have been made to scrutinize all individual schemes for consistency and 
incorporate suitable algorithms for missing variables to enable the overall system coupling. Particular care has 
been taken to ensure continuous model integration that can be restarted at any interval while resulting in bit-
by-bit agreement. This is not trivial, especially if time intervals differ among executing individual physics 
drivers. A seamless averaging procedure is implemented to replace cumulative variables, while pertaining to 
model prediction, by their averages between two consecutive steps of the driver at work. This is especially 
effective for precipitation fields (convective/resolved rainfall/snowfall) that are used for different purposes in 
the cumulus, microphysics, surface, cloud, and aerosol drivers. Other cumulative variables for diagnostic 
outputs, such as surface water and energy budget fields, can be set to zero at any restart check point to reduce 
truncation errors. As such, the CWRF can be run safely for a long-term climate simulation with frequent 
restarts as needed and with varying time steps for all 7 physics drivers. On the other hand, the WRF1 with 

                                                 
1 Note that the WRF can be configured to many versions using different combinations of physics schemes. The 
reported WRF configurations are limited. The statement was drawn upon our own experience with the WRF runs 
and through review of several journal manuscripts of others. 
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several tested configurations has been reported to result in numerical instability or serious drift that are 
prohibitive for continuous climate simulations.  

CWRF advanced terrestrial hydrology prediction 

The CWRF incorporates a Conjunctive Surface-Subsurface Process model (CSSP) to predict soil 
temperature/moisture distributions, terrestrial hydrology variations, and land-atmosphere flux exchanges. The 
CSSP is rooted in the Common Land Model (CoLM; Dai et al. 2003, 2004) with a few updates from the 
Community Land Model version 3.5 (CLM3.5; Oleson et al. 2008). It is built upon realistic distributions of 
surface (soil and vegetation) characteristics (Liang et al. 2005a,b), and with significant improvements in 
representing surface energy and hydrology processes. These include an improved dynamic-statistical 
parameterization of land surface albedo (Liang et al. 2005c); a 3-D subsurface hydrologic model with a 
scalable representation of subgrid topographic control on soil moisture (Choi et al. 2007); an explicit 
treatment of surface-subsurface flow interaction (Choi 2006; Choi and Liang 2010; Choi et al. 2011); an 
unconfined aquifer below the bedrock (Yuan and Liang 2011a). The CSSP integrates vertical water exchange 
(precipitation, evaporation, transpiration, infiltration) and horizontal water movement (across grids) to predict 
surface and subsurface runoff resulting from rainfall excess, saturation depletion and lateral flows due to 
resolved and subgrid topographic controls.   

Fig. 2  The CSSP improves terrestrial hydrology prediction over the CLM. This includes incorporation of 
3D effects of subgrid topographic controls (left), depiction of realistic streamflow variations over 
major watersheds (right top), and capture of seasonal-interannual variations of soil moisture observed 
in Illinois (right bottom). 

A comprehensive evaluation against observations at regional-local scales over the contiguous U.S. has 
demonstrated that the CSSP overall performance is superior to both the CoLM and CLM3.5 (Yuan and Liang 
2011a). A recent comparison of offline integrations driven by observational reanalysis data also revealed that 
the CSSP has clear advantages in modeling the U.S. terrestrial hydrology (soil moisture, runoff) over the 
NOAH used in the NCEP CFS. As a result, the CWRF using the CSSP generates not only more realistic 
phase (higher correlations) but also better amplitude (deviation ratios closer to 1) of the soil moisture 
seasonal-interannual variations throughout the root zone than the WRF using the NOAH (Liang et al. 2011). 
Figure 2 depicts an example CSSP improvement over its origin CLM, which produces streamflow pulse 
fluctuations as a result of quick response to rainfall events, causing no recession time, overall runoff 
underestimation, and weak seasonal-interannual soil moisture variability. This advance in representing the 
terrestrial hydrology by the CSSP over NOAH has other major climate benefits. 
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CWRF physics ensemble skill enhancement 

The CWRF incorporates a massive suite of alternative numerical schemes for microphysics, convection, 
cloud, aerosol, radiation, surface, turbulence and transport processes, all of which are fully coupled with 
nonlinear interactions to ultimately determine its climate prediction. No single scheme can capture all aspects 
of the observed climate, but produce predictive skill dependent of climate regimes (Liang et al. 2004a,b; 
Mapes et al. 2004). Consensus prediction based on the ensemble of multiple models or multiple physics 
configurations of a model may offer significant skill enhancement (Krishnamurti et al. 1999; Peng et al. 2002; 
Palmer et al. 2004; Liang et al. 2007; Wang et al. 2009). 

