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summary

Over the years, uncertainty in weather, water, and climate forecasts has been continuously reduced through the use of ever improving forecast technology. Due to the chaotic nature of the atmosphere-land-ocean coupled system, however, uncertainty can never be eliminated from environmental forecasts. For optimal decision making, users need to consider all possible future weather, water, and climate scenarios beyond the most likely outcome. A clear need exists, articulated by the National Research Council report “Completing the Forecast,” to broaden the scope of environmental forecasting with the inclusion of a new dimension: assessing and communicating forecast uncertainty. Forecast uncertainty is important not only for users but also from a scientific perspective. Since all weather, water, and climate predictions are imperfect, they are statistically reliable (i.e., consistent with observations) only if given in a probabilistic format.

Forecast uncertainty can be assessed through either traditional or recently developed dynamical approaches. The traditional forecast process focuses on the estimation of the expected value of a forecast distribution. A single scenario is developed for the evolution of the future weather, water, or climate conditions, often via the use of a single numerical forecast. Forecast uncertainty estimates are based on a statistical analysis of the errors in past single value forecasts. The limitations on this approach include (a) a sub-optimal estimate of the “most likely” forecast scenario due to a neglect or inappropriate consideration of alternative future scenarios; (b) a sub-optimal estimate or neglect of case to case variations in forecast uncertainty due to the exclusive use of statistical methods in assessing forecast uncertainty; and (c) difficulty in presenting dynamically consistent alternative scenarios for use in decision support systems. The first two issues act as factors limiting forecast skill, and all three curtail the utility of weather, water, and climate forecasts.

The second (dynamical) approach to assessing forecast uncertainty is based on an ensemble of numerical forecasts and mitigates the limitations on the traditional forecast process. By a systematic consideration of alternative forecast scenarios, ensemble methods reduce errors in the expected value of a forecast distribution (i.e., best single value estimate) and capture case dependent variations in forecast uncertainty.  Case dependent forecast uncertainty estimates may be enhanced through statistical post-processing (i.e., a combination of the dynamical and statistical methods), further increasing the forecast quality. Ensemble forecasts are the centerpiece of a proposed expansion of the traditional forecast process in which uncertainty is assessed, propagated, and conveyed throughout the entire forecast process in a self-consistent manner. The systematic use of ensembles can maximize both forecast skill and utility.  In addition, ensemble forecasts have the potential to facilitate an adaptive configuration of the entire forecast process to accommodate time varying user requirements for high impact events.

The expansion from the traditional to the ensemble-based forecast process requires a concerted effort and coordinated changes throughout the entire Weather, Water and Climate Enterprise (government, commercial, public and academic sectors). Recommendations to facilitate such changes include:

OVERALL RECOMMENDATIONS

1) Develop a sound roadmap for assessing and communicating forecast uncertainty that is based on science, technology, and workforce considerations, consistent with NOAA’s mission, that fits into broader NWS plans and is embraced by involved parties.

2) Revise operational requirements. The primary requirements, consistent with the roadmap, must be formulated in probabilistic forecast format throughout the organization, in place of the current single value format. Performance metrics must change accordingly, e.g., from hit rate or error in single forecast to probabilistic measures.

3) Develop the missing scientific, technological, and human components of the expanded forecast process, based on the roadmap. Identify self-contained components with well-defined requirements and interfaces to other components. Identify potential contributors such as offices, programs, projects, and individuals within the NWS, NOAA and the broader weather / water / climate enterprise, and coordinate their activities related to particular components of the expanded forecast process. 

ISSUES TO BE CONSIDERED
1)  New probabilistic NWS forecast requirements;

2)  Expanding the forecast process, to include adaptive methods to capture uncertainty;

3)  Bias correction and downscaling methods applicable for ensembles;

4)  Summarizing ensemble/uncertainty information; 

5)  An environmental data depository to contain summarized/full ensemble information;

6)  Statistical tools to interrogate/modify full/summarized ensemble information; 

7)  Telecommunication facilities to disseminate ensembles inside/outside NWS;

8)  A unified verification package to evaluate ensemble/probabilistic forecasts;

9)  Comprehensive training on ensemble/probabilistic forecast methods for all parts of the Weather, Water and Climate Enterprise;

10)  An outreach program to promote use of ensemble/probabilistic forecasts.

