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1. Introduction 

 In this study, real-time model predictions of ENSO conditions during the 2002-2011 period are evaluated 
and compared to skill levels documented in studies of the 1990s. ENSO conditions are represented by the 
Niño3.4 SST index in the east-central tropical Pacific. The skills of 20 prediction models (12 dynamical, 8 
statistical), that have been displayed on the ENSO prediction plume of the International Research Institute for 
Climate and Society (IRI) since 2002, are examined. Over the last two to three decades, our ability to predict 
ENSO variations at short and intermediate lead times has presumably gradually improved due to improved 
observing and analysis/assimilation systems, improved physical parameterizations, higher spatial resolution, 
and better understanding of the tropical oceanic and atmospheric processes underlying the ENSO 
phenomenon. Studies in the 1990s showed moderate ENSO prediction capability, with forecast versus 
observation correlations of about 0.6 for 6-month lead predictions for the Niño3.4 region (Barnston et al. 
1994). This study reviews the recent model performances, and reexamines the question of the relative 
performance of dynamical and statistical models. We also compare the skills of the 9 years of real-time 
predictions to those of longer-term (30-year) hindcasts from some of the same models. The ENSO prediction 
models studied here are listed in Table 1. 

 The ENSO predictions issued each month from February 2002 through January 2011 are examined for 
multiple lead times for future 3-month target (i.e., predicted) periods. Figure 1 shows the variability of the 
Niño3.4 anomaly from 1981 to 
2011, highlighting the recent 9-
year period of the current study. 
Although there were some 
moderate ENSO events, no 
very strong events occurred. 
The last target period is 
January-March 2011, while the 
earliest target period is 
February-April 2002 for the 
shortest lead time and October-
December 2002 for the longest 
lead time. The forecast data 
from a given model consist of a 
succession of running 3-month 
mean SST anomalies with 
respect to the climatological 
means for the respective 
predicted periods, averaged 
over the Niño3.4 region. 

Figure 1  Time series of running 3-month mean SST anomaly with respect 
to the 1981-2010 period climatology in the Niño3.4 region for 1981-
2011, highlighting the 2002-2011 study period. 
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Predicted periods begin with the 3-month period beginning immediately after the latest available observed 
data, and continue for increasing lead times until the longest lead time provided by the given model, to a 
maximum of 9 running 3-month periods. Here, lead time is defined by the number of months of separation 
between the latest available observed data and the beginning of the 3-month forecast target period. Although 
anomalies were requested to be with respect to the 1971-2000 climatology, some prediction anomalies were 
with respect to means of other periods, such as from 1982 to the early 2000s for some dynamical predictions. 
Adjustments for these discrepancies were not conducted, nor were model bias corrections attempted. Only the 
ensemble mean of the dynamical model forecasts is considered as a deterministic prediction.  

Table 1  Dynamical and statistical models whose forecasts for Niño3.4 SST anomaly are included in this 
study. Note that some models were introduced during the course of the study period, or replaced a 
predecessor model. 

Dynamical Models Model type 
NASA GMAO Fully coupled 
NCEP CFS Fully coupled 
Japan Meteorological Agency Fully coupled 
Scripps Hybrid Coupled Model (HCM) Comprehensive ocean, statistical atmosphere 
Lamont-Doherty Intermediate coupled 
Australia POAMA Fully coupled 
ECMWF Fully coupled 
UKMO Fully coupled 
Korea Met. Agency SNU Intermediate coupled 
Univ. Maryland ESSIC Intermediate coupled 
IRI ECHAM/MOM Fully coupled, anomaly coupled 
COLA Anomaly Anomaly coupled 
COLA CCSM3 (too short a record) Fully coupled 
Météo France (too short a record) Fully coupled 
Japan Frontier FRCGC (short record) Fully coupled 
  
Statistical Models Method and predictors 

NOAA/NCEP/CPC Markov Markov: Preferred persistence and transitions in 
SST and sea level height fields  

NOAA/ESRL Linear Inverse Model (LIM) Refined POP: Preferred persistence and transitions 
within SST field 

NOAA/NCEP/CPC Constructed Analogue (CA) Analogue-construction of current global SSTs 
NOAA/NCEP/CPC Canonical Correlation Analysis 
(CCA) 

Uses SLP, tropical Pacific SST and sub-surface 
temperature (not used beginning in 2010) 

NOAA/AOML CLIPER Multiple regression from tropical Pacific SSTs 
Univ. British Columbia Neural Network (NN) Uses sea level pressure and Pacific SST 
Florida State Univ. Multiple Regression Uses  tropical Pacific SST, heat content, winds 
UCLA TDC Multi-level Regression Uses 60N-30S Pacific SST field 
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The Reynolds-Smith version 2 optimal interpolation (OI) observed SST data averaged over the Niño3.4 
region (5°N-5°S, 120°-170°W) is used as the verification data, using the 1981-2010 period to define the 
anomalies.   

