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1. Introduction 

In the United States, drought is among the costliest natural hazards, with an annual average of 6 billion 

dollars in damage (NCDC 2013).  Drought prediction from monthly to seasonal time scales is of critical 

importance to disaster mitigation, agricultural planning, and multi-purpose reservoir management.  Started in 

December 2012, NOAA Climate Prediction Center (CPC) has been providing operational Standardized 

Precipitation Index (SPI) Outlooks using the North American Multi-Model Ensemble (NMME) forecasts, to 

support CPC's monthly drought outlooks and briefing activities.  The current NMME system consists of six 

model forecasts from U.S. and Canada modeling centers, including the CFSv2, CM2.1, GEOS-5, CCSM3.0, 

CanCM3, and CanCM4 models (Kirtman et al. 2013).  Detailed information about the NMME project and 

forecasts can be found on CPC website (http://www.cpc.ncep.noaa.gov/products/NMME).  In this study, we 

conduct an assessment of the meteorological drought predictability using the retrospective NMME forecasts 

for the period from 1982 to 2010.  The standardized precipitation index, which measures precipitation deficits 

over a period of time, is used to predict meteorological drought.   

2. Methodology  

The current NMME SPI prediction framework is similar to the CFSv2 SPI prediction system that 

developed by Yoon et al. (2012).  For each model, monthly-mean precipitation (P) forecasts were first bias 

corrected and spatially downscaled (BCSD) to regional grids of 0.5-degree resolution over the contiguous 

United States based on the probability distribution functions (PDFs) derived from the hindcasts.  As a result, 

BCSD scheme corrects both the climatological mean and standard deviation of the hindcasts.  Specifically, for 

each month and lead time, the PDF at each grid point is computed based on model hindcasts excluding the 

target year.  The bias-corrected percentile for the target year is then obtained from the inverse PDF of the P 

analysis based on the percentile calculated from the PDF of the hindcasts.  The BCSD method was applied to 

each member and each lead of the P hindcasts.  The corrected P forecasts were then appended to the CPC 

Unified Precipitation Analysis (Chen et al. 2008) to form a P time series for computing 1-month, 3-month, 6-

month, and 12-month SPIs.  The NMME-ensemble SPI forecasts are the equally weighted mean of the six 

model forecasts.  Two performance measures, the anomaly correlation coefficient (ACC) and root-mean-

square errors (RMSE) against the observations, are used to evaluate forecast skill.  In this study, CPC Unified 

Precipitation Analysis is used as the observations for forecast evaluation.  

3. Results and discussions 

Figure 1 shows the relation of SPI forecast skill to lead time for January and July.  In this figure, color 

lines are for model forecasts and the bold black line is for the ensemble forecasts.  The values plotted in the 

figure are the averages over the continental U.S.  For 3-month SPI (SPI3), skill quickly drops and is very 

close to the P forecast skill after Lead 3, when observations are no longer included in the 3-month window.  

Similar results are observed for 6-month SPI (SPI6).  When P observations are no longer included in the 6-

month window at Lead 6, SPI6 forecast skill converges to the P forecast skill.  We also notice that when there 

are more observations include in the time window, for example, Month-1 SPI6 forecasts include 5 months of 

observations, its skill is higher than Month-1 SPI3 forecasts, which include 2 months of observations.  

Therefore, P observation is a dominant factor contributed to the SPI forecast skill and the small differences 
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among models.  Similar results are 

observed for using ACC and RMSE as 

performance measures and for different 

months. 

Another thing we notice from this 

figure is that for both SPI3 and SPI6, the 

ensemble forecasts, which are on top of 

most model forecasts in the ACC plots and 

on the lower end of most model forecasts 

in the RMSE plots, have higher skill than 

that from individual models, but the 

differences are not large.  If we use 0.5 as 

a threshold for ACC and 0.8 as a threshold 

for RMSE to determine skillful forecasts, 

both ACC and RMSE suggest similar 

results that SPI6 forecasts are skillful out 

to four months. 

Figure 2 shows the ACC 

maps of Month-1 SPI3 forecasts 

for all 12 months.  We can see 

that predictive skill is seasonally 

and regionally dependent.  Skill 

generally is higher for the winter 

season (e.g., January) and lower 

in the Spring (e.g., April).  Areas 

with high forecast skill in the 

month generally correspond to 

the dry climatology in the region.  

For example, over central U.S. 

for January and along the West 

Coast in July.  Areas with low 

forecast skill in the month 

generally correspond to the 

wetter climatology in the region.  

For example, springtime over the 

central U.S. is the time of rain 

showers, and July over the 

Southwest is their monsoon 

season.  

4. Conclusions 

For P forecasts (figures not 

shown), errors vary among 

models and predictive skill 

generally is low after the second 

month.  All model P forecasts have higher skill in winter and lower skill in summer.  BCSD improves RMSE 

for both P and SPI forecasts, but the differences in ACC between with and without BCSD are marginal (and 

not statistical significant).  Most RMSE improvements are over the western mountainous regions and along 

the Great Lake.  Although P forecast skill is not large and quickly drops after one month, SPI predictive skill 

is high and the differences among models are small.  Generally, model with lower P forecast skill has lower 

SPI forecast skill.  The skill mainly comes from the P observations appended to the model forecasts.  This 

Fig. 2  ACC maps of Month-1 SPI3 forecasts for all 12 months. 

Fig. 1  Relation of SPI forecast skill to lead time for January and 

July. 
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factor also contributes to the similarity of SPI prediction among the six models.  Still, NMME SPI ensemble 

forecasts have higher skill than those based on individual models or persistence. 

Overall, SPI predictive skill is regionally and seasonally dependent, and NMME SPI6 forecasts are 

skillful out to four months.  SPI forecast skill at a region corresponds to local rainfall climatology and 

variability.  Dynamical models improve SPI predictive skill from baseline skill when and where P forecasts 

are skillful.  The improved skill of SPI prediction during the wet seasons spanning roughly late autumn to 

early spring over the Southwest and Gulf Coast region is attributed to the known impacts of ENSO signals on 

these regions’ cold-season precipitation, which is consistent with the findings by Quan et al. (2012) from 

CFSv2 SPI prediction. 
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