The importance of forecast uncertainty information

In practice, most weather, water, and climate forecasts are imperfect and are associated with uncertainty (i.e., they exhibit errors when compared to the verifying observations). Typically, the longer the lead time, the more uncertainty there is. This is primarily due to the chaotic nature of the atmosphere and the coupled atmosphere-land-ocean system. If there is any error in the current or future state of a chaotic system, its forecast is bound to accumulate more errors over time until all useful forecast information is lost.

Naturally, users always prefer weather, water, and climate forecasts with reduced or (if possible) no uncertainty. The level of uncertainty in a forecast, however, cannot be reduced arbitrarily. The minimum attainable level of forecast uncertainty at any time depends on the objective quality of the forecast system used to make predictions. Traditional approaches to improving forecast systems have mainly focused on the reduction of forecast uncertainty. The question is, do users need to know about the level of uncertainty in the forecasts prepared for them?

Rational decisions regarding future actions are typically made by reviewing all possible scenarios. The action that leads to the most expected economic or other benefit, while incurring the least cost, is chosen. For the optimal decisions related to activities affected by weather, water or climate conditions, one must consider all possible future weather/water/climate scenarios, along with their likelihood. In the absence of such information, possible scenarios other than the one given in a single value forecast cannot be considered quantitatively or are ignored altogether. This practice, in general, leads to sub-optimal user decisions.

If forecasts, for example, are given in single value or categorical format and are taken at face value, they will indicate no uncertainty and, consequently, users may prepare only for the occurrence of the predicted conditions and not consider alternate scenarios. Since any forecast is imperfect, most likely the observed weather, water or climate conditions will differ from those predicted. If a user does not prepare for any scenario other than which was predicted, this can lead to significant losses on the user’s part.

In general, the absence of forecast uncertainty information limits the range of users who can benefit from the forecasts to those found within a narrow range of cost / lost ratios (discussed later) as compared to the users of probabilistic forecasts. Moreover, those users who can benefit from forecasts given in single value format will in general realize less value when compared to forecasts given in a format that conveys uncertainty. Therefore, a well defined need exists for making uncertainty information available to interested users.

From a scientific perspective, single value forecasts can be consistent with the distribution of observations following the issuance of the same forecast over many times - only if the forecasts have no error in them (i.e., perfect forecasts) and hence all verifying observations coincide with the forecast value. It follows that in the presence of uncertainty, the use of a probabilistic or similar forecast format is required for statistical consistency. 

ASSESSING FORECAST UNCERTAINTY

Forecast uncertainty can be assessed in a variety of ways. The methods can be grouped into statistical and dynamical approaches. Today, most weather, water, and climate predictions are based on numerical forecasts. Traditionally, a single numerical integration is carried out. These single value forecasts are statistically inconsistent with the observations. However, they can be made reliable and representative of forecast uncertainty via statistical methods related to bias correction.


A traditional numerical forecast represents a single realization out of countless possible scenarios, given the chaotic nature of the coupled atmosphere-land-ocean system and the uncertainties in its initial conditions and in numerical models. Dynamical approaches use numerical prediction tools to assess the uncertainty in weather, water and climate forecasts. Unlike statistical methods that assess uncertainty in an average sense, dynamical methods are designed to capture variations in forecast uncertainty on a case by case basis. In practice, an ensemble of forecasts is used as a tool to describe future weather, water, or climate conditions. 

The reliability of ensembles, just as in single value forecasts, can be enhanced by statistical bias correction methods. 


BENEFITS OF ENSEMBLE APPROACH

Traditionally, forecasts have been made in single value format, based on a single numerical integration. Though the use of ensembles for weather, water, and climate prediction is a relatively new concept, one must recognize that change from a single forecast to a large ensemble is gradual. A single forecast can, in fact, be considered a one-member ensemble. As more members are added the quality and value of an ensemble of forecasts, including both its reliability and resolution, continually increases, asymptoting to a value characteristic of an ensemble with a very large membership.

Derivation of the most likely scenario. A narrow focus upon finding a good single value estimate of future weather, water, or climate conditions can become a limitation on the quality of such forecasts themselves. The evolution of weather, climate, and associated water conditions involves strong non-linearities at all temporal and spatial scales. In the presence of both forecast uncertainties and nonlinearities, the consideration of all possible scenarios is critical for arriving at the best estimate of the future state of the system. This notion is supported by the fact that the mean of a well constructed ensemble forecast provides a better estimate of truth than any single forecast alone. Neglect or improper use of ensemble information in the forecast process leads to suboptimal estimates of the first moment of the forecast distribution. Information contained in the nonlinear evolution of a cloud of ensemble forecasts cannot be recovered by any other means (see Fig. 1). Statistical post-processing can change the format of a forecast from single value to probabilistic, and can make such forecasts statistically reliable. Because the error in a single forecast is higher than that in an ensemble mean, the calibrated probability distribution, however, will be wider compared to that from a forecast based on a well constructed ensemble, resulting in diminished predictive skill that is easily detectable by measures of statistical resolution. 