2. Results 

a. Real-time Predictive Skill 
of Individual Models 

Time series of the 
running 3-month mean 
observed SST anomalies in 
the Niño3.4 region and the 
corresponding predictions by 
23 prediction models at 0-, 2-, 
4- and 6 month lead times are 
shown in Fig. 2, showing that 
the models generally 
predicted the variations of 
ENSO with considerable skill 
at short lead times, and 
decreasing skill levels with 
increasing lead times. Figure 
3 shows the temporal 
correlation between model 
predictions and the 
corresponding observations 
as a function of target season 
and lead time, with a separate 
panel for each model. The 
correlation skill patterns of 
the models appear roughly 
comparable. All indicate a 
northern spring predictability 
barrier (Jin et al. 2008), with 
short lead prediction skills 
having a relative minimum 
for northern summer, 
extending to later seasons at 
longer lead times.  Relative to 
the statistical models, Fig. 3 
shows higher correlation 
skills by many of the 
dynamical models for seasons 
in the middle of the calendar 
year that generally have lowest skill. By contrast, for seasons having highest skills (e.g. northern winter target 
seasons at short to moderate lead times), skill differences among models and between model types appear 
small. 

 Figure 4 shows individual model correlation skills as a function of lead time for all seasons combined, 
while the top and bottom panels of Fig. 5 show skills for the pooled target seasons of NDJ1 , DJF and JFM, 
and for MJJ, JJA and JAS, respectively. Overall, model correlation skills at 6-month lead range anywhere 

                                                 
1 Seasons are named using the first letter of the three constituent months; e.g. DJF refers to Dec-Jan-Feb. 

Figure 2  Time series of running 3-month mean Niño3.4 SST observations 
(°C anomaly), and corresponding model predictions for the same 3-
month period from earlier start times at 0-, 2-, 4- and 6-month leads. 
Data for each model are separated by thin black horizontal lines. The first 
8 models at the top are statistical models.  For each model, the bottom 
row shows the observations, and the four rows above that row show 
predictions at the four increasing lead times. Vertical dotted lines 
demarcate calendar year changes, separating Nov-Dec-Jan from Dec-Jan-
Feb. Observations span from Feb-Mar-Apr 2002 to Jan-Feb-Mar 2011, 
while forecasts at longer lead times start and end with later seasons. 
Black shading indicates missing data. 
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from zero to about 0.7 for all seasons combined, while predictions for the northern winter season range from 
0.4 to 0.9, and for the northern summer season from below zero to 0.55. The model skill levels for all seasons 
combined (Fig. 4) differ from one another noticeably at all lead times. Averaged over all seasons, skills 
average somewhat lower than the 0.6 level found at 6-month lead in earlier studies. However, a small number 
of current models, some of which do not predict out to 6 months lead, have shorter-lead skill levels that would 
exceed a 0.6 correlation if their forecast range were extended, and if their skill followed a downward slope 
with increasing lead time averaging that shown by other models having longer maximum lead times. 
Examples of models with such good or potentially good skill include ECMWF, NASA-GMAO, JMA; NCEP-
CFS skill approximately equals 0.6. However, two caveats in the comparison of skills of today’s models 
against models of 10 to 20 years ago include (1) the ENSO variability during the 2002-2011 period will be 
demonstrated to have been more difficult to predict than that over the 1981-2011 in general; and (2) the 
current set of predictions were made in real-time, while those examined in previous studies were partly 
hindcasts. Both factors will be examined 
further below.    

One reasonably might ask whether the 
skill differences at any lead time are 
sufficient, for a 9-year period, to 
statistically distinguish among the 
performance levels of some of the models. 
Because ENSO episodes last up to a year, 
we assume (perhaps conservatively) that 
we have only about one independent 
sample per year. The existence of 
statistically significant differences between 
skills of any pair of individual models 
requires very large sample skill 
differences—larger than those found here. 
However, the statistical significance of 
skill differences between dynamical and 
statistical model types is more tractable, 
and is addressed below.   

