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AUTOMATED PREDICTION OF THUNDERSTORMS AND SEVERE LOCAL STORMS
Ronald M. Reap and Donald S. Foster

Techniques Development Laboratory
National Weather Service, NOAA
Silver Spring, Md.

ABSTRACT. Operational probability equations were
developed for predicting general thunderstorm activity
and more localized severe weather such as tornadoes,
large hail, and damaging winds for periods up to

36 hours in advance. The statistical equations were
derived by applying multiple screening regression tech-
niques to predictors forecast by operational numerical
models and to predictands tabulated from manually-
digitized radar data and severe local storm reports.

Generalized forecast equations were developed to give
thunderstorm probabilities for the April to September
convective season. Key predictors in the thunderstorm
equations were the stability and vertical motion fields
below 700 mb and the boundary-layer wind field. The
equations for severe local storms, developed for both
spring and summer, predict the conditional probability
of tornadoes, large hail, or damaging winds, given the
occurrence of a thunderstorm. Predictors selected in
the spring (April-June) equation strongly reflected

the importance of low-level atmospheric circulation and
dynamics to severe storm formation. The probability
forecasts are routinely transmitted on facsimile and
teletypewriter for use as guidance by operational
forecasters.

1. INTRODUCTION

We have developed operational probability equations for predicting general

thunderstorm activity and more localized severe weather such as tornadoes,
large hail, and damaging winds. The statistical equations were derived by
applying multiple screening regression techniques to model predictors arc-
hived on tape and to predictands tabulated from manually-digitized radar

(MDR) data and severe storm reports. The approach used, called '"Model Out-

put Statistics" by Glahn and Lowry (1972), differs from older statistical
techniques in that predictors in the developmental sample are forecast
quantities from operational numerical models. Its advantage is that it us
the skill of dynamical models, taking into account biases in the models.
disadvantage is that new equations must be developed for each new model or
major model change.
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Generalized operator equations were developed to forecast thunderstorm
probabilities for the entire April to September convective season. However,
for severe local storms, we found it desirable to develop separate general-
ized operator equations for the spring (April-June) and summer (July-
September) seasons. In addition, the severe local storms forecasts are in
the form of conditional probabilities contingent on the occurrence of
thunderstorms. The predictand data used in the screening regression anal-
ysis was tabulated for the intervals + 3 hours and + 12 hours centered on
0000 GMT. As a consequence, the operational probability forecasts of
thunderstorms and severe local storms are valid over two similar periods, a
6-hr and a 24-hr period centered on 0000 GMT, that is, for the intervals
21-27 hours and 12-36 hours after 0000 GMT initial time. All but one of the
predictors in the operational probability equations were 24-hr model fore-
casts based on 0000 GMT initial data.

The chief purpose of these automated forecasts is to provide specific
guidance to forecasters at the National Severe Storms Forecast Center
(NSSFC), especially in the preparation of medium-range (12-36 hr) thunder-
storm and severe local storm outlooks. They also provide general guidance
to operational forecasters at the National Meteorological Center (NMC),
field forecast centers, and air terminals. The probability forecasts are
currently prepared once daily on the NOAA computer system and are trans-—
mitted over NWS facsimile and teletypewriter circuits.

2. PREDICTOR/PREDICTAND SAMPLE

The 1976 thunderstorm and severe local storm probability equations were
developed from a two-year (1974-75) predictor/predictand sample. Predictors
were generated by NMC's six-level primitive equation (PE) model (Shuman and
Hovermale, 1968) and the Techniques Development Laboratory's (TDL) three-
dimensional trajectory model (Reap 1972). Table 1 is a partial list of
the basic and derived model predictors and climatic predictors
screened by the regression procedure. Of the 150 predictors tested, most
were 24-hr forecasts based on 0000 GMT initial data with a few 12-, 18-,
and 36-hr forecast fields included. With the exception of one 36-hr pre-
dictor, all predictors in the operational probability equations were 24-hr
model forecasts based on 0000 GMT initial data. '