Derivation of forecast uncertainty. By using a single forecast followed by a statistical approach, forecast uncertainty is evaluated over a sample of forecasts in an average sense and, therefore, the uncertainty estimate is not case specific. The size of the available sample and the choice of the statistical method determine whether and to what extent regime dependent variations in forecast uncertainty can be delineated, as opposed to providing just climatological forecast uncertainty. Extraction of maximum forecast uncertainty information in an environment where predictability is known to vary from case to case, such as the atmosphere or the coupled atmosphere – land – ocean system, requires case dependent methods. Using climatologically (or even conditional climatologically) averaged uncertainty estimates, as is done traditionally, will lower predictive skill as detected by measures of statistical resolution.

Consider a single forecast whose climatological uncertainty is assessed using a statistical method. Every time a particular forecast value is predicted, it is replaced with a probability distribution of a fixed width (i.e., the observed frequency distribution of the predicted event, given the forecast value). An ensemble that has skill in distinguishing between situations with low (small spread) and high (large spread) forecast uncertainty can be used to enhance single forecasts by providing case dependent probability distributions for the single forecast. Such a system would, in general, have more value to the user community. 


Forecast format. The current forecast process that is focused on generating a single value forecast ignores the users’ need for multiple decision thresholds depending on their cost/loss situation. A single value forecast is not suited for optimal decision making that depends on the specifics of each user’s application. In an effort to minimize risk, a forecaster needs either to hedge her/his single value forecast differently depending on the perceived cost/loss situation of different users, or to communicate with each user that even though the forecast is 5°C, there is a significant chance for the temperature to drop below some user specific values. An ensemble of forecasts, on the other hand, can be used to formulate multiple probabilistic thresholds, allowing each user to select information related to their optimum decision level. In addition, ensembles can also be directly fed into automated decision support systems to determine the best course of action given all available information about the future environment.


Traditional forecast paradigm

So that the novel aspects of the emerging new forecast process can be best described and contrasted with existing practice, a brief summary of the traditional forecast process is given below. 

The traditional forecast process focuses on the reduction of forecast uncertainty in the first moment of the predicted variable. The entire process is driven by the ultimate goal of producing the best single value estimate of the future weather, water, and climate conditions, often resulting in the formation of a single weather, water, or climate scenario. Evaluation metrics, performance measures, and, importantly, official requirements are chosen accordingly while forecast uncertainty is usually neglected. 

Under the traditional forecast paradigm, determinism in forecasting is overemphasized, while the sensitivity to initial and model-related uncertainty is de-emphasized. The forecast process can be characterized by an effort to reduce uncertainty at every step: reducing observational uncertainty by improving the observing system; reducing errors in numerical analyses by improved data assimilation methods; reducing modeling related errors by improved numerical modeling techniques; reducingsystematic errors by improved statistical bias correction methods. 

Through the various steps in the forecast process, information from observations to the end users flows in one direction and usually a single value, related to the best estimate of the first moment of the variable in question, is transmitted. At the end of the chain a single scenario, often called the most likely evolution of weather, water, or climate conditions, is established as an end product. The single forecasts are often interpreted in a binary way (e.g., if the forecast is 5°C the temperature will not be below 3°C, so concrete can be laid), instead of a more informed decision making process involving both multiple weather scenarios and the user’s specific cost/loss situation. The result is of limited utility to society.  

To mitigate user concerns, forecast uncertainty appears as a second thought in the traditional forecast process. Once a decision is made regarding the single scenario that is often called the “official forecast”, the uncertainty may be assessed using statistical methods. An example is the “cone of uncertainty” attached to the official tropical storm track forecasts issued by the Tropical Prediction Center. The “cone” is based on the statistics of past official track forecasts and, therefore, does not capture variations in forecast uncertainty from one case to another (i.e., the same cone is used in every case) and is attached to the latest official forecast (i.e., a single value forecast).

NEW FORECAST PARADIGM

The systematic use of ensemble information in the description of multiple forecast scenarios is necessary for the optimal derivation of both the best estimate of the state and the associated uncertainty. These two pieces of information, when put together, naturally form a forecast given in probabilistic format. This concept is in contrast with the traditional paradigm, where the best estimate of the state is based on a single forecast, and the forecast uncertainty is derived retrospectively using statistically averaged information.

