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1. Introduction 

 According to the 5th assessment report from the Intergovernmental Panel on Climate Change (IPCC), 
annual Arctic sea ice extent (SIE) is very likely (90%-100% confident) to have decreased at a rate of 0.45 to 
0.51 million km2 per decade during the 1979-2012 period due to anthropogenic influences (Vaughan et al. 
2013) leading to projections of an ice free Arctic by the 2030’s (Wang and Overland 2012).  On a seasonal 
time scale, accurate sea ice prediction is important for oil and shipping interests, wildlife protection, and 
ecosystems management.  Changes in sea ice can also influence atmospheric variability.  For example, it has 
been observed that because Arctic sea ice melt decreases the albedo, which exacerbates the warming, there 
has been a faster rate of warming in the Arctic than in the lower latitudes (Kumar et al. 2010; Screen and 
Simmonds 2010).  Some studies (Francis and Varvus 2012; Liu et al. 2012) have proposed this polar 
amplification in the warming trend as a mechanism for changes in the geopotential height structure and upper 
level jet stream pattern, which are then linked to more extreme weather events across the globe. 

Blanchard-Wrigglesworth et al. (2011) and Wang et al. (2013) demonstrated that Arctic sea ice cover is 
potentially predictable beyond 9 months using the Community Climate System Model version 4 (CCSM4) 
and Climate Forecast System Version 2 (CFSv2) respectively.   However, assessments also show small actual 
predictive skill for sea ice beyond 2-3 months (Merryfield et al. 2013; Wang et al. 2013).  The difference 
between potential predictability and actual skill raises interesting questions for possible causes, for example, 
errors in the initialization of sea ice thickness.  Wang et al. (2013) show that changes in sea ice thickness 
during the spring months had a large impact on forecasts of September SIE using CFSv2, with thickness 
increases resulting in higher SIE forecasts and vice versa, which agreed with observations.  Low March 2007 
sea ice thickness anomalies were cited by Kauker et al. (2009) as a factor leading to the record low sea ice 
cover the following September.  Therefore, because sea ice thickness is argued to be an important predictor to 
forecast September sea ice cover, it is plausible that an improvement in the initial condition sea ice thickness 
dataset used in models could yield an improvement in September sea ice forecasts, even those initialized in 
the spring, narrowing the gap between prediction skill and potential predictability.  However, before modeling 
experiments are carried out, this work aims to simply test the relationship between lagged sea ice thickness 
from two different datasets and September sea ice cover to assess the feasibility of such experiments. 

2. Data and methods 

Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) monthly averaged sea ice thickness 
data (Zhang and Rothrock 2003) from the Polar Science Center at the University of Washington were used, in 
addition to Climate Forecast System Reanalysis (CFSR; Saha et al. 2010) sea ice thickness data from the 
National Centers of Environmental Prediction (NCEP).  Sea ice components in both PIOMAS and CFSR 
assimilate satellite measurements of sea ice concentration.  Sea ice thickness is derived from internal 
dynamics and thermodynamics without assimilating observed thickness information.  Both CFSR and 
PIOMAS data were interpolated to 0.5° x 0.5° Arctic grid spacing.  Separate time series of Arctic sea ice 
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volume (SIV) for each month of the period 1982-2013 were created for each dataset by multiplying the sea 
ice thickness of each grid cell by the respective grid cell area and taking a sum across the northern hemisphere.  

First it is shown that PIOMAS sea ice thicknesses are more accurate in both magnitude and trend than 
CFSR data with respect to Ice, Cloud, and land Elevation Satellite (ICESat) data.  Then, 2nd order polynomial 
detrended, lagged PIOMAS and CFSR SIV were temporally correlated with a common dataset of September 
SIE and sea ice area (SIA) from the National Snow and Ice Data Center which was generated with the 
National Aeronautics and Space Administration (NASA) Team Sea Ice Algorithm based on satellite 
observations (Cavalieri and Gloersen 1984), and also interpolated to a 0.5° x 0.5° grid (native NASA Team 
grid spacing is 25 km).  The NASA Team observations have a region close to the pole that cannot be 
observed due to the orbit inclination of the satellites.  This area, known as the polar hole, is removed from all 
datasets for a concise evaluation.  Following the IPCC report (Vaughan et al. 2013), SIE is defined as the 
region encompassed by the edge of sea ice, represented by a concentration of at least 15%.  Because of this, 
regions with small gaps in the sea ice with a concentration still greater than the 15% threshold are still 
counted as part of the SIE.  SIA is different, as these gaps between sea ice are not included.  For this reason 
SIE is always greater than SIA.  In this analysis, Arctic SIE was computed by taking the cumulative sum 
across the northern hemisphere of the area of each grid cell with a sea ice concentration at or above 15%.  SIA 
was calculated by multiplying the sea ice concentration in each grid cell by the area of the respective grid cell 
and taking a northern hemisphere sum of the results for grid cells with a sea ice concentration at or greater 
than 15%. 

Temporal correlations were also computed on a grid point scale, using only monthly sea ice thickness and 
September sea ice concentration values at individual grid cells with the idea that regional patterns could exist 
that cannot be explained by a single hemispheric parameter like SIE or SIA.  To assess the significance of the 
differences between the correlations, the Steiger’s Z test (Steiger 1980) was employed.  The test takes into 
account the number of data points as well as the correlation between the two datasets being compared, in this 
case PIOMAS and CFSR sea ice thicknesses. Because of the small size of the dataset, significance is based on 
an 80% confidence interval, rather than the more traditional 95%. 