Here we tested an extremely limited subset of 
the CWRF full ensemble, focusing on the control 
configuration and all major alternative schemes 
across each physics driver, altered one at a time. In 
total, there are 26 CWRF simulations. Each 
simulation is driven by the NCEP Reanalysis-2 
LBCs and integrated from 1 November 1992 to 31 
December 1993. During the summer of that year, 
record flooding occurred in the Mississippi River 
basin. Figure 3 illustrates spatial frequency 
distributions of pointwise correlation coefficients 
and root-mean-square errors (RMSE) of daily 
mean rainfall variations between observations and 
all CWRF simulations. Shown are also the 
ensemble results as the averages of all runs with 
equal or optimal weights. The optimal weight 
results from local RMSE minimization, and the 
skill score depicts the upper limit of daily rainfall 
predictability that can be achieved from the best 
optimization of the ensemble. Clearly, the 
ensemble average of the alternative physics 
configurations using an equal weight substantially 
increases the predictive skill over all individuals, 
with more frequent occurrences of higher 
correlation coefficients and smaller RMSE. The 
improvement by the ensemble is realized because 
distinct regions are identified where each 
configuration complementarily captures certain but 
not all observed signals. The skill enhancement is 
most pronounced in summer, followed by autumn 
and spring, whereas rather weak in winter (Liang 
et al. 2011). Note that the ensemble average using 
the localized optimal weights has predictive skill significantly higher than that using the equal weight as well 
as the individuals throughout the entire year. Thus, there exists substantial room to further enhance that skill 
through intelligent optimization. 

CWRF downscaling improvement to CFS climate prediction 

We have recently demonstrated that the mesoscale CWRF downscaling produces significant skill 
enhancement to the driving NCEP CFS seasonal forecast for winter precipitation during 1982-2008 (Yuan 
and Liang 2011b).  Figure 4a compares spatial frequency distributions of RMSE of seasonal mean 
precipitation interannual variations predicted by the CFS and downscaled by the CWRF. The statistics are 
based on all land grids over the entire inner domain (U.S., southern Canada, and northern Mexico) from 5 
realizations. All CWRF results consistently reduce CFS forecast errors. The reduction is obvious at all 

Fig. 3  Spatial frequency distributions of correlations 
(top) and rms errors (bottom) between CWRF and 
observed daily mean rainfall variations in summer 
1993. Each line depicts a specific configuration in 
group of the five key physical processes (color). The 
ensemble result (ENS) is the average of all runs with 
equal (Ave) or optimal (OPT) weights, shown as 
black solid or dashed line. 
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forecast lead times, with the RMSE peaks decreased by about 0.5 mm/day. Figure 4b illustrates the CWRF 
minus CFS differences in equitable threat score (ETS) of seasonal mean precipitation forecasts. The CFS 
forecast skill decreases rapidly for heavy rainfall events, while the CWRF maintains a good level across the 
range. On average, the CWRF reduces CFS forecast RMSE by 22%, increases ETS by 0.08-0.15, and 
produces greater skill for heavy rainfall events. 

Fig. 4  a) Spatial frequency distributions of RMSE (mm/day) predicted by the CFS and downscaled by the 
CWRF and b) CWRF minus CFS differences in ETS for seasonal mean precipitation interannual 
variations. The statistics are based on all land grids over the entire inner domain for DJFMA from the 
5 realizations during 1982-2008. 

Note that the ETS differences are larger in ENSO-neutral years than in strong anomalous years. For 
instance, smaller enhancements are identified in years with La Niña (1984, 1988) and El Niño (1986, 1991, 
2002). During these abnormal years, significant ENSO signals presented in the planetary circulation, and 
thereby the CFS has higher seasonal climate predictability, especially for wintertime when global anomalies 
are more intense. As a result, the advantage of the CWRF downscaling over the CFS forecast is relatively 
weaker than ENSO-neutral years. A further analysis (not shown) indicates that the CWRF simulates more 
accurate number of rainy days than the CFS over the northern and western U.S. due to the refined 
representation of orographic effect, shallow convection, and terrestrial hydrology, and also more realistically 
captures the broad region of extreme rainfall over the Gulf States and maximum dry spell length along the 
Great Plains, as well as their contrasts between El Niño and La Niña events. In conclusion, the CWRF 
downscaling exhibits significant advantages for regional precipitation prediction, especially during years with 
weak planetary anomalies. 