Although various elements of the new forecast concept have been developed and may be used in different parts of an organization, its full introduction amounts to a major paradigm shift. Concerted changes related to most aspects of forecast operations are needed for consistency and good functionality. A switch to the new forecast process requires the coordinated development and introduction of changes to most aspects of the forecast process. As past efforts demonstrate, changes that are limited to certain aspects of the forecast process can have only a limited effect.

The new process for weather, water, and climate forecasting is based on some general principles related to chaos, probability, and decision theory. Once a general framework for the new forecast process is developed and agreed upon, under that common framework the details of various forecast system components can be designed.

The rest of this document attempts to identify critical elements where the fully implemented new process must differ from the traditional forecast process, with suggestions for intermediate steps where appropriate.

COMPONENTS OF THE NEW FORECAST PROCESS

Ultimate goal. In general, the new forecast process can be considered not as a replacement, but rather an expansion of the traditional forecast process. The ultimate goal of the traditional process is the reduction of forecast uncertainty. This goal is supplemented ( not replaced) by the additional, new goal of assessing uncertainty. All other changes in the forecast process are related to or a consequence of this broadening of its goals.

Concept of nature. The new forecast paradigm, like the old one, considers nature as a deterministic system. This gives ground to predictability. The new paradigm, at the same time and equally importantly, also recognizes that the atmosphere and the coupled atmosphere – land surface - ocean system is chaotic. The evolution of these systems is sensitively dependent on minor changes caused either by external forcing (in nature), or by errors introduced in the initial conditions or the numerical model (in the forecast process). Chaos limits predictability, and recognizing its existence allows for the quantification of the loss of predictability that is at the heart of the new forecast paradigm.

Forecast process. Under the old paradigm, information related to the best estimate of the predicted system is propagated through the entire forecast process and throughout the forecast range. In the new paradigm, not only the best estimate, but also its uncertainty (related to the entire distribution of possible scenarios) is propagated. To properly assess the uncertainty in the final probabilistic forecast, ideally all uncertainty (related to the observing, data assimilation, numerical modeling, and statistical post-processing components) is accounted for at its source, and its effect is propagated via an ensemble of forecasts.

Observing system. Emphasis expands from the reduction of observational uncertainty (old paradigm) to include a quantification of uncertainty. All observations must be accompanied by estimates of random instrument and representativeness error variance, as well as estimates of systematic errors. To properly propagate uncertainty information, observational errors must be provided as an input to the next, data assimilation step.

Data assimilation. 3- and 4-dimensional variational and other traditional methods (old paradigm) focus on the reduction of analysis error. The aims of new methods that are under development (e.g., various ensemble-based data assimilation methods or the use of ensemble information in variational methods) include at the same time an assessment of the uncertainty in the analysis. This information, related to initial ensemble perturbations, is critical input for the next, numerical prediction step.

Numerical modeling. Traditionally, numerical modeling efforts have focused on reducing systematic and random errors related to model formulation. These efforts typically have led to models that exhibit a higher level of fidelity when compared to nature. The new forecast paradigm requires a major refocusing of effort to not just reduce but to quantitatively assess and simulate model related random and systematic errors. This is critical in ensemble forecast applications of numerical modeling, where model errors need to be represented as part of an ensemble.

Ensemble forecasting. In the new forecast process ensemble forecasting occupies a central place in the entire process, following the observing, data assimilation, and numerical modeling components and preceeding the statistical post-processing, product generation, and user support components (see Fig. 1). Ensemble forecasting involves the generation of multiple forecast trajectories, (i) initialized from a sample of plausible initial states provided by the data assimilation, and (ii) integrated with a numerical modeling system that can represent model-related uncertainty. This is in contrast to traditional forecasting, which is often based on a single numerical integration. Ensembles play a critical role and are used in a systematic way to connect all the components of the forecast process together. They are used to assess, represent, and propagate forecast uncertainty information from the observing system through to the end users. 

Statistical post-processing. In the traditional forecast process, emphasis is placed on estimating and correcting systematic errors in the first moment of the forecast distribution (i.e., expected or single forecast value). The new forecast paradigm requires a broader approach where the characteristics of the entire distribution are considered and if possible statistically corrected. A number of such techniques have been recently proposed or are being developed. Since systematic errors in numerical forecasts are a function of lead-time, systematic errors are estimated and corrected separately for each lead-time. Two independent facets of statistical post-processing are (a) the size of the sample of representative truth – the forecast data pairs used in the statistical process, and (b) the choice of the particular statistical technique used. Relevant characteristics of the bias correction algorithms are (i) a bias free statistical estimation of systematic errors, and (ii) the convergence rate of bias estimate as a function of increasing sample size (the higher the rate the better the estimate one can get with small samples).