The correlation between model 

Figure 3  Temporal correlation between model forecasts and observations as a function of target season 
(horizontal axis) and lead time (vertical axis). Each panel highlights one model. The first 12 models are 
dynamical, followed by 8 statistical models. Thick solid contour shows the 90% significance level, dashed 
contour the 95% level, and thin solid contour the 99% level 

Figure 4 Temporal correlation between model forecasts and 
observations for all seasons combined, as a function of 
lead time. Each line highlights one model. The 8 statistical 
models are shown with dashed lines and the cross symbol. 
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predictions and observations reflects 
purely the discrimination ability of the 
models, since biases of various types 
do not affect this metric. However, 
such prediction biases (e.g., calibration 
problems involving the mean or the 
amplitude of the predictions) are also 
part of overall forecast quality, despite 
being correctible in many cases. To 
assess performance in terms of both 
calibration and discrimination, root 
mean square error (RMSE) is examined. 
Here the RMSE is standardized for 
each season individually. 
Standardization scales RMSE so that 
climatology forecasts (zero anomaly) 
result in the same RMSE-based skill 
(of zero) for all seasons, and all 
seasons’ RMSE contribute equally to a 
seasonally combined RMSE. Figure 6 
shows RMSE as a function of lead time 
for all seasons together. The ECMWF 
model has the lowest RMSE over its 
range of lead times. For lead times 
greater than 2 months, persistence 
forecasts have higher RMSE than that 
of any of the models. There is clearly 
some comparability between 
correlation skill (Fig. 4) and RMSE 
(Fig. 6), with models having highest 
correlation tending to have low RMSE. 
However, exceptions are discernible, 
due to the effects of mean biases and 
amplitude biases (not shown). 

 Establishing statistical significance 
of skill differences between dynamical 
and statistical models for specific times 
of the year is difficult for a 9-year 
study period. However, the fairly large 
number of models can be used to help overcome the short period length. Models are ranked by correlation 
skill for each season and lead time separately, using the 9 year sample. Systematic differences in the ranks of 
the dynamical and statistical models are identified using the Wilcoxon rank sum test (Wilcoxon 1945). 
Additionally, the average correlation of the dynamical and statistical models is compared using a standard t-
test, applied to the Fisher Z equivalents of the correlations (Ramseyer 1979). The p-values resulting from 
these two statistical approaches are shown in Table 2. Although the difference-in-means test generally yields 
slightly more strongly significant results than the rank sum test, the season/lead patterns of the two 
approaches are similar. Significant differences, in which dynamical models tend to outperform statistical 
models, are found at short lead time for the target periods near May-Jul-Jul, the seasons just following (and 
most strongly affected by) the northern spring predictability barrier. This significance pattern migrates to later 
target periods with increasing lead time, following the target periods corresponding to the fixed forecast start 
times of April or May. For forecasts whose lead times do not traverse the northern spring barrier, statistical 
versus dynamical skill differences are not significant. 

Figure 5  (top) Temporal correlation between model forecasts and 
observations for Nov-Dec-Jan, Dec-Jan-Feb and Jan-Feb-Mar 
as a function of lead time. Each line highlights one model. The 
8 statistical models are shown with dashed lines and the cross 
symbol. (bottom) As in top, but for May-Jun-Jul, Jun-Jul-Aug 
and Jul-Aug-Sep. 
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Wilcoxon rank sum test (field significance p=0.034) 

Lead  DJF   JFM   FMA   MAM   AMJ   MJJ   JJA   JAS   ASO   SON   OND   NDJ     All 

0    0.32  0.19  0.76  0.28  0.01  0.01  0.09  0.95  0.22  0.41  0.95  0.76    0.70 

1    0.88  0.25  0.22  0.32  0.06  0.003 0.02  0.17 -0.68  0.34  0.68  1.00    0.64 

2    1.00  0.76  0.32  0.19  0.17  0.04  0.01  0.01  0.54 -0.73  0.38  0.94    0.22 

3    1.00 -0.93  0.32  0.14  0.36  0.19  0.14  0.01  0.01  0.25  1.00 -0.74    0.12 

4   -0.33 -0.37  0.79  0.29  0.48  0.48  0.18  0.25  0.01  0.004 0.36 -0.21    0.16 

5   -0.09 -0.29 -0.40  0.67  0.92  0.60  0.67  0.30  0.34  0.03  0.002 0.92    0.21 

6    0.60 -0.60 -0.75  1.00  0.40  0.46  0.75 -0.83  0.75  0.46  0.05  0.05    0.25 

