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1. INTRODUCTION

This paper introduces a new classification procedure using beta probability
density functions (pdf) to compute threshold probability values. The classi-
fication problem is this: given a probability distribution for the occurrence
of an event, how does one make a categorical decision? 1In decision theory,
such classifications are made under the control of some underlying utility
function. The decisionmaker may then choose categorical selections that either
maximize some gain or minimize some loss. In weather forecasting, utility is
usually some verification statistic which is to be optimized (e.g., percent
correct, hits, threat score, or skill score). This paper departs from the
decision-theoretic approach by using a much simpler, albeit approximate, pro-
cedure incorporating threshold probabilities and a successive pair-wise com-
parison test. Using threshold probability values is not new; however, what
has yet to be achieved is a threshold model that would provide a wide range of
desired categorical responses that in turn control the verification statistic.
The Beta classification model presented here accomplishes this objective.

This procedure can maximize threat score, and can produce a marginal distr-
ibution balance (i.e., the number of forecast events equals the number of
events observed).

2. REGRESSION PROBABILITY MODEL

The first step in the classification problem is to establish a function
which can provide event probabilities. Linear regression of a selected depend-
ent variable onto the desired independent variables accomplishes this. Here
we define the independent variables, or predictors, as X;, Xy, X3, <o Xg. We
represent the dependent variable, the predictand, as Y; its estimate is Y. The
desired probability meodel is then:

Y = dg + d1X] + doXp + ..., + dgXg (1)

The solution of the coefficients (dj's) is obtained through regular multiple
regression techniques with or without screening. The definition of the predic-
tand values is absolutely necessary. The event must be exhaustive and mutually
exclusive of all other possible events. If the event over the developmental data
sample is observed to fall within this preselected definition of occurrence, the
Y-value is assigned a "1"; otherwise it is assigned a "0." The Y-data are, there-
fore, binary variables representing whether the event occurred or not. The
predictor variables may be either scalar, binary, or some combination of either.

Introduction of a binary predictand Y into a least-squares linear regression
program produces a model which then will estimate probabilities of future events.
Since there are many possible combinations of the predictors, the probability
model produces a range of probability values. These values can be grouped accord-
ing to verification and examined through their frequency distributions as illus-
trated in figure 1. This figure also shows several features that are important
to the understanding of the following discussion.
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Figure l.--Schematic depiction of the probability-value (¥)
distributions when Y=1 and Y=0. The p values represent
distribution means.

3. CLASSIFICATION BY THRESHOLDING

There are two well defined clusters of probability values grouped into occur-
rence £1(Y/Y=1) and non-occurrence fo(¥/¥=0) of the event. The respective means
of these distributions are pj and up. Some values fall outside the (0,1) range.
The (A,B) interval represents the lower and upper bounds of possible probability
values. The property that the "probability" estimate can fall outside the (0,1)
range is more a nuisance to the classification problem than a mystical fact.

This property is actually of little concern, because the two distributions'
overlapping values are of greater concern to us than the out-of-range values.
Figure 2 portrays the overlapping problem with a given threshold value, p*.

FORECAST
5 ¥y=1 y=0
1 y=1 C
B3y | Mo
OBSERVED " .
10 00
y=0 1-C
G 1-G
......... N,

¥  (FREQUENCIES)

Figure 2.--Illustration of how a chosen p* (threshold probability)
would control the frequency of positive classifications. A veri-
fication table is also shown. Subscripts on densities Hij
represent forecast category i and verified category j.

Since these two distributions describe the forecast model's response in an ex-

pected sense, we can construct an expected verification table upon which various
statistical scores can be computed. The verification table's entries (Hij) are
estimated from the two distributions and the selected p* by these relationships:



Hyy =G A
H, . = (1-C) /B, £ ay
10 p* 0
- p* v = C - (2)
By =G/ 4 et =C=Hy,
=(1-c) fP* £ 4af = (1-0) - H
B = W-Q2 /3 % : 10

To control the frequency of positive classifications (the G measure in figure
2), simply solve for the p* that gives the desired frequency result:

G =Hll +H].O (3)

For example, classification control to balance the classification table's mar-
gins can be accomplished by finding the p* which yields G = C. Other scores can
likewise be maximized by stepping p* through the (A,B) interval, deriving the
expected verification table (the Hij values will change), computing the desired
statistical score, and stopping where the desired maximum or minimum score is
found. For example, to maximize the threat score find the p* which yields
Tmax = Hy1/ (Hp) + Hyjp + Hgp), or to maximize the Heidke skill score find *p
such that
H.. +H,., - CG - (1-C)(1-G)
3 _ 11 00
MAX 1 - CG - (1-C)(1-G) (4)