The predictand sample was based on MDR data, collected from hourly
teletypewriter reports archived on magnetic tape, and on severe storm
reports from NSSFC's archive tapes. The MDR data were tabulated for blocks
approximately 65-70 km on a side; the area covered by these blocks is shown
in figure 1. Both the echo intensity and coverage within each block were
digitized in accordance with a code (table 2) that was originally developed
by Moore and Smith (1972) for use in generating objective numerical precip-
itation guidance. This code also contains additive data indicating the
presence of severe convective cells and line echoes. 1In effect, the MDR
sample provides predictand data of a much higher resolution than those used
in previous screening regression studies on thunderstorms and severe local
storms (Bonner - 1971; Reap 1974). Details of the procedures for editing
and archiving the MDR data are given by Foster and Reap (1973).



Table 1.—-List of basic and derived model predictors and climatic predictors
employed in the screening regression procedure.

Predictor (level, if applicable)

Temperature (surface, 850-, 700-, 500-mb)

Potential temperature (boundary-layer)

Dew point (surface, 850-, 700-mb)

Relative humidity (surface, 850-, 700-mb)

Mean relative humidity (surface to 700 mb)

12-hr net vertical displacement (surface, 850-, 700-mb)

24-hr net vertical displacement (surface, 850-, 700-mb)

U horizontal wind component (boundary-layer, 850-, 700-, 500-mb)
V horizontal wind component (boundary-layer, 850-, 700-, 500-mb)
w vertical wind component (boundary-layer, 650 mb)

Wind direction '(boundary-layer, 500 mb)

Wind speed (boundary-layer, 850-, 500-mb)

Height of constant pressure surface (1000-, 850-, 500-mb)
18-24 hr height change (1000 mb)

Surface pressure

Convective instability (surface to 700 mb)

Convective instability x 12-hr 700-mb net vertical displacement
Trajectory convergence (surface, 850 mb)

Total Totals index

K index

Showalter index

Modified Showalter index

Modified Showalter index + 12-hr net vertical displacement (700 mb)
Temperature advection (850 to 700 mb, 850 mb)

Dew-point advection (850 to 700 mb, 700 mb)

Thunderstorm relative frequency distribution

Moisture divergence (boundary-layer)

Vector wind shear (boundary-layer to 500 mb)

Wind divergence (boundary-layer)

Relative vorticity (boundary-layer)

Geostrophic vorticity (1000-, 500-mb)

Thermal vorticity (1000 to 500 mb)

Vorticity advection (500 mb)

Temperature lapse rate (850 to 500 mb)

Thickness (850 to 500 mb)

Terrain-induced vertical velocity

Gradient of 12-hr net vertical displacement (700 mb)

Sweat index

Wet bulb potential temperature lapse rate (surface to 700 mb)
Height of wet bulb zero

Sine latitude

Cosine latitude

Solar altitude
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Figure 1.--MDR grid region. Data from shaded overwater
blocks were not used in the screening regression pro-
cedure.

The MDR predictand sample consisted of data for 335 days from April 1 to
September 30, for the years 1974 and 1975. Code values of 4 or greater
(Mogil 1974) within the periods + 3 hours and + 12 hours from 0000 GMT
were used to identify thunderstorm occurrences for both the general thunder-
storm equations and the severe local storm equations. As a result, the
6—hr and 24-hr probability forecasts developed from this sample are valid
for the periods 21-27 hours and 12-36 hours, respectively, after 0000 GMT
initial time for each block in the MDR grid region shown in figure 1.

The predictand data for localized severe weather consisted of reports of
tornadoes, surface hail > 1.9 cm in diameter, and wind gusts > 93 km/hr
and/or wind damage. These reports were extracted from archive tapes edited
at NSSFC to eliminate any identifiable sources of error such as redundant,
misplotted, or false reports.