7    0.02  1.00 -0.35  1.00 -0.64  0.20  0.82  0.91  0.70  0.73  0.25  0.03    0.35 

8    0.05  0.02  1.00 -0.52 -0.44  1.00  0.19 -0.61 -0.66 -0.88  1.00  0.05    0.61 

 

t-test for mean difference (field significance p=0.026) 

Lead  DJF   JFM   FMA   MAM   AMJ   MJJ   JJA   JAS   ASO   SON   OND   NDJ     All 

0    0.27  0.19  0.65  0.22  0.003 0.001 0.06  0.48  0.41  0.65  0.74  0.46    0.49 

1    0.50  0.37  0.12  0.16  0.04  0.000 0.01  0.10 -1.00  0.32  0.73 -0.85    0.29 

2   -0.90  0.54  0.33  0.06  0.23  0.04  0.001 0.01  0.16 -0.86  0.29  0.93    0.12 

3   -0.98  0.65  0.13  0.13  0.71  0.20  0.07  0.002 0.001 0.11 -0.90 -0.65    0.09 

4   -0.35 -0.39  0.82  0.40  0.26  0.78  0.29  0.12  0.002 0.000 0.22 -0.19    0.11 

5   -0.16 -0.47 -0.31  0.56 -0.93  0.55  0.87  0.17  0.18  0.004 0.001 0.66    0.18 

6    0.34 -0.80 -0.73 -0.62  0.34  0.30  0.70  0.97  0.66  0.28  0.01  0.02    0.18 

7    0.01  0.37 -0.39 -0.60 -0.67  0.26  0.42  0.65  0.42  0.51  0.17  0.01    0.15 

8    0.04  0.02  0.52 -0.37 -0.45 -0.83  0.13  0.77  0.48  0.66  0.70  0.29    0.34 

Table 2 Statistical significance results (2-sided p-values), by target season and lead time, for differences in 
temporal correlation skill of dynamical versus statistical models: (top) Wilcoxon rank sum test for 
correlation skills, and (bottom) t-test of difference in means of Fisher Z equivalents of the correlations 
skills. Entries statistically significant at the 0.05 level are shown in bold. Negative sign indicates cases 
when statistical models have higher ranks (or means) than dynamical models. P-values are shown to 3 
decimal places when p<0.005; 0.000 indicates p-value <0.0005. 

Although significant differences are noted for specific seasons and leads, there is a multiplicity of 
candidate season/lead combinations, and 5% of the 108 candidates (i.e., 5 or 6 of them) are expected to be 
significant by chance. In the case of the Wilcoxon test, 20 entries are significant, and for the difference-in-
means test 20 entries are significant. To assess the field significance of the collective result (Livezey and 
Chen 1983), Monte Carlo simulations are conducted in which the model type is randomly shuffled 5,000 
times, maintaining the actual number of dynamical and statistical models for the given lead time, and the set 
of local significances is regenerated. Using the sum of the z or t values of all 108 cells as the test statistic, the 
percentage of the 5,000 randomized cases that exceeds the actual case is determined. The z or t values are 
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taken as positive when the 
correlation of the dynamical models 
exceeds that of the statistical models, 
and negative for the opposite case. 
Resulting field significances are 
0.034 and 0.026 for the Wilcoxon 
rank test and t-test, respectively, 
indicating significantly low 
probabilities that the set of local 
significances occurred accidentally. 
This finding suggests that the 
circumstance under which local 
significance is found, namely 
forecasts impacted by the northern 
spring predictability barrier being 
more successful in dynamical than 
statistical models, is meaningful and 
deserves fuller explanation.   

A likely reason that dynamical 
models are better able to predict 
ENSO through the time of year 
when transitions (dissipation of old events and/or development of new events) typically occur is their more 
effective detection, through the initial conditions, of new evolution in the ocean-atmosphere system on a 
relatively short (intramonth) time-scale—evolution that may go unnoticed by statistical models that use 
monthly or seasonal means for their predictor variables. Statistical models might be able to compete better 
against dynamical models if they used finer temporal resolution, such as weekly means.  