CWRF application for climate service at regional-local scales 

The CWRF has been coupled with detailed models of terrestrial hydrology, coastal ocean, crop growth, 
air quality, and recently expanding interactive water quality and ecosystem. As such, the CWRF has been 
designed for climate applications at regional-local scales, and can be used to translate GCM global climate 
simulations into regional-specific actionable information for local impacts. This can be done by nesting 
CWRF with selected (e.g., NOAA, NASA) operational forecasts of seasonal-interannual climate anomalies, 
and CMIP (e.g., NCAR, GFDL) projections of future decadal climate changes under a feasible range of 
emissions scenarios. The CWRF can be run at multiple nested grids finer than 30-km to resolve the synoptic, 
mesoscale and local processes that govern the climate and environmental anomalies and changes most 
relevant to end-users for decision making. In so doing, the CWRF will be able to integrate the global signals 
with regional characteristics into comprehensive information required for local impacts assessment. We can 
further constrain the CWRF by the advanced data assimilation to improve initialization and narrow 
uncertainty such that the final prediction will be the most reliable source for end-users. We anticipate that the 
CWRF ensemble of multiple alternative physics configurations, with optimal weights on individual members 
as constrained by their respective performance metrics against observations, will further increase the 
downscaling predictive skill over the driving GCM forecasts or projections with more reliable estimate of 
result uncertainty. The CWRF optimized physics ensemble downscaling approach will provide an 
unprecedented skill enhancement for predicting climate at regional-local scales. 
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ABBREVIATIONS AND ACRONYMS 

ACM Asymmetric Convective Model 
AER Atmospheric and Environmental Research 
ARL NOAA Air Resource Laboratory 
BEP Building Environment Parameterization (multilevel urban model) 
BMJ Betts-Miller-Janjic cumulus parameterization 
BouLac Bougeault-Lacarrère PBL scheme 
CAM NCAR Community Atmosphere Model 
CAR CWRF Cloud-Aerosol-Radiation Ensemble Modeling System 
CAWCR Centre for Australia Weather and Climate Research 
CCCMA Canadian Centre for Climate Modeling and Analysis 
CFS NCEP Climate Forecast System 
CLM3.5 Community Land Model version 3.5 
CMM5 Climate Extension of the PSU/NCAR Mesoscale Model generation 5 
CoLM Common Land Model 
CMIP Coupled Model Intercomparison Project 
CROP Dynamic crop growth modeling system 
CSSP Conjunctive Surface-Subsurface Process model 
CSU Colorado State University 
CWRF Climate extension of the Weather Research and Forecasting model 
ECP Ensemble Cumulus Parameterization modified from G3 
ENSO El Niño-Southern Oscillation 
ESSIC Earth System Science Interdisciplinary Center, University of Maryland 
ETS Equitable Threat Score 
FLG Fu-Liou-Gu radiation transfer scheme 
G3 Grell-3 ensemble cumulus parameterization 
GCM General Circulation Model 
GD Grell-Dvénéyi ensemble cumulus parameterization 
GFDL Geophysical Fluid Dynamics Laboratory 
GR Grell cumulus parameterization 
GSFC NASA Goddard Space Flight Center 
HIR High Resolution PBL scheme 
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LBCs Lateral Boundary Conditions 
Lin Lin et al. microphysics scheme 
MISC Miscellaneous (obsolete) radiation schemes 
MIT Massachusetts Institute of Technology 
Morrison Morrison et al. two-moment microphysics scheme 
MYJ Mellor-Yamada-Janjic PBL scheme 
MYNN Mellor-Yamada PBL scheme modified by Nakanishi-Niino 
NASA National Aeronautics and Space Administration 
NCAR National Center for Atmospheric Research 
NCAS NOAA Center for Atmospheric Sciences 
NCEP National Centers for Environmental Prediction 
NKF New Kain-Fritsch cumulus parameterization 
NOAA National Oceanic and Atmospheric Administration 
NOAH NCAR-NCEP unified land surface model 
ORO Module for orographic turbulence stress and gravity-wave drag 
PBL Planetary Boundary Layer 
PX Pleim-Xiu land surface model 
QNSE Quasi-Normal Scale Elimination PBL scheme 
RadExt CWRF module for external radiative conditions (solar constant, atmospheric gas volume 

mixing ratios, aerosol distributions) 
RCM Regional Climate Model 
RMSE Root Mean Square Errors 
SAS Simplified Arakawa-Schubert cumulus parameterization 
SBCs Surface Boundary Conditions 
SfcExt CWRF module for external surface and subsurface conditions 
SOM Simple Ocean Model 
SST Sea Surface Temperature 
Tao Tao et al. microphysics scheme 
TEMF Total Energy–Mass Flux boundary layer scheme (Angevine et al. 2010) 
Thompson Thompson et al. microphysics scheme 
UCM Urban Canopy Model 
UOM Multilevel Upper Ocean Model 
UW University of Washington 
WDM6 WRF Double-Moment 6-class microphysics scheme 
WSM5 WRF Single-Moment 5-class microphysics scheme 
WSM6 WRF Single-Moment 6-class microphysics scheme 
WRF Weather Research and Forecasting model 
YSU Yonsei University 
ZML  Zhang-McFarlane-Liang cumulus parameterization 