3. THUNDERSTORM PROBABILITY

Generalized forecast equations were developed to give 6-hr and 24-hr
thunderstorm probabilities for the April to September period for the entire
MDR grid region; no attempt was made to stratify the data by geographical
region. The total sample size, or number of comparisons between model
forecasts and MDR data, was 249,909 (761 blocks times 335 days with some
missing data) for the 6-hr thunderstorm probability equation. Frequency of
thunderstorm occurrence, defined by MDR code values of 4 or greater within
the interval + 3 hr of 0000 GMT, was 16.9% for the two spring-summer periods
covered by the sample. The predictors selected by the screening procedure
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Table 2.--Manually Digitized Radar (MDR) code. VIPl, VIP2, etc. are time-averaged
echo reflectivity values obtained from the operational video integrator and
processor unit which is standard in the NWS radar network.

Code No. Coverage in Box Intensity Category Rainfall Rate In/Hr
0
4§ Any VIP1 . Weak < .1
2 < 1/2 of VIP2 Moderate .1 - .5
3 > 1/2 of VIP2
4 < 1/2 of VIP3 Strong 5 -1
5 > 1/2 of VIP3
6 < 1/2 of VIP3 and 4 Very Strong 1-2
7 > 1/2 of VIP3 and 4
8 < 1/2 of VIP3, 4, 5,
and 6 Intense or Extreme > 2
9 > 1/2 of VIP3, 4, 5,
and 6 Intense or Extreme > 2

and their contributions to the 6-hr thunderstorm probabilities are summarized
in table 3. Predictors are listed in order of their selection. The six
predictors shown in table 3 gave a total reduction of variance of 15.0%

(a multiple correlation coefficient of 0.39).

The total sample size for the 24-hr thunderstorm probability equation was
251,674 cases, which represents a slight increase over that found for the
6-hr equation., This difference arises from blocks with data missing for
the 6-hr period, but with valid reports elsewhere during the encompassing
24-hr period. Frequency of thunderstorm occurrence was 28.5% for the 24-hr
period. Table 4 lists predictors for the 24-hr equation. The eight pre-
dictors shown gave a total reduction of variance of 24.5% (a multiple cor-
relation coefficient of 0.49).

As in earlier ‘regression studies (Bonner 1971; Reap 1974), the leading
predictor in both the 6-hr and 24-hr thunderstorm equations was found to be
a truncated form of George's K index (1960):

(850 Temp - 500 Temp) + 850 Dew Pt — (700 Temp - 700 Dew Pt),

where 5 <K <32, Within this range, the relationship between the K index
and thunderstorm frequency is approximately linear. Other predictors
include the terrain pressure forecast by the PE model and the convective
(layer) instability, 0%, given by the lapse rate of equivalent potential
temperature, Op, where,

= GE(700) - [éE(surface) + OE(SSO)] /2



Table 3.--Thunderstorm probability equation for period April 1 to September 30.
Six~hr probabilities are valid within the interval 21-27 hours after 0000
@MT initial time. All predictors are 24-hr model forecasts.

: Equation ’ 9
Predictor Model Coefficient RV (%)
Equation constant —— "-111.8 -
K index (5< K <32) TJ/PE 0.996 12.10
Convective instability (°C) TJ ~0.524 1.22
Terrain pressure (mb) " PE 0.086 0.70
Boundary-layer wind divergence
(10°/sec) PE -4.136 0.37

Boundary-layer wind speed (m/s) PE -0.715 0.39
Cosine of the latitude — 34.81 0.21

Total 14.99

Table 4.--Thunderstorm probability equation for period April 1 to September 30.
24-hr probabilities are valid within the interval 12-36 hours (1200 to 1200
GMT) after 0000 GMT initial time. All predictors are 24-hr model forecasts,
except for the 36-~hr mean relative humidity field.