Statistical models need long histories of predictor data to develop their predictor-predictand relationships. 
This need presents a problem in using the 3-dimensional observations in the tropical Pacific, such as the data 
from the Tao-Triton array, dating from the 1990s. (However, some subsurface tropical Pacific data do date 
back 10 or more years earlier in the eastern portion of the basin, and are available in the GODAS product.) 
This shorter data history precludes robust empirical definition of their predictive structures, and thus they are 
often omitted in statistical models. Although comprehensive dynamical models require a data history 
sufficient for verification and as a basis for defining anomalies, such a history is not basic to their functioning, 
and real-time predictions are able to take advantage of improved observing systems as they become available, 
potentially resulting in better initial conditions. While use of such crucial data suggests that dynamical models 
should be able to handily outperform statistical models, dynamical models have been burdened by problems 
such as initialization errors related to problems in data analysis/assimilation, and biases or drifts stemming 
from imperfect numerical representation of critical air-sea physics and parameterization of small-scale 
processes. As these weaknesses have improved, some comprehensive dynamical models have begun 
demonstrating their higher theoretical potential.  This improvement will likely continue (Chen and Cane 
2008). 

b. Real-time Predictive Skill versus Longer-Period Hindcast Skill  

Because 9 years is too short a period from which to determine predictive skill levels with precision, one 
reasonably might ask to what extent the performance levels sampled here could be expected to hold for future 
predictions. To achieve more robust skill estimates, a commonly used strategy is to increase the sample of 
predictions by generating retrospective hindcasts—“predictions” for past decades using the same model and 
procedures as in real time, to the extent possible. Cross-validation schemes are often used with statistical 
models, where varying sets of one or more years are withheld from the full data set, and the remaining years 
are used to define the prediction model which then is used to forecast the withheld year(s). In practice, there is 

Figure 6  RMSE in standardized units, as a function of lead time for all 
seasons combined. Each line highlights one model. The 8 statistical 
models and the persistence model are shown with dashed lines and 
the cross symbol. 
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no comparable procedure applied in dynamical model development, and model parameter choices are often 
made using the same data used to evaluate skill. 

Fourteen of the 20 models whose 9-year real-time forecast performance was discussed above (6 
dynamical, 8 statistical) have produced hindcasts for the approximately 30-year period of 1981 (or 1982) to 
2011. To assess the consistency of their skills during the longer period and the 9-year period of real-time 
predictions, the temporal correlation between hindcasts and observations is examined as a function of target 
seasons and lead time. Figure 7 shows a comparison of the correlation skills for the 9-year real-time 
predictions (as in Fig. 3) and the 30-year hindcasts for the subset of models having both data sets. Although 
the correlation plots are roughly similar, inspection shows generally higher hindcast skill levels for all of the 
models. Why do the hindcasts have higher skills? One explanation is that the 2002-2011 period may have 
been more difficult to predict than most of the longer period. Another explanation is that skills tend to be 
higher in hindcasts than in real-time predictions because the cross-validation designs may still allow inclusion 
of some artificial skill. 

Figure 7  Temporal correlation between model forecasts and observations as a function of target season and 
lead time for (top) real-time forecasts (as in Fig. 3) and (bottom) hindcasts for the 1981-2010 period for 
models having long-term hindcasts. Thick solid contour shows the 90% significance level, dashed 
contour the 95% level, and thin solid contour the 99% level for sample sizes of 9 (top) and 30 (bottom). 

To assess the relative difficulty of the recent 9-year period, the time series of uncentered correlation 
skills2 of sliding 9-year periods, each phased 1 year apart, are examined for the 22 running periods within 
1981-2010. The resulting time series of correlation are shown in Fig. 8 (top), for lead times of 3 months and 6 
months. It is clear that for all models, and for both lead times, the 2002-2010 period, as well as the early to 
middle 1990s, posed a greater predictive challenge than most of the last three decades. As noted earlier in Fig. 
1, one distinguishing feature of the 2002-2011 period is a lower amplitude of variability (no very strong 
events). The feature may be expected to reduce the upper limit of correlation skill by reducing the signal part 
of the signal-to-noise ratio. If the noise component remains approximately constant, and signal strength is 
somewhat restricted as during 2002-2010, then the correlation is reduced. The bottom inset of Fig. 8 (top) 
shows the 9-year running standard deviation of the observed Niño3.4 SST anomalies, with respect to the 
1981-2010 mean. The correlation between the running standard deviation and the model average skill is about 
0.8 for both 3- and 6-month lead predictions, confirming a strong relationship between signal strength and 
correlation skill.   

