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1. Introduction 

One of the largest uncertainties in climate 
simulations is from the representation of land 
processes, because there are few observations 
to calibrate or constrain it. Different land 
surface schemes (LSSs) use quite different 
parameterizations to describe the complex 
hydrological, biogeophysical, and 
biogeochemical processes. Even when forced 
by the same atmospheric forcing and provided 
the same parameter settings, different LSSs 
can still give significantly different surface 
fluxes. When these LSSs are coupled to the 
Atmospheric General Circulation Models 
(AGCMs), their different behaviors will bring 
uncertainties into the simulated climate. As the 
land-atmosphere system is nonlinear, 
uncertainties from LSSs can be amplified or 
reduced during land-atmosphere interaction. 
This problem is systemically addressed in this 
study. In addition to the climatology and 
variability, different LSSs can lead to different 
coupling strength between land and 
atmosphere (i.e., contribution of land to 
prediction of atmosphere). Within the 
framework of Global Land-Atmosphere 
Coupling Experiment (GLACE), we perform 
GLACE-type experiments to investigate this 
problem.  

In this study, we show results from COLA AGCM coupled to three state-of-the-art LSSs: SSiB, CLM3.5, 
and Noah. Two experiments are performed. In the first experiment (I), three LSSs are coupled to the AGCM 
individually. In the second experiment (C), the three LSSs are coupled to the AGCM in combination, i.e. the 
LSSs receive the same atmospheric forcing from the AGCM and the average surface fluxes from the LSSs are 
passed back to the AGCM at each grid point and at every time step. Experiment C is similar to three land 
model offline experiments with a same atmospheric forcing, but this forcing is affected by the average 
feedback from the LSSs. 

 We try to investigate the uncertainties of the three LSSs and their influence on climate simulation. We 
also explore the influence of land-atmosphere coupling on the simulation uncertainties. In addition, GLACE-
type experiments with the COLA AGCM coupled to three land models are performed. By comparing the 
coupling strength of the three coupled models, we can know the impact of different land models on the 
coupling strength. In summary, the purpose of this study is threefold: firstly, to investigate current 
uncertainties in the behavior of LSSs; secondly, to investigate how much these uncertainties can influence 

Fig. 1  The ratio Φ (see equation 1) for 1987-2004 average 
JJA latent (LH; upper panel) and sensible (SH; bottom 
panel) heat fluxes. The regions enclosed by blue boxes 
are for further analysis in Figure 2. 
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atmospheric simulation through land-
atmosphere interaction; thirdly and most 
importantly, to have a better understanding 
of the mechanisms of land-atmosphere 
coupling.   

2. Climatology  

The three LSSs produce significantly 
different surface fluxes over most of the 
land, no matter whether they are coupled 
individually (different forcing to land) or in 
combination (same forcing to land). See 
Wei et al. (2009a) for a detailed discussion. 
A question is whether land-atmosphere 
interaction can amplify the uncertainties 
from LSSs if they are coupled to an AGCM.  

Let Var(I) and Var(C) be the inter-
model (3 cases) variances of fluxes from 
land to atmosphere in experiments I and C, 
respectively. Intuitively, Var(I) should be 
larger than Var(C) because the LSSs 
receive the same atmospheric forcing in C 
but not in I. Thus Var(I) is the inter-model 
variance caused by LSS differences and 
land-atmosphere feedback, while Var(C) is 
the variance caused by LSS differences 
only. Then the ratio  
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is the percentage of inter-model variance 
caused by land-atmosphere feedback. If 
Var(I)≥Var(C), 0≤Φ≤1. However, if 
Var(I)<Var(C) (Φ<0), a negative feedback 
between land and atmosphere is implied 
and we cannot estimate the relative contributions of LSS differences and land-atmosphere interactions to the 
variance.  

Figure 1 shows Φ averaged over JJA for sensible heat (SH) and latent heat (LH) fluxes. Over most land 
area, 0≤Φ≤1. However, there are still some areas with Φ<0. SH should have the same inter-model variance as 
LH if Rnet and the relatively small ground heat flux are the same for the LSSs. However, Rnet differs a lot 
among the models over some high latitude regions and dry regions. This is why the Φ values of SH and LH 
differ most over these regions (Figure 1). In order to investigate the cause of the different spread changes 
(positive and negative Φ), we selected the northern Eurasia and Sahel as two regions with contrasting values 
of Φ (blue boxes in Figure 1). Figure 2 shows the time series of LH, net shortwave radiation at surface (SWnet), 
total cloud cover, and precipitation over these two regions. It is evident that, compared to experiment I, the 
LH in experiment C strongly converge in Sahel but diverge in northern Eurasia, consistent with the value of Φ. 
In Sahel, the interannual time series of LH are negatively correlated with those of SWnet but are positively 
correlated with those of cloud cover and precipitation. This is a semi-arid, moisture-limited area, where 
evapotranspiration (ET) is nominally below the potential rate, so LH is strongly controlled by the land surface 
states, especially soil wetness, which is largely determined by rainfall. In experiment C, each LSS experiences 
the same rainfall, which leads to similar soil wetness and LH. In northern Eurasia, however, the correlation 

Fig. 2  The simulated 1987-2004 JJA average LH, SWnet, total 
cloud cover, and precipitation for northern Eurasia (left 
column) and Sahel (right column). The areas of the two 
regions are marked by blue boxes in Figure 1. 
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between SWnet and LH is 
positive for most of the time 
series. The soil moisture is 
plentiful in this region and the 
control on LH is mainly the 
radiation at surface. 