) Equation
Predictor Model

Coefficient RV (%)
Equation constant = _ =140.9 -
"K index (5< K <32) TJ/PE 1.674 18.91
Modified Showalter index plus
700-mb 12-hr net vertical TJ/PE 0.105 1.79
displacement (°C mb/12 hr)
Terrain pressure (mb) PE 0.114 1.52
Boundary-layer wind divergence
(105/sec) PE -6.344 1 0.72
K index TJ/PE -0.727 0.42
Surface to 400 mb mean relative
humidity (%) PE 0.220 0.53
Boundary-layer "V'" wind component
(m/s) PE -0.593 0.34
Cosine of the latitude — 47.10 0.27
Total 24,50




The second predictor in table 4 combines the modified Showalter index and
the trajectory model 700-mb 12-hr net vertical displacement in an attempt
to delineate regions where unstable layers are superimposed on large-scale
lifting. The modified Showalter index is computed by using an averaged
value of temperature and dew point at the surface and 850 mb in place of
the 850-mb values normally used in computing this index.

4. SEVERE LOCAL STORM CONDITIONAL PROBABILITY

The 6-hr and 24-hr equations for severe local storms predict the
conditional probability of tornadoes, large hail, or damaging winds, given
the occurrence of a thunderstorm (MDR values of 4 or greater). Initially,
severe convective cells, indicated by the MDR additive data, were included
as predictand data in deriving the probability equations. However, in a
study relating MDR data to severe storm reports, Foster and Reap (1975)
found that most radar-observed severe convective cells were not associated
with tornadoes, hail, or strong wind gusts at the surface. This was
especially true along the Gulf Coast and Florida in the summer. Therefore,
we derived the final operational equations by using only severe local storm
reports as predictand data. In addition, the probability equations were
derived separately for the spring and summer seasons because of the marked
decrease in the frequency of severe local storms in summer.

In contrast to the general thunderstorm equations given by tables 3 and 4,
most predictors for the severe local storm equations were in categorized or
binary form. This was done to better capture the highly nonlinear relation-
ships that often exist between model predictors and severe storm events.

A. Spring Equation (April-June)

Predictors selected by the screening procedure and their contributions* to
the spring 6-hr conditional probability forecasts are listed in table 5.
Predictors are listed in order of their selection. Sample size, or the
number of blocks with MDR values of 4 oy greater, was 16,888 cases. Fre-
quency of occurrence of severe local starms was 8.4% in the 1974-75 spring
sample. Total reduction of variance with nine predictors was 8.5% with a
corresponding multiple correlation coefficient of 0.29.

The total sample size for the 24-hr severe local storm probability
equation was 30,897 cases. Frequency of severe storm occurrence was 8.2%
for the 24-hr period. Predictors for the 24-hr equation are listed in

table 6. The 12 predictors shown gave a total reduction of variance
of 6.9% with a multiple correlation coefficient of 0.26.

Interpreting the equations given by tables 5 and 6 in a physical sense,
we see that maximum conditional probabilities for tornadoes, large hail,
and damaging winds generally exist in regions where:

* Binary predictors are created by assigning a value of 1 (or 0) to a predic-
tor if its original value is less than (or equal to or greater than) the
category limits shown in tables 5-8. In the resulting forecast equations,
binary predictors with a value of 1 give the percentage contributions shown in
tables 5-8 and 0 otherwise.



Table 5.--Spring conditional probability equation for tornadoes, 1.9 cm or larger
hail, or wind gusts greater than 93 km/hr and/or wind damage. Six-hr probabilities
are valid for the interval 21-27 hours following 0000 GMT initial time. Limit of
forecast probability is 0 to 27.3% at 30°N and O to 35.4% at 45°N.

Predictor Modei Category Contribution (Z) RV (Z)
Equation constant —— — -7.51 —
1000-mb height PE <70 m 4.00 4,57

850-500 mb temperature

lapse rate . TJ/PE < 29°C -5.71 1.27

Boundary-layer to 500 mh
wind shear ‘ PE < 14 m/s -5.53 0.70
Modified Showalter index TJ/PE < 1° 3.89 0.37
Sine of the latitude —— (continuous) 39.21 x sin lat 0.59
Surface temperature TJ < 23°C -4.35 © 0.35
850-mb temp advection TJ/PE < 3 x 1073°¢/s -3.69 0.23
1000-mb height PE < 30 m 4.54 0.21
700-mb relative humidity TJ < 30% 2.76 0.17
) Total 8.46

