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1. Introduction 

 The multi-institution North American Land Data Assimilation project (NLDAS) has experienced four 
stages since it was initiated in 2000 (Mitchell et al. 2004). The first stage established infrastructure including 
selection of land surface models, generation of surface forcing data, and collection of soil and vegetation 
datasets, and in-situ and satellite-retrieved observations. Four model groups ran their models separately for a 
3-year period (from 1 October 1997 to 30 September 1999). NCEP Environmental Modeling Center’s land-
hydrology group ran the community Noah model, Princeton University’s land group ran the VIC model, 
NASA Goddard Space Flight Center’s hydrology group ran the Mosaic model, and National Weather 
Service’s Office of Hydrologic Development ran the SAC hydrological model. The model outputs were 
evaluated and compared with in-situ observations and satellite-retrieved products. Overall results showed that 
all four models are able to capture broad features for these validated variables such as energy fluxes (e.g., net 
radiation, sensible heat, latent heat, and ground heat), water fluxes (i.e., evapotranspiration, total runoff)  and 
state variables (i.e., soil temperature, soil moisture, land surface temperature, snow cover fraction, snow water 
equivalent). The validation tools and overall results are detailed in Mitchell et al. (2004).  

The second stage focused on improving model physics, tuning model parameters and improving surface 
forcing data quality and reliability based on the findings from the first stage, and further expanding the short-
term (i.e., 3 years) model products to long-term (> 30 years) model products. The NCEP NLDAS team 
improved Noah simulation in cold season (Livneh et al. 2010) and warm season (Wei et al. 2012) through 
collaboration with University of Washington. The Princeton Land group improved the VIC simulation by 
calibrating model parameters (Troy et al. 2008), and the NCEP NLDAS team also improved SAC simulation 
by using climatologically averaged observed potential evaporation (Xia et al. 2012a), while Mosaic was 
improved little. For surface forcing data, the CPC gauge precipitation has been bias-corrected by PRISM 
(Parameter-elevation Regressions on Independent Slopes Model, Daly et al. 1994) precipitation to reduce the 
impact of topography on gauge precipitation. Four models were retrospectively run from 1 January 1979 to 31 
December 2008. After then, they are run in a near-realtime mode (with a 3 and half day lag). 

The third stage moved toward evaluating and validating the quality and reliability of long-term NLDAS 
products using as many as available in-situ observations and satellite-retrieved products (short-term vs. long-
term, different time scales from hourly to annual, different spatial scales from site and basin to continental 
United States). These observations include energy fluxes (e.g., downward shortwave and longwave radiation, 
upward shortwave and longwave radiation, net radiation, sensible heat flux, latent heat flux, ground heat flux, 
etc.), water fluxes (e.g., evapotranspiration, streamflow), and state variables (e.g., soil moisture, soil 
temperature, land surface/skin temperature, snow water equivalent, snow cover fraction). 
Evaluation/validation works have made significant progress during the recent two years. An overall 
evaluation and comparison was detailed in Xia et al. (2012a, 2012b). Overall results show that the NLDAS 
products generated from the stage 2 have better quality when compared to those generated from stage 1, due 
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to both model and surface forcing data improvement. The simulated total runoff was evaluated against the 
observed streamflow at 986 small-medium size basins and 8 large size basins which were measured by the 
U.S. Geological Survey (USGS). In west coast and eastern U.S., all four models are able to capture the broad 
features of observed streamflow. Four- model ensemble mean outperforms any individual model in term of 
errors. The similar conclusion can be found for the validation of simulated evapotranspiration. The simulated 
soil moisture was evaluated using three observational datasets (Xia et al. 2012c): 20-year (1985-2004) 
monthly mean soil moisture from Illinois (17 sites), 6-year (1997-2003) daily mean soil moisture from 
Oklahoma Mesonet (72 sites), and 8-year (2002-2009) daily soil moisture from Soil Climate Analysis 
Network (SCAN, 121 sites) over the continental United States. The results show that simulation skills of all 
four models are quite good in term of anomaly correlation for both daily and monthly time scales although 
simulated soil moisture magnitude shows large errors, where some models may overestimate and other 
models may underestimate observed soil moisture. Like streamflow and evapotranspiration evaluations, the 
four-model ensemble mean shows the most robust simulation skills over continental United States when 
compared to any individual model. 