3. ICESat volume comparison 

SIV is difficult to evaluate due to a lack of uniform observations.  However, ICESat was able to provide 
measurements of ice thickness using a laser altimeter (Schultz et al. 2005).  The satellite had an acquisition 
period each spring 2004-2008 covering roughly 35 days each, which vary slightly in their exact coverage 
dates.  There is also a set of autumn retrievals, but because this study is concerned with prediction of 
September sea ice, the spring acquisition periods were of particular interest to us.  For each period, from the 
sea ice thickness retrieved by the satellite (available from http://rkwok.jpl.nasa.gov/icesat), total SIV was 
calculated in the same manner as it was for PIOMAS and CFSR.  The same interpolation and common mask 
described in the previous section was used and no detrending was applied as the time period was too short to 
establish any coherent trend.  The ICESat data were compared with daily PIOMAS and CFSR data which 
were averaged to match the exact dates of the ICESat acquisition periods.  Only PIOMAS and CFSR data 
within the ICESat domain were considered for this comparison.  Figure 1 illustrates the comparison of spatial 
sea ice thickness and hemispheric SIV between the ICESat data and the two modeled datasets.  Averaging 
over the spring acquisition periods, ICESat sea ice thickness patterns were closer to PIOMAS sea ice 
thickness patterns than to CFSR sea ice thickness patterns (Figure 1a-c).   It is also apparent from Figure 1d 
that the ICESat SIV trends are more in line with PIOMAS trends than with CFSR trends.  Root mean square 
errors (RMSE) relative to ICESat SIV were 2143 km3 and 825 km3 for CFSR and PIOMAS SIVs 
respectively. 

4. Correlation between September sea ice cover and lagged sea ice thickness 

Using detrended monthly data, no significant differences were seen in the performance of PIOMAS and 
CFSR when hemispheric scale SIV was correlated with September SIE and SIA over the period.  However, 
using PIOMAS SIV showed a slightly stronger relationship with September SIA at a 1-3 month lead.   
Changes were more apparent on a grid point scale as there was a larger region that showed significant 
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increases in correlation at an 80% confidence interval than decreased skill at all lead times except zero.   The 
area of the region with significant increases versus that with significant decreases are shown under each panel 
of Figure 2 and plotted as a function of lag month in panel h to further convey this point.   Positive differences 
between increases and decreases were highest for -2 to -4 months lag (correlating May, June, or July sea ice 
thickness to September sea ice concentration, Figure 2c-e).   Even for a lag of -6 months (March sea ice 
thickness, Figure 2g), increases were prevalent suggesting improvements could still be obtained out to 6 
months.  

5.  Summary and conclusion 

An assessment of the potential usefulness of PIOMAS SIV to improve the predictability of Arctic SIE 
and SIA in September was conducted using detrended lagged correlations.  The same geographical masks 

Fig. 1  Mean sea ice thickness throughout the five ICESat spring acquisition periods.  Daily CFSR (panel 
a) and PIOMAS (panel b) data used to exactly match ICESat (panel c) periods.   Panel d shows mean 
February-March SIV from CFSR and PIOMAS for 1982-2013 with the ICESat volume for the five 
acquisition periods plotted where applicable (Only grid cells common to the three datasets are used 
in the calculation of SIV). 



COLLOW ET AL. 
 

 

35 

were applied to all datasets to ensure consistency.  Comparison with ICESat as an observational benchmark 
for SIV yielded PIOMAS as a more realistic dataset (within the limitation that the assessment was based on 
only 5 data points in time).   We show that although little improvements were seen in correlating September 
SIE and SIA using PIOMAS SIV as opposed to CFSR SIV, significant improvements were seen when grid 
cell scale ice thickness and concentration were looked at.  The area with significant improvements was larger 
than the area with significant decrease in skill in all lag months except the initial month for 80% confidence.  
The increase was most pronounced for correlations of May, June, and July sea ice thicknesses with the 
following September sea ice concentration in which the area of increase exceeded the area of decrease by a 
factor of near or greater than 2, which is important as this period was previously labeled as having a low 
predictability of September ice cover. 

Because of the stronger relationship between the PIOMAS data and NASA Team observations, in 
addition to being more realistic as seen through comparisons with ICESat, it is plausible that utilization of 
PIOMAS sea ice thickness data could aid in improving prediction of September sea ice coverage, especially 
in the preceding June, but also as early as March.   We are in the process of doing forecast experiments with 
the CFSv2 initialized using PIOMAS initial sea ice thickness as opposed to CFSR sea ice thickness, with the 
goal of producing a better sea ice forecast. 

Fig. 2  Significant changes in correlation at 80% confidence that result from using PIOMAS lagged sea ice 
thickness to correlate with September sea ice concentration from NASA Team relative to using CFSR 
sea ice thickness.  Red shading represents locations with a significant increase in skill using PIOMAS 
and blue signifies locations with a significant decrease in skill.  Numbers at the bottom of each plot 
denote the area (106 km2) of each colored region.  Panels a through g are for 0 to -6 lag months.  Panel 
h is a time series showing the area encompassed by each color (y-axis) as a function of lag month (x-
axis). 
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