Table 6.--Spring conditional probability equation for -tornadoes, 1.9 cm or larger
hail, or wind gusts greater than 93 km/hr and/or wind damage. 24-hr probabilities
are valid for the interval 12-36 hours (1200 to 1200 GMT) following 0000 GMT in-
itial time. Limit of forecast probability is 0 to 26.2% at 30°N and 0 to 33.9% at
45°N,

Predictor Model Category Contribution (%) RV (%)
Equation constant — -— -7.75 ===
1000-mb height PE <70 m 2.46 3.36
850~500 mb temperature
lapse rate TJ/PE . < 29°C -3.13 1.03
500-mb wind speed PE < 12 m/s -2.99 0.48
Modified Showalter Index TJ/PE < 1° - 3.97 0.52
Sine of the latitude —— (continuous) 37.27 x sin lat 0.40
1000-mb height . PE < 30 m 4,84 0.30
Boundary-layer to 500 mb
wind shear PE < 16 m/s -3.70 0.26
Height of zero wet bulb
temperature . TJ < 2600 m -2.95 0.16
Modified Showalter index TJ/PE < =2°C 2,28 0.11
700-mb relative humidity TJ < 30% 1.75 0.10
Surface temperature . TJ < 27°C -1.94 0.08
850-500 mb temperature’
lapse rate TJ/PE < 30°C -3.20 0.08
Total 6.88




(1) the boundary-layer is warm and moist with low surface pressure
and "

(2) the lower troposphere is characterized by positive temperature
advection, unstable lapse rates of temperature and moisture,
significant wind shear, and a strong zonal wind component.

The sine of the latitude represents a climatic contribution. This term
gives a greater probability of severe local storms in the northern portion
of the MDR grid area for a given set of predictors from the numerical
models.

B. Summer Equation (July-September)

Predictors selected for the 6-hr summer probability equation and their
contributions to the conditional probability forecast are listed in table 7.
Sample size was 25,016 cases. Frequency of occurrence of severe local
storms in the 1974-75 summer sample was 2.4% for the 6-hr period, a con-
siderable reduction from that observed in the spring. The ten predictors
in table 7 gave a total reduction of variance of 3.67 with a multiple
correlation coefficient of 0.19.

Total sample size for the 24-hr summer probability equation was 40,120
cases. Frequency of severe storm occurrence was 2.87 for the 24-hr period.
Table 8 lists predictors for the 24-hr forecasts. The twelve predictors
shown gave a total reduction of variance of 3.17 with a multiple correlation
coefficient of 0.18. ’

In keeping with the weak large-scale flow patterns in summer, the
predictors in tables 7 and 8 place more emphasis on the thermodynamic
properties of the atmosphere.

5. OPERATIONAL ASPECTS OF PROBABILITY FORECASTS

Since the beginning of the 1972 severe local storm season, thunderstorm
and severe local storm probabilities have been routinely transmitted to
NSSFC to guide operational forecasters in preparing their convective outlook
charts. The probability forecasts are transmitted once-daily from April
through September on National Weather Service (NWS) facsimile circuits
FOFAX (Slot F040C), NAFAX (Slot N73), and NAMFAX (Slot A1l4N). A sample
facsimile chart is shown in figure 2. Probabilities from the forecast
equations are also available on the Federal Aviation Administration's
request/reply system with headings FXUS50-51 for severe local storms and
FXUS60-61 for general thunderstorms. These messages are in the form of
probability values plotted in the correct geographical location. Figure 3
illustrates a sample FXUS bulletin with appropriate background geography
and MDR grid blocks superimposed. The 6-hr thunderstorm probabilities
shown for the eastern United States were valid for the interval + 3 hr
centered at 0000 GMT on June 18, 1975. The two parts of each FXUS bulletin,
when held side by side, cover the entire MDR grid region. Note that most
of the MDR blocks over water do not contain probability values. These



Table 7.--Summer conditional probability equation for tornadoes, 1.9 cm or larger

hail, or wind gusts greater than 93 km/hr and/or wind damage.