The focus of fourth stage is to apply long-term NLDAS products to support the National Integrated 
Drought information System (NIDIS, drought.gov) and U.S. operational drought monitoring and prediction. 
One key application of the near real-time NLDAS is its drought monitoring over continental United States, 
shown at the “NLDAS Monitor” tab of the NLDAS website (Sheffield et al. 2012; NCEP/EMC NLDAS 
website: http://www.emc.ncep.noaa.gov/mmb/nldas/; NASA NLDAS website: 
http://ldas.gsfc.nasa.gov/nldas/NLDASnews.php).  At the same time, the NLDAS team also uses a cron job to 
routinely provide four-model ensemble mean daily, weekly, and monthly percentiles of top 1m soil moisture, 
total column soil moisture, total runoff and evapotranspiration to the U.S. drought monitor author group to 
directly support the USDM. This team also provides NLDAS drought indices to support CPC monthly 
drought briefing and seasonal drought outlook. However, these NLDAS drought indices are not 
comprehensively assessed as there are few reference drought datasets. The USDM 
(http://droughtmonitor.unl.edu/), an operational product (Svoboda et al. 2002), has generated many statistics 
(i.e., drought area percentages for the forty-eight states). How to use these statistics to improve U.S. 
operational drought monitoring is still a challenging issue. This study will develop an objectively blended 
approach by establishing the linkage between NLDAS products and USDM statistics. The approach will use 
an optimization method to search for optimally blended weights and equations by minimizing the root mean 
square error (RMSE) between drought area percentage derived from an NLDAS and from USDM.  In turn, 
the USDM drought area percentage will be used to evaluate simulation skills of optimally blended NLDAS 
drought index. 

2.  Methodology 

Weekly drought area percentages were downloaded from the USDM archives website 
(http://droughtmonitor.unl.edu/dmtabs_archive.htm) for five categories and 48 states. This dataset covers a 
12-year period from 2000 to 2011. Five drought categories are from abnormally dry to exceptional (D0-D4), 
moderate drought to exceptional (D1-D4), severe drought to exceptional (D2-D4), extreme drought to 
exceptional (D3-D4), and exceptional (D4-D4). Monthly mean drought percentages were calculated using the 
number of days as weights to average weekly values. For NLDAS, percentiles of monthly mean top 1m soil 
moisture (SM1), total column soil moisture (SMT), evapotranspiration (ET), and total runoff (Q) derived 
from four-model ensemble were used as four  NLDAS drought indices. A linear combination of the four 
indices was used as the blend in this study. We calculated monthly drought area percentage from the blend for 
forty-eight states using land mask, state mask, and the USDM drought categories. 10-year monthly drought 
area percentages were used to construct our error function (the last 2 years were used for validation as the 
USDM authors have referenced NLDAS products since 1 January 2010). The root mean square error E can be 
defined as:  
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where MT is total number of months (120 in this study), C is the number of drought categories (5 in this 
study), ctA , and ctO ,  are the drought percentage area from the blended NLDAS drought index and the USDM, 

respectively. The ranges of all four weights are selected to be from 0 to 1.  By an optimization process, Very 
Fast Simulated Annealing (VFSA, Xia 2007) automatically searches for optimal weights to minimize the 
error function E. The optimization process was performed for each state separately (Xia et al. 2013, 
“Application of USDM Statistics in NLDAS-2:  Objective Optimal Blended NLDAS drought Index over the 
Continental United States”, in preparation for Journal of Geophysical Research). 

The basic evaluation method for this study includes bias, root mean square error (RMSE), correlation 
coefficients, and Nash-Sutcliffe efficiency (Nash and Sutcliffe 1970).  The Nash-Sutcliffe efficiency is 
defined as: 













 MT

t
t

MT

t
tt

OO

OA

NSE

1

2

1

2

)(

)(

1         (2) 

In equation (2) tA and tO  are, respectively, drought area percentage derived from NLDAS and USDM, 

and A and O are their mean values for any given time period.  The NSE is a measure of the drought area 
percentage simulation skill of the method as compared to the mean USDM drought area percentage, and 
ranges in value from minus infinity (poor model skill) to one (perfect model skill). An efficiency of 0 
(NSE = 0) indicates that the model simulations are as accurate as the mean of the USDM data, whereas an 
efficiency less than zero (NSE < 0) occurs when the USDM mean is a better predictor than the model.  