3. Variability 

The memories inherent in 
the surface heat fluxes differ 
greatly among the LSSs (see 
Wei et al. (2009a) for a detailed 
discussion). It would be 
interesting to examine how the 
different memories of land 
surface fluxes can influence 
precipitation variability. Figure 
3 shows the lag-2-pentad 
precipitation autocorrelation in 
JJA. This method has been used 
in previous studies and is based 
on the assumption that a wetter 
soil caused by a storm may last 
a few days and promote future 
storms (Koster et al. 2003). 
However, there is also 
possibility that this persistence 
of precipitation is caused by the 
internal atmospheric dynamics 
or some other external forcing 
(e.g., SST) and has nothing to 
do with soil moisture memory 
(Wei et al. 2008). 

It can be seen in Figure 3 that all the model simulations show a largely similar pattern of precipitation 
persistence, but regional differences between models exist. The result from the combined simulation is within 
the range of the three individually coupled simulations. The average of the three individual simulations shows 
a precipitation persistence larger than any of the individual simulations because the averaging tend to suppress 
the short time scale precipitation variations that are inconsistent among the models. Although the memories of 
surface LH and SH are much lower in Noah (not shown), it does not show an overall lower precipitation 
persistence than the other two models in the individually coupled simulations. This suggests that the land 
surface heat fluxes do not play a dominant role in the global pattern of precipitation variability, but regional 
impacts may still exist. Compared to the observation, all the simulations here have overestimated the 
precipitation persistence in many areas. 

4. Land-atmosphere coupling strength and its relationship to precipitation variability 
Figure 4 shows the GLACE Ω values of total precipitation for ensembles W and S and their difference 

Ω(S)-Ω(W) (see definitions in Appendix). No matter which LSS the AGCM is coupled with, Ω show similar 
patterns, with largest values in the tropical rain belt, where the SST forcing has strongest influence. The 
patterns of W and S are very close, with large differences (Ω(S)-Ω(W)) mainly over the regions with high Ω 
values. This indicates that the land-atmosphere coupling strength is strongly influenced by external forcing. 
Globally, the COLA-SSiB has the strongest land-atmosphere coupling strength, while the coupling strength 

Fig. 3  The JJA lag-2-pentad autocorrelation of precipitation across 1987-
2004. (a) COLA-SSiB. (b) COLA-CLM. (c) COLA-Noah. (d) 
Combined experiment. (e) Calculated with the average precipitation of 
the three individually coupled simulations. (f) From the observational 
dataset of GPCP (Xie et al. 2003). The model results are interpolated to 
the same grid as that of GPCP data (2.5°×2.5°). Values larger than 0.11 
are over 95% confidence level. Seasonal cycles are not removed in this 
calculation; removing them can lead to results with similar patterns but 
smaller amplitude. 
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for COLA-Noah is the weakest. The difference should be mainly from the different land models because they 
are coupled to the same AGCM.  

 

It is shown in Wei et al. (2009b) that most of the precipitation predictability (Ω) and land-atmosphere 
coupling strength (Ω(S)-Ω(W)) are associated with the intraseasonal component of precipitation in the models, 
although they only account for a small percentage (~20%) of the total variance. The GLACE coupling 
strength can be conceptually decomposed into the impact of the slow varying external forcing (F) and the 
local impact of soil moisture. The external F and local soil moisture combine to determine the pattern of the 
coupling strength. From the output of the GLACE models, we find that most models have overestimated the 
low-frequency variance percentage and underestimated the high-frequency variance percentage of 
precipitation. It suggests that the specific mode of land-atmosphere coupling described in GLACE may be 
over-represented in the models. Based on the findings in this study, we adjust the land-atmosphere coupling 
strength estimated by GLACE. It is found that the adjusted coupling strengths are generally weaker than that 
from GLACE but the patterns are nearly the same. 

Appendix:  Global Land-Atmosphere Coupling Experiment (GLACE) 

GLACE (Koster et al. 2004, 2006) is a model intercomparison study focusing on evaluation of the role of 
land state in numerical weather and climate prediction. It consists of three sets of 16-members ensembles of 
AGCM experiment: W, R and S. We only discuss W and S two sets here.  Ensemble W is an ensemble of free 
runs with different initial land and atmosphere conditions but forced by the same SST of 1994; ensemble S is 
the same as ensemble W except that, at each time step, the subsurface soil moisture in the land model is 
replace by that from one member chosen from ensemble W. All runs cover the period of 1 June 1-31 August, 
1994. A diagnostic variable Ω is defined: 
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where σ2
x is the intraensemble variance of variable x, and  σ2<x>   is the corresponding variance of ensemble 

mean time series. In calculating the variance, the first 8 days of data of each run is discarded to avoid model 
initial shock, and the remaining 84 days are aggregated into 14 six-day totals. Therefore,   σ2

x is a variance of 
224 (16x14) six-day totals from all the ensemble members, and   σ2<x>is a variance of 14 six-day totals from 
the ensemble mean time series. 

Fig. 4  The GLACE parameter Ω for precipitation from ensembles W (left column) and S (middle column), and 
their difference (right column). Top row: COLA-SSiB. Middle row: COLA-CLM. Bottom row: COLA-Noah. 
The global mean value of each panel is shown at the left corner.  



WEI ET AL. 
 

 

5

Theoretically, if the 16 members of an ensemble have the same time series of x,  σ2<x>will be equal 
to  σ2

x and Ω will be 1; if the x time series of the 16 members are completely independent, σ2<x> will be 
equal to σ2

x/16 and Ω will be 0. Without sampling error, Ω will be between 0 and 1. Ω measures the similarity 
(or predictability) of the time series in 16 ensemble members, and is equivalent to the percentage of variance 
caused by the slowly varying oceanic, radiative, and land surface processes. The difference of Ω from the two 
ensembles, Ω(S)-Ω(W), is equivalent to the percentage of variance caused by the prescribed subsurface soil 
moisture, and is a measure of land-atmosphere coupling strength in GLACE. 
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