Downscaling. Variables of interest to users (e.g., temperature or more esoteric variables at a particular geographical point) are often different from the output variables of numerical models (i.e., gridbox average temperature). Therefore, numerical model output, even if bias free, typically requires a “downscaling” before it can be used. Downscaling is defined here by the relationship between different, typically high and low resolution types of variables, and is independent of lead time dependent forecast model biases. Downscaling can be done in a variety of ways, including the use of high resolution (but possibly simplified) numerical models or statistical methods. While the methods used in the traditional forecast process often suppress realistic variability on fine temporal and spatial scales for the sake of reduced errors in a single forecast, the inclusion of such variability in downscaled ensemble forecasts (while ensuring the grid-scale characteristics are unchanged) is desirable and can improve the realism, skill, and utility of forecasts. If downscaling is done using statistical methods, the bias correction of lead time dependent forecast errors and downscaling of the numerical forecast information to user variables can be done either in one single step or as two separate steps.

Product generation. An ensemble of bias corrected and down-scaled forecasts constitute the basis for generating any products for intermediate (human forecasters) or end users (derived products). Statistical tools can be used to derive the probability of any event, based on an ensemble considered to be a sample of all possible future scenarios. Events can be defined based on either a single or multiple variables of interest. Alternatively, the trajectories of ensemble forecasts can be directly used as an input to decision support systems (basic products). Temporal, spatial, and cross-variable correlations are naturally captured in all basic and derived products as they are dynamically represented in the ensemble. In contrast to an ensemble approach where alternative scenarios can be directly considered, the generation of probabilistic products based on a single forecast involves more statistical considerations and may be characterized by less realistic and less skilful temporal, spatial, and cross-variable correlations. Despite a higher level of complication, such methods generally do not offer the flexibility in product generation that the new, ensemble-based forecast process does. 

Role of human forecaster. In the traditional forecast process, the forecaster’s role is limited to the identification of the most likely forecast scenario. In the new process, this role is expanded to include the identification of alternate scenarios. This requires a broader perspective and also some new tools that allow the forecaster to manipulate entire ensemble distributions just as forecasters are able to change digital single value forecasts today. Due to the sheer volume of data, forecasters will focus their attention on high impact events in terms of making manual modifications to an automated, bias corrected and downscaled numerical forecast guidance based on the best ensemble forecast system. The primary role of the forecaster will evolve from the routine preparation of forecasts to directing and quality controlling the forecast process, saving valuable time for interactions with users and other constituents.

Decision support systems. Decision support systems (DSS) provide a link between forecast information and user applications. The sophistication of a DSS can vary greatly. Single value forecasts severely limit the utility of weather, water, or climate forecast information as they allow decisions made on a single level only (yes or no, based on whether an event is forecast or not). In contrast, the multiple scenarios in an ensemble support decisions made at multiple levels of certainty or probability, depending on the users’ cost/loss or other considerations. A more formal DSS can use either derived ensemble products (e.g., probability of an event) or the basic ensemble trajectories as input. Through a study of simulated or archived past cases, the users can find the optimum decision criterion (i.e., the level of probability of a forecast event) where they must take an action that maximizes the value of weather forecast information for their application. 

User feedback. Information in the traditional forecast process flows in one direction, from observations to the end users. In the new process information can also flow in the opposite direction, from the users to the observing system. Through the use of ensembles, the new forecast process facilitates adapting the entire forecast process (i.e., taking adaptive observations, using special adaptive data assimilation methods, on demand numerical modeling, or ensemble applications) to case dependent user needs via propagating user requirement information backward throughout the forecast steps (for an example, see Fig. 3).

Impact on society. The traditional forecast system is rigid in a sense that it does not adapt to user needs. It has a limited set of outputs based on a single forecast and users have to either adapt to using what is available, or refrain from using the system at all. In contrast the new forecast process, when well developed, offers a multitude of forecast products. The users not only can select the exact product they want to use on a case by case basis, but via the aggregate of all prioritized user requirements, can also potentially influence the entire forecast process (observing system, data assimilation, and numerical modeling/ensemble systems) to maximize user value for high impact event forecasts.

RECOMMENDATIONS

The new forecast process requires a shift in paradigm from the traditional process. As in any paradigm shift, the consistent introduction of a new paradigm requires major changes. These changes, however, are evolutionary in the sense that the new system does not replace but rather transcends the traditional system. The current activities related to the identification of the best single value estimate of future weather, water, and climate conditions are not abandoned but rather are placed into the broader context of identifiying additional possible scenarios in the context of a full probability distribution. The output of the new forecast process will support the provision of a much wider range of products to our users, while retaining the ability to serve traditional single value products to users who prefer them.

The rest of this document is devoted to recommendations on new elements and specific changes that need to be introduced, in a well coordinated fashion, into the existing forecast process to implement the new forecast paradigm. For more detailed planning, existing related research and development activities will have to be carefully considered.

GENERAL RECOMMENDATIONS

1) Define the end goal (5-10 years): Operational use of a general probabilistic forecast approach across all NWS forecast activities.

Adopt the concept of a new, ensemble-based forecast process. This will allow the realization of maximum skill and utility on one hand, and the development and use of a common scientific, software, and technological infrastructure across all weather, water, and climate applications within NOAA on the other. Details of the new approach related to various applications, etc., are to be developed later as part of scientific, technological, and workforce development activities.

2) Change official forecast requirements and performance measures from a single value to probabilistic format. 

Keep the existing requirements during a transition period while establishing new probabilistic format requirements and associated performance measures that are consistent with long term goal. Establish a timeline for the transition process for various applications. Allow various organizations some flexibility regarding the date of their compliance with new requirements. This will facilitate an orderly transition from the existing to the new forecast process.

3) Design, develop, and implement the new forecast process. 

Planning and execution must be consistent with the NOAA mission and the long-term goals of the NWS. Leverage off of related existing activities such as (a) THORPEX research and development aimed at improving predictability, probabilistic forecasting, and adaptive forecast methods; (b) High impact event theme forecasting plans within the PPBES process under the W&W Goal; and (c) the new NWS CONOPS process. Coordinate across these three major activities. For maximum efficiency, ensure adequate funding of ongoing and planned work through the existing framework of these activities. 

4) Identify the first practical steps on the path to achieving the end goal for the next 2-3 years.

Define a required basic capability that is consistent with and can evolve toward the end goal, provides critical functionalities albeit with limitations, and is achievable in 2-3 years. Identify critical components in the forecast process, with specific functionalities and performance measures and well defined interfaces between adjacent components, to be developed in following years. A well laid out modular design will allow interested groups within and outside the NWS and NOAA to work independently but in a coordinated fashion on various components of the new system.

SPECIFIC RECOMMENDATIONS

1) Develop new NWS forecast requirements consistent with general probabilistic approach:

a) Rewrite forecast requirements for each application (short-term);

b) Define corresponding new objective performance measures (short-term).

2) Continue the development of a new forecast process with an emphasis on high impact events. Maximize the utilization of forecast resources by allowing case dependent adjustments through adaptive methods in:

a) Collection and use of observations (targeted observations);

b) Data assimilation (e.g., flow dependent background error estimation);

c) Numerical modeling (adaptive resolution models);

d) Ensemble forecasting (case dependent variations in membership and composition of ensemble);

e) Decision support systems (allowing flexible user actions depending on level of forecast probabilities, etc).

3) Develop bias correction and downscaling methods that statistically adjust ensemble forecast data generated automatically on a coarse model grid and bring it to a finer spatial resolution user grid (e.g., NDGD). This will provide both bias-free and downscaled ensemble trajectories and derived probabilistic products.

a) Estimate lead-time dependent forecast model error (both first and higher moments of ensemble distribution) and correct all ensemble forecasts on model grid; 

b) Generate fine resolution ensemble data consistent with a coarse resolution bias-corrected ensemble, including the addition of fine scale spatial and temporal variance missing from coarse resolution data;

c) Generate reanalysis and hind-cast data as needed, using the operational version of the analysis and modeling systems to increase the sample size available for bias correction and downscaling.

4) Contribute to the establishment of a NOAA-wide environmental data depository for the collection, organization, and exchange of observational, numerical guidance, and official forecast information accessible from both within and outside NOAA. 

a) Generalize the NDFD & NDGD databases so they can hold forecast uncertainty information (summary statistics based on ensemble forecasts - a short-term solution);

b) Develop database capable of holding all ensemble trajectories (all members, relevant variables, lead times, full capability, the long term solution). 

5) Define summary ensemble statistics (e.g., 10, 50, and 90th percentile values of a cumulative forecast distribution) that can be used to:

a) Collapse a vast amount of ensemble data into a smaller dataset suitable for inclusion into the expanded NDFD/NDGD datasets (short-term);

b) Manually inspect and modify ensemble forecast information (short-term).

6) Develop statistical interrogation, forecast modification, and product generation tools associated with a guidance and forecast database that can be used to:

a) Derive summary statistics from full ensemble data (to populate new NDGD & NDFD uncertainty grids – short term);

b) Manually modify automatically generated summary statistics, including uncertainty grids (short-term); 

c) Derive selected additional information from summary statistics stored in NDGD & NDFD grids (product generation - short term);

d) Automatically modify full ensemble trajectory data based on manually modified summary ensemble statistics (long term);

e) Derive any forecast information from full ensemble trajectory data stored in a future database (product generation - long term).

7) Develop adequate telecommunication facilities that allow all offices participating in the forecast process and all users real time access to:

a) Summary forecast statistics and limited derived products (short term);

b) All ensemble forecasts and any derived product (long term).

8) Develop a general probabilistic verification package to be used across NWS and NOAA and shared with the user community, to:

a) Compute official performance measures;

b) Evaluate the value added at each step along the forecast chain;

c) Assess the value of newly developed techniques as compared to the methods used in operations.

9) Develop and implement comprehensive training to prepare forecasters for their new role in the forecast process that includes forecasting uncertainty, including:

a) Statistical background;

b) Ensemble methods;

c) Best forecast practices related to capturing forecast uncertainty;

d) Applications of probabilistic and other uncertainty information.

10) In partnership with the weather, climate, and water enterprise, develop and implement an outreach program related to the communication and use of uncertainty information by the user community, to:

a) Determine the best ways of communicating forecast uncertainty to various segments of the user community;

b) Compile a sample of Decision Support Systems based on ensemble/probabilistic forecast information;

c) Establish a close partnership with a subset of users (possibly in the public sector in the emergency and/or water management communities) to demonstrate the use of ensemble/probabilistic forecast information in real life decision making situations.

. 
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Statistical approach to assessing forecast uncertainty


The statistical approach to assessing forecast uncertainty is related to bias correction and calibration methods and can make the forecasts statistically consistent with truth. It is based on a statistical evaluation of the relationship between identical (or very similar) forecasts and the distribution of the ensuing verifying truth. The method involves the construction of a statistical frequency distribution based on the truth observed after the same (or similar) forecast was issued many times. The form of the original forecast is then replaced with the observed frequency distribution. Uncertainty in forecasts of any form (i.e., single value, categorical, or probabilistic) can be assessed using this method, given that a large enough stationary sample of forecasts and corresponding proxies for truth exists. In practice, observations or numerical analyses are used as proxies for truth.





STATISTICAL CONSISTENCY 


Statistical consistency (or reliability) is one of two major attributes of forecast systems, as they relate to truth. In general terms, statistical consistency is defined as forecasts having the same form (i.e., looking the same) as the distribution of observations that verify after the same (or very similar) forecasts are issued over many occasions. Reliability means that what is being forecast over many occasions is observed in a statistical sense. Reliability in itself does not guarantee informativeness.  Predicting the climatological distribution all of the time guarantees perfect reliability, yet provides no useful forecast information. Statistical consistency can be measured by a number of specific scores.





DYNAMICAL APPROACH TO ASSESSING FORECAST UNCERTAINTY


To quantitatively assess forecast uncertainty, a number of numerical forecasts (i.e., an ensemble) can be generated in place of a single integration by slightly varying the initial conditions and the model to reflect uncertainty in them. Each member of an ensemble of forecasts represents a plausible outcome, and as a set they offer a finite sample of all possible scenarios. Case by case variations in the behavior of the ensemble members (e.g., the spread among the ensemble members) provide an indication of variations in forecast uncertainty (i.e., expected forecast error). A well constructed ensemble thus naturally captures forecast uncertainty. Currently no other scientific method is known to provide forecast information of a similar quality for complex systems such as the atmosphere.





EXAMPLE


As an example, consider a construction company that can lay concrete if the temperature stays above 3°C. Let us assume that every time the low temperature forecast is 5°C, the probability of the temperature dropping below 3°C is 20% in a climatological sense, based on the statistical approach described above. The 20% probability may pose too high a risk for the company, comparing the cost (C) they incur by losing profit for that day from skipping work and the potential loss (L) if their concrete is ruined by low temperature. To maximize her/his profit, a user with a cost/loss ratio of, say 15%, will have to refrain from concrete laying work every time the single value forecast indicates a 20% probability (i.e., a 5°C single value forecast). This is because to maximize the value of forecast information, users must use their C/L ratio as a decision probability threshold when deciding whether to act on a particular forecast or not. If an ensemble method can separate those cases of 5°C forecasts where the probability of a temperature below 3°C is below 15% (low uncertainty cases) from other cases when it is above 15% (high uncertainty cases), the user can benefit economically by carrying out their work when the probability of adverse weather is lower than average, given the 5°C single value forecast.





Imperfect ensembles


Probability forecasts derived from ensembles are usually much more consistent with observations, compared to any single forecast. Nevertheless, probability forecasts derived by counting how many ensemble members predict a certain event are not perfectly consistent with truth. This is due to a lack of realism in how the initial and model related forecast errors are simulated in any ensemble system, and is also due to the finite size of any ensemble. Ensemble forecasts, however, can be made consistent with truth by using statistical techniques similar to those discussed under single value forecasts. For example, the spread of the ensemble can be adjusted in a climatological sense (e.g., increased in case the ensemble is found to be under-dispersive) or the probability of events can be corrected in other ways. Such statistical adjustments will improve reliability, while at the same time retaining the ensemble’s ability to distinguish between cases of low and high uncertainty. Forecast resolution (discussed later) that is related to the predictive power of forecast systems, however, will not be improved.





Statistical resolution


Statistical resolution is the second major attribute of forecast systems as they are compared to truth. Statistical resolution is a forecast system’s ability to distinguish, ahead of time, between cases that lead to different future outcomes. The more that different forecast signals lead to unique verification outcomes, the higher the resolution a forecast system has. An ensemble mean forecast, for example, by having an error lower than a single forecast would better separates future outcomes and therefore would have a higher resolution.





Unlike statistical reliability, resolution cannot be improved by statistical bias correction. Statistical resolution, therefore, assesses the inherent predictive power of forecast systems, and can be measured using a variety of scores. Note that statistical reliability (how similar the form of forecasts and ensuing observations is in a statistical sense) and resolution (predictive power of a forecast system) are independent attributes of forecast systems.





TYPES OF ENSEMBLES


In the broad sense, any collection of forecasts can be considered an ensemble. Ensemble forecasting has had many variations and flavors over the past decades.  Subjective forecasts prepared by different individuals, single value forecasts prepared by different Numerical Prediction Centers (NPCs), or a “synthetic” ensemble prepared by any of the producing NPCs are all examples of ensembles. In addition, ensembles produced by different centers can also be combined to yield a multi-center ensemble. Care must be taken to ensure that ensembles represent both the initial condition and model related forecast uncertainty. The quality of ensembles can be compared using objective measures of statistical reliability and resolution. The better an ensemble can estimate the expected value of the forecast distribution and the better it can capture case dependent variations in forecast uncertainty, the higher the overall scores and its expected utility will be. Note that the utility (i.e., practical value) of an ensemble depends on both its reliability and resolution. In the traditional forecast process, ensembles are typically used in an ad hoc manner to reduce errors in the estimate of the first moment of the forecast distribution. A more systematic use of ensembles started in the early 1990s.





DISTINCTIONS and LINKEAGES BETWEEN forecast and user decisions


The use of a single value as the basic forecast format necessarily blurs the distinction between forecaster and user decisions, leaving both the forecasting and user communities uneasy. The use of a single value (or categorical) format feeds some users’ unrealistic expectation that uncertainty from forecasts can be entirely eliminated and that user decisions can essentially be transferred to the meteorologist who, with the choice of a single value, practically decides the user actions, too. By focusing entirely on a single scenario, forecasters are also kept away from a careful evaluation of alternative scenarios, which are essential for optimum decisions from the users’ perspective. This situation can be ameliorated by the use of a probabilistic forecast approach. Forecasters and users can refocus their efforts on their respective areas of expertise, potentially enhancing the productivity of both communities. The users can identify weather parameters that are critical for their application. The forecasters in return can formally evaluate and quantitatively convey forecast uncertainty for these parameters. This allows sophisticated users to formally assess the possible impact of various forecast scenarios on their operations. Less sophisticated users can, as before, be served with a single value or other specific information they require, all derived from the same basic probabilistic information. The designation of probabilistic information as the basic, internal forecast format ensures full consistency among the various types of forecast information and applications.
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Fig. 4. Schematic diagram illustrating the two-way flow of initial condition related information in the proposed new, integrated NWP forecast process.