Six~hr

probabilities are valid for the interval 21-27 hours following 0000 GMT

initial time.

17.47% at 45°N.

Limit of forecast probability ig 0 to 13.37% at 30°N and

Predictor Model Category Contribution (%) RV (%)
Equation constant —-— —-— 32.47 e
Cosine of the latitude —_— (continuous) -26.11 x cos lat 1.73
Surface temperature T3 <31¢C -4.66 0.71
Total Totals index TJ/PE <48 -1.50 0.29
Surface temperature TJ <27°C -1.73 0.23
500-mb wind speed PE <12 m/s -1.38 0.19
1000-mb height PE <90 m 1.39 0.14
700-mb temperature TJ <4°cC -3,67 0.11
500-mb temperature PE <-70C 1.17 0.09
500-mb wind speed PE <16 m/s -2.23 0.08
1000-mb height PE <130m 0.85 0.06
. 3.63

Total

Table 8.--Summer conditional probability equation for tornadpes, 1.9 cm or larger
hail, or wind gusts greater than 93 km/hr and/or wind damage. 24-hr
probabilities are valid for the interval 12-36 hours (1200-1200 GMT)

following 0000 CMT initial time.

12.2% at 30°N and 0 to 16.1% at 45°N.

Limit of forecast probability is 0 to

Predictor Model Category Contribution (%) RV (%)
Equation constant —_— —— 28.74 -
Cosine of the latitude —— (continuous) 24,01 x cos lat 1.45
Surface temperature TJ <27°¢ 1.92 0.51
500-mb wind speed PE <16 m/s -3.96 0.30
Total Totals index TJ/PE <46 -0.82 0.29
Surface temperature TJ <31°C -2.74 0.14
Convective instability TJ <-60C 1.50 0.10
1000-mb height PE <90 m 1.22 0.09
500-mb wind speed PE <8 n/s -1.06 0.09
700-mb temperature TJ <4°¢ -2.14 0.05
500-mb temperature PE <=70C 0.86 0.04
1000-mb height PE <130 m 0.72 0.04
Total Totals index TJ/PE <44 -0.68 0.03
Total 3.13

10



e

N73 ' SOLID LINES -MOS 6HR TSTH PROB - PERCENT PER MDR BLOCK

A{\'Nl DASHED -MOS 6HR SVR TSTH COND PRCB - PERCENT/MDR BLOCK L‘I - | = 4.

FO4QC VALID PERIOD + OR -93 HOURS FROM 002 27 MAY 1976

Figure 2.--Computer—-drawn map of thunderstorm probability (solid) and
conditional probability of tornadoes, large hail, or damaging winds
(dashed). The probabilities are valid for each MDR block during the
21-27 hr interval following 0000 GMT initial time, or + 3 hrs from

0000 GMT the next day. Observed tornadoes = v, hail = e, and damaging
winds =m.

were excluded from the developmental sample because thunderstorms occur
mainly at night over water rather than late afternoon near 0000 GMT as is
the case over land.

Clear plastic overlays, with appropriate background geography and MDR
block configuration for the FXUS bulletins, may be used to identify the
location of the probability values and are available upon request from TDL.

6. VERIFICATION OF PROBABILITY FORECASTS FOR 1975

To gain some insight into the general performance of the thunderstorm and
severe local storm probability forecasts, we have tabulated verification
statistics for the 1975 forecast equations. Although the 1975 equations
differ somewhat from the 1976 equations given in tables 3 through 8, we
believe that the statistical results are fairly representative for both
years. Note that only 6-hr probability forecasts were produced in 1975.

There are a number of verification statistics and scores available for
measuring the accuracy of the thunderstorm and severe local storm proba-
bility forecasts. We chose two scores that we believe provide sufficient
information for a comprehensive analysis of the forecasts. One score, F,
may be considered a measure of bias or forecast reliability. The other
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score, P, is one-half the probability score defined by Panofsky and Brier
(1958