A decision-theory application is also available. If a user has a known utility
or value—assessment to apply against the expected verification table, one merely
varies the p* until an expected maximum gain or minimum loss value results.
4. STATISTICS OF THE PROBABILITY VALUE DISTRIBUTIONS

Specifying the analytic form of the underlying distributions is a vital com-—
ponent of a threshold model because the Hij values defined previously require
some analytic function to integrate. The properties of the distributions in
question are examined:

Definitions:

c Relative frequency of the predictand event when Y=1.

R The correlation between the Y and Y over the dependent sample
(also known as the multiple correlation coefficient).

f. Shorthand notation for the distributions fi (¥/¥=1i), .i=0,1.
U, Mean value of the distribution fi’ i=0,1.

Variance of Y about ui when Y=1i, 1i=0,1,

o  Total predictand variance,

o Pooled predictand variance,



Computations and relationships:

N
c =y z Y, (N=sample size)
N ,_ j
j=1
3 b 2
R™ = (SST-SSR)/SST; SST=sum of squares of total, £ (Y, -C)
o
L 2
SSR=sum of squares of residuals, I (Yj~Yj)
J=k

SST-SSR=SSEX or sum of squares explained.

=C (1—R2) (see proof #1)

o

2 2 2 2
u1=R” + C (1-R") (see proof #1) (Notice that: My T Mg T RY)
02 = C (1-C) (see proof #2)
ci =C (1-0C) R2 (lth) (see proof #3)

We have reason to suspect the distributions f and f] to be beta pdf's, but to
prove this is quite another matter. We postulate, therefore, that if we could
parameterize the constants (also known as shape parameters) of the beta pdf
using only the basic statistics described and defined above, we could compute
likelihoods and use the Bayes theorem to test whether the input probability
value (Y) is unaltered after being transformed through a beta pdf. We surmise
that, if an input value is transformed into a form which accomplishes desired
results, then the transformation function is appropriate. In this case the
input is the probability Y, and the transformation function is the Bayes theorem
using likelihoods (gi) generated from the beta pdf's. That is, we want to show
that

c B, (Y]¥Y=1)

¥ = 1 (5)
c 8,(¥|¥=1) + (1-C) BO(Y]Y=0)
with
A T(a,+v, (-1
B, (lv=n) = LD e VT ae0,1) -

T(ai)' F(vi)

Several empirical results substantiated that the beta pdf was the required
distribution, but with the relationships given above we can also demonstrate
it mathematically. (See proof #4.)

5. HANDLING THE OUT-OF-RANGE PROBLEM

The beta pdf is defined over the (0,1) interval, but figure 1 illustrates the
true situation where some probability values can fall outside these bounds.
One could argue, therefore, that any model which produces probabilities outside



of the permissible range of the beta pdf must in fact not be replicating a

beta pdf. Wadsworth and Bryan (1960) show, however, that a beta pdf can be
"stretched" to other bounds such as (A,B). Stretching is performed by a trans=
formation U = (¥-A)/(B-A) from the Y-scale to a U-scale. The range of (0,1)
thereby expands to (A,B). Wadsworth and Bryan also state that the solution of
the stretched beta pdf uses the same shape parameters i and yj. The proper
beta pdf for integration to solve the Hij terms becomes:

= T(a,+v,)
i o i 71 ai-1 vi-1 » 7
B, (Y|Y=1) TCR TR U (1-1) , (i=0,1) @D
1 1
where proof #4 shows that:
_ Z 2 G
W ui(ui(l-ui) - Si)/Si > i=0,1
(8)
v, = ai(l—ui)/ui : i=0,1

2
o 521 - ngCl=uy) »  1=0,1 : (9)

(1+R7)

This information allows us to solve the Hij verification values from the
standard beta pdf.

An important corollary to the transformation of Y to a standard beta variate U

is that any value of Y lying between A and B can be transformed to lie between
0 and 1 through the formula

L S (10)

Since A and B are not normally precisely known, a set of reasonable values has
been found:

A= uo - ZUW for u0<20W

A = 0 elsewhere

B = uy + ZUw for (l—u1)<20W
B =

1 elsewhere (11)

also, set

0 when Y < A

U
(12)

H

1l whem Y > B

1}

U

Proof #5 demonstrates some relationships which pertain to estimating the beta
distribution parameters from known sample estimates.



6. SUMMARY

In problems such as weather forecasting it is often important to make a
categorical decision about a future event. Given that we have a probability
estimate of the future state of the atmosphere, we are left with the challenge
of deciding whether the probability value is sufficiently large to warrant a
categorical "yes it will occur” forecast. To do this we need something to
compare the probability forecast against, hence the need for a critical value
called the threshold probability.

When there are various users of weather-forecast information, the same prob-
ability of occurrence can evoke different categorical responses because each
will most likely have different “"thresholds of pain,” so to speak. For example,
if a 207% chance of a severe thunderstorm is forecast, one customer with a
threshold probability of 30% will pick a "no it will not happen” category while
another with a 157% threshold will definitely make plans for its occurrence.

The simplicity of this classification procedure is to answer the question:

does the probability forecast exceed the threshold probability? If it does,
forecast an occurrence; otherwise do not. The beta pdf threshold model allows

us to specify the threshold probability value needed by the user through the con-
trol of the expected frequency of positive classification (or "yes" forecasts).



"APPENDIX

Proof #1: Prove that

by = C(-R%) (1)
and that 9 5

Wy T RO A C(1-R7). (2)
Given that

2 _ iii? . (3)

where the sum of squares explained can be obtained from

K N 5
SSEX = I dk I X,Y. -NC (4)
k=1 < j=1 3%
and (see proof #2)
SST = NC(1-C). ' (5)

In addition, the mean of Y when the event occurs can be obtained from

| Sl

o M 6
1 1 K g2y Xy Ys/NC (6)

Then, using (3), (4), and (5) we get

R% = (NCu, - Ne2) /NC(1-C) . 7

Combining (7) with (6) will yield

uy = R? + c(1-89) (8)

and since, with (8),

C = Cu, + (1—C)u0 " (9)
then, 2

My = C(1-R%). QED (10)
Proof 2

6% = c(1-C). (1)



Given that Y is a binary variable (0 or 1)

Since

Thus,

or

3 i
g = N SST
N
02=-§- I (Y,—?)2
i
2 1 X ==
o” = N 50X, = 2Y,Y+Y2)
3=1 ’
> 1 N N o
g = N r Y., - ZX Y Xy ok Y2
N, j N j
j=1 g4
5 N N
Y =Y thenZI Y, =Y, andY =2¢C
=17 =1
02 =C - 2C2 + C2
2
o< = C(1-0). QED

#3: Prove that

Proof

given

ci = ¢(1-¢) R% (1-RY)
that

2 1

o = % SSR.

Further, from the Analysis of Variance in regression,

SSR = SST-SSEX

However, we know that

and

where

Thus,

55T = NC(l—C)R2
2

2
SSEX = nO (uO—C) + nl(ul—c)

N(1-C)

o]
1}

n, = NC

SSR = NC(l--C)R_z—‘J(l—C)(uO-C)z—CN(pl-C)2 i

8

(3)
(4)

(D

(2)

(3)

(4)

(5)

(6)

(7)



But, from proof #1
DL
ul = R2 + C(l—R?).

We then get

2

o2 = C(1-C) R2-(1-C) (C-CR2-) 2-c(r*+c~CR?-0) ©
2

o2 =_C(l-c)a_z—(l-c)cza“-cfl-C)ZR4
2

o2 = c(1-0) [R2-cR*-(1-0) R "]

o§_= c(1-C) (RZ-cR*-r*+cr™Y

g

o2 = ¢(1-C) (1-RH) R?

g

Proof #4: Prove that

R c . g (Y|Y=1)
Y = i (1

c - al(§1Y=1)+(1-c) .+ 8,(¥]¥=0)

where
F(ai+vi)
T(ai) . F(vi)

§ai‘1<1-§)vi"1 , (i=0,1) (2)

8, (Y]¥=1) =

This is tantamount to showing that event probability forecasts, ?, in the
beta distribution produce likelihoods which, when applied to the Bayes
theorem, yields itself.

Or, that cE

% 1
Cf1+(l—C)f0

Basic relationships and definitions:

T(a. +v_ ) n
L B P
£ TEy oy 1o oD (4)
1 1
T(a . +v.) R - -
£ o200 geolyO ' (5)

0 P(aO)P(vO)



a, =y (4;(1-u)-s2)/s5 1=0,1 (6)

d i
1-ui ai
N, ™= ( ) i=031 (7)
i U,
i
where ~
My = mean of Y when Y=1
Mg = mean of Y when Y=0
Sf = variance of Y about Ul when Y=1
2 . ~
SO = variance of Y about Ho when Y=0
with
2 2 2
Wy = R 4+ C(1-R") = R™ + Ho (Proof #1) (8)
by = C(1-R)) (Proof #1) (9
2
52 = 2w, (1-n), (1=0,1) (10)
1+R
and 2
R” = Reduction of variance of the forecast equation, or the

square of the correlation between the forecast probabil-
ities and the dependent variable over the dependent

sample.

Before we solve (3) simplify some of the above parameters:

u,
Y
Putting (10) into (6) reduces P i=0,1
R
: 1—ui
Putting (8) or (9) into (7) reduces v, = 5 i=0,1
R
1 =
Now, o, + v, = — i=0,1
i i 2
R
; 1
Rewriting (3) as F o
1+ (1-C) 0
C *E

and reducing the term D: Returning to (4)

. 1-C r (ao + vo) i (ul) r (vl)

and (5), D becomes:

. y807%1 (1 gyVO~V1

c T (a, + v T (ag) T vy

10

(11)

(12)

(13)

(14)



From (11) o, - a, =

0 1 R2
"1=%o
and from (12) v, - v, =
0 i 2
R
2
But we also see from (8) that H7Hg = R
Therefore, (15) and (16) become GO - al = -1
vo - vl = 1

From (13) we see that F(aO + vO) = T(al + vl) - I

Now (14) becomes, with (15), (16), and (17):

R Tloy  TOY 4y
C I (o) I (vp) ¥
Next we look at the ratio F(al)
F(ao)
from (11) and (8)
M1 Mo
T(al) =T (fg") = [t 59
R R
Ho
From (11) T(a.) = T(—5)
0 R2

Using the feature of the Gamma function that TI'(1+Z) =
we change (21) to

r(1+

Now from (22), (23), and (9)

M) ¥ ca-rh
F(ao) R2 R2
Next look at the ratio I‘(\Jl)
F(vo)

11

Z I'(z), z2>0

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(21)

(22)

(23)

(24)



From (12) and (8)

1-up l-u -R 1-p
- 1 0 0
PTio.) s {—=) 2 ((—a—— ) &I {-[1+ D.
1 RZ R2 R2
From (12) 1-ii
0
F(vo) =T G'—;E—“)

Using the feature of the Gamma function that

P (-2) = - —Ei%lél ,Z5>0
1—u0
Change 25 to Yelii F( 5 ]
0 R
I‘(—[l- 2])= 1-u
R 0 1
e
R
and using (26) and (27)
F(vl) ) 1
F(vo) l—uo
5 -1
R

Before returning to solve D, (28) can be simplified further:

From (9) T (vl) ) 1 ) R2
r vy 1-ca-rh) | 1-crer” -’
2
o 2
R

(1-C)-(1-C)R>

R2

(1-C) (1-R?)

Returning (24) and (29) to (20) yields:

1 -Y

D =

>

Now reordered the form of (4) using (30), we finally prove

va 2 = ¥ o % QED
1+1-Y Y+1-Y
Y

(25)

(26)

(27)

(28)

(29)

(30)



Proof #5: Show that

-~ ~

- - 2y 5 2 —_—
ui[ui(l—ui)—cl]/al i=0,1 (1)

=
]

@, (1-u) /1y 1=0,1 (2)
Given, from the Beta distribution (see Feller 1966, p. 49) that

iy 8 = i=0,1 (3)
and

o, = > i=0,1 (4)
(ui+vi) (ai+ui+l)

~ ~

From (3) and the estimates u, and o, of n, and G?, respectively, we
= i i i i
satisfy (2) by

® a-(l—U-)
V., zl—,\‘—l—' i=0,1 (5)
* H
i

~ ~

Now from (4) with My and ci replaced by their estimates My and Ui,
respectively,

"y

Oi = T;‘—,\—l‘— i=0,1 (6)
a, + U,
1 1

Therefore (1) is satisfied by using (4) and (6) or

C s e T ° P 2 "
a; = ui[ui(l—ui)—ci]lai i=0,1 (7

2 2 2 .
It is practical to employ o in place of o, and o,, since the latter two
require reference to the raw data and a does not. In fact,

oi = R2(1~R2) c(1-c), (8)

from proof #3 QED

Experimental evidence has shown that using 02 for the individual group
beta distributions or using o~ for the total beta distribution, with ¥
providing the likelihood ratios, performs equally well on the integration
needed to determine P*.
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