The average of the anomaly of the 2002-2011 correlation with respect to that over 1981-2010 is 
approximately -0.14 (0.61 vs. 0.75) for 3 month lead forecasts and -0.23 (0.42 vs. 0.65) for 6-month lead 
forecasts. The -0.23 “difficulty anomaly” for 6 month lead forecasts is of greater magnitude than the deficit in 
skill of the real-time predictions during 2002-2011 compared with the approximately 0.6 skill level found in 
earlier studies, suggesting that today’s models would slightly (0.65 versus 0.60) outperform those of the 
1990s if the decadal fluctuations of the nature of ENSO variability were taken into account. 

                                                 
2 For the uncentered correlation, the 9-year means are not removed, so that standardized anomalies with respect to the 
30-year means, rather than the 9-year means, are used in the cross-products and the standard deviation terms. 
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To examine the signal versus skill 
relationship with more precision, a 3-
year time window is used in Fig. 8 
(bottom), the bottom inset again 
indicating the running standard 
deviation. Within the 2002-2010 
period, the subperiod of 2003-2007 is 
a focal point of low skill and low 
variability. The correlation between 
the 3-year running standard deviation 
and model average skill is again 
about 0.8 for both 3- and 6-month 
lead predictions, confirming a strong 
linkage between signal strength and 
correlation. 

A second cause of the recent real-
time predictions having lower 
correlation skill than the 30-year 
hindcasts is that using a period for 
which the verifying observations exist 
may permit inclusion of some 
artificial skill not available in real-
time predictions. Attempts to design 
the predictions in a manner 
simulating the real-time condition 
(e.g. cross-validation) reduce artificial 
skill, but subtle aspects involving 
predictor selection often prevent its 
total elimination. Another 
impediment to the skill of real-time 
predictions includes such unavoidable 
inconveniences as delays in 
availability of predictor or 
initialization data, computer failure or 
other unforeseen emergencies, or 
human error. While this factor may 
seem minor, experience with the 
ENSO prediction plume has shown 
that such events occur more than once 
in a while. 

3.  Concluding remarks 

Verification of the real-time 
ENSO prediction skills of 20 models 
(12 dynamical, 8 statistical) during 2002-2011 indicates skills somewhat lower than those found for the less 
advanced models of the 1980s and 1990s. However, this apparent retrogression in skill is explained by the 
fact that the 2002-2011 study period was demonstrably more challenging for ENSO prediction than most of 
the 1981-2010 period, due to a somewhat lower variability. Thirty-year hindcasts for the 1981-2010 period 
yielded average correlation skills of 0.65 at 6 month lead time (slightly higher than the 0.6 found in studies 
from the 1990s), but the real-time predictions for 2002-2011 produced only 0.42. The fact that the recent 
predictions were made in real-time, in contrast to the partially hindcast design in the earlier studies, introduces 
another difference with consequences difficult to quantify but more likely to decrease than increase the recent 

Figure 8  (top) Time series of uncentered correlations between 
predictions of given individual models and observations for 
sliding 9-year periods, phased 1 year apart, for the 21 or 22 
running 9-year periods within 1981-2010. Correlations for 
forecasts at lead times of 3 months (thick lines) and 6 months 
(thin lines) are shown. Inset below main panel shows the standard 
deviation of observed SST anomalies for each sliding 9-year 
period, with respect to the 1981-2010 mean. (bottom) As in top, 
except for sliding 3-year periods for the 27 or 28 running 3-year 
periods within 1981-2010. 
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performance measures. Thus, based solely on the variability of 9-year correlation skills of the hindcasts within 
the 30-year period, ENSO prediction skill is slightly higher using today’s models than those of the 1990s 
(0.65 versus about 0.6 correlation). Decadal variability of ENSO predictability can dominate the gradual skill 
improvements related to real advances in ENSO prediction science and models. 

Unlike earlier results, the sample mean of skill of the dynamical models exceeds that of statistical models 
for start times between March and May when prediction has proven most challenging. The skill comparison 
by model type passes a field significance test for all seasons and leads collectively, at the p=0.03 level. 

A likely reason for the better performance of dynamical than statistical models is a more effective 
detection and usage in dynamical models, through their initial conditions, of new information in the ocean-
atmosphere system on a short (intramonth) time-scale—information that may not play a role in statistical 
models that use longer time means for their predictor variables. Statistical models may have potential for 
higher skill if their predictors were designed with finer temporal resolution. Statistical models need long 
histories of predictor data to develop their predictor-predictand relationships, but the valuable 3-dimensional 
observations across most of the tropical Pacific (e.g. from the Tao-Triton array) began only in the 1990s, 
precluding a robust empirical definition of their predictive relationships, and thus they are often omitted in 
statistical models, putting them at a relative disadvantage. 
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