Fig 1  Comparison of drought area percentage for D1-D4 derived from USDM and objective NLDAS blend 
(represented State in Fig.1) in (a) Nebraska (NE), (b) Kansas (KS), (c) Texas (TX), (d) Oklahoma (OK), (e) 
Arkansas (AR), (f) Tennessee (TN), (g) Iowa (IA), (h) Indiana (IN), and (i) Kentucky (KY) for January 
2000 to December 2009. 
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3.  Results 

Figure 1 and Figure 2 show the comparison between USDM and NLDAS drought area percentage (D1-
D4) for nine states and different periods: the training period (2000-2009) and the validation period (2010-
2011), respectively. These states have the highest correlation for both training and validation period. The 

Fig. 3  The same as Figure 1 except for (a) Washington (WA), (b) Oregon (OR), (c) Montana (MT), (d) Idaho 
(ID), (e) Wyoming (WY), (f) California, (g) Nevada (NV), (h) Utah (UT), and (i) Arizona (AZ). 

Fig. 2  The same as Figure 1 except for the validation period from January 2010 to December 2011. 



XIA ET AL. 
 

 

95

results show that the objective NLDAS blend can capture variability and magnitude of monthly drought 
events very well for both the training period and validation period although the blend overestimates USDM 
drought area percentage for almost all nine states during the validation period. The performance of the 
objective blend varies from state to state. Basically, most states in Southern and Southeastern U.S. have quite 
good performance, and the states in Northeastern, Midwestern, and Western U.S. have low simulation skills. 
An example for nine states over western U.S. is shown in Figure 3. The objective NLDAS blend shows quite 
low simulation skill over western U.S. regions for both monthly magnitude and variability, in particular for 
Washington and Wyoming. The possible reason may be (1) inaccurate precipitation data and (2) low 
simulation skills for soil moisture, ET and Q (Xia et al. 2012a, 2012b).  As indicated by Mo et al. (2012), the 
number of precipitation gauges has significantly decreased since 2002. Therefore, precipitation estimates may 
be not representative for that region. Moreover, because of complex topography, snow processes, and frozen 
soil processes, combined with inaccurate precipitation over the western mountainous region, further results in 
poor simulation of soil moisture, ET and Q in that region. Figure 4 shows monthly variation of drought area 
percentage for 5 drought categories in three states derived from USDM (left panel) and objective NLDAS 
blend (right panel). The results show that the NLDAS blend quite well captures the monthly magnitude and 
variability of the USDM drought area percentage for these three states, in particular for the first two drought 
categories. The inability of the objective NLDAS blend to capture USDM drought area percentages for severe 
drought or above categories is due to their small sample sizes. Therefore, a long-term USDM product (i.e., 30 
years) can be expected to improve severe drought simulation. The spatial distribution of Nash-Sutcliffe 
efficiency for three drought categories (i.e., D0-D4, D1-D4, and D2-D4) was shown in Fig. 5 for the training 
period (left panel) and the validation period (right panel). The results show that objective NLDAS blend has 
quite good simulation skills in southern and southeastern states, and poor simulation skills in western, mid-
northern, and northeastern states, in particular for the validation period and the severe drought case. The 
simulation skills of objective NLDAS blends are reduced from the training period to the validation period for 
most states. The reduction of the simulation skills also occurs when drought categories vary from D0-D4 to 
D3-D4.  The reason for both reductions may be due to the short record-length of USDM data.  

4.  Summary and future direction 

 Currently NLDAS is a quasi-operational system to support U.S. operational drought monitoring and 
seasonal hydraulic prediction, in particular for the National Integrated Information System including U.S. 

Fig. 4  Comparison of drought area percentages for five drought categories (D0-D4, D1-D4, D2-D4, D3-D4, 
D4-D4) derived from USDM (left panel) and objective NLDAS blend (right panel). The data covers the 
period from January 2000 to December 2011. From top panel to bottom panel represent Iowa (IA), Illinois 
(IL), and Indiana (IN).  
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Drought Monitor (USDM) and Monthly 
Drought Briefing.  Detailed information 
about NLDAS can be found at NOAA 
(http://www.emc.ncep.noaa.gov/mmb/nlda
s) and NASA 
(http://ldas.gsfc.nasa.gov/nldas/) websites.  
The system consists of a retrospective 29-
year (1979-2008) historical execution and 
a near real-time daily update execution 
using four land surface models  
(NCEP/Noah, NASA/Mosaic, 
NWS/OHD/SAC, and VIC developed by 
Princeton University and University of 
Washington) on a common 1/8th degree 
grid using common hourly land surface 
forcing.  The non-precipitation surface 
forcing is derived from the NCEP 
retrospective North American Regional 
Reanalysis (NARR), and now realtime 
NCEP operational Regional Climate Data 
Assimilation System (RCDAS).  The 
precipitation forcing is anchored to daily 
gauge-only precipitation over Continental 
United Sates (CONUS) that applies 
Parameter-elevation Regressions on 
Independent Slopes Model (PRISM) 
corrections.  This daily precipitation 
analysis is then temporally disaggregated 
to hourly precipitation amounts using radar 
products.  The NARR-based surface 
downward solar radiation is bias-corrected 
using seven years (1997-2004) of satellite-
derived solar radiation retrievals. 

The 29-year NLDAS retrospective run is used to derive the climatology of each of the four land models.  
Then current near real-time (past week, past month) land states (e.g. soil moisture, snowpack), and water 
fluxes (e.g. evaporation, total runoff, streamflow) of each of the four models from daily executions are 
depicted as anomalies and percentiles with respect to their own model climatology.  The simulated 
streamflow, soil moisture, snowpack, and evapotranspiration from the four models are well evaluated and 
validated using in-situ observations from the U.S. Geological Survey, Illinois, Oklahoma, and  CONUS soil  
moisture, and evapotranspiration from U.S. surface flux measurement sites.  This evaluation provides a basis 
to apply NLDAS products.  One key application of the near real-time updates is drought monitoring over 
CONUS, shown at the “NLDAS Drought” tab of the NLDAS website.  NLDAS ensemble mean drought 
indices are directly provided to the U.S. Drought Monitor author group through a daily cron job. 

NLDAS has become mature enough and will be implemented in NCEP operations in the near future.  At 
the same time, we recognize that the current NLDAS is not an “actual” land data assimilation system because 
remotely-sensed estimates of land-surface states such as soil moisture and snowpack, and in-situ observations 
such as streamflow and soil moisture, are not yet assimilated into current version of NLDAS.  The 
NCEP/EMC NLDAS team is collaborating with the NASA Goddard Hydrological Sciences Laboratory to add 
their Land Information System (LIS; Kumar et al. 2006) to the current NLDAS system which would allow 
assimilation of remotely-sensed data and in-situ observations, e.g. via an ensemble Kalman filter approach. 

Fig. 5  Spatial distribution of Nash-Sutcliffe efficiency (NSE) 
for three drought categories (i.e., D0-D4, D1-D4, and D2-
D4) and different periods: the training period (left panel) 
and the validation period (right panel). Negative NSE 
indicates poor simulation for USDM drought area 
percentages.   
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The comparison analysis of drought area percentages shows that the objective NLDAS blend is able to 
capture broad features of drought area percentage such as magnitude and monthly variability for the first two 
categories in many states which are mainly located in the South, Southeast, High Plains and Midwest regions. 
However, there is still significant room for improvement for enhancing simulation skills, in particular for 
most states of the Western and Northeast regions, and for the strongest drought events (D3-D4, D4-D4). 
Impact of accurate gauge precipitation on simulation skills in the Western region will need to be addressed in 
the future work by rerunning the four NLDAS models using a retrospective gauge precipitation dataset. In 
addition, after more independent inputs such as observed streamflow (e.g., percentile) from USGS, remote 
sensing drought indices (e.g., Evaporative Stress Index, Ground Water Storage), and Climate Prediction 
Center (CPC) operational drought indices (e.g., standard precipitation index, Palmer Drought Index, Palmer 
Hydrological Drought Index, Objectively Blended Drought Indicators) will be used to blend with the four 
NLDAS drought indices used in this study, further improvement can be expected.  It should be noted that the 
objective NLDAS blend is easily reproducible, which is quite different from the USDM, which is based on a 
combination of objective and subjective analysis, making it not easily reproducible. Therefore, this approach 
can be used to reconstruct long-term drought area percentages and drought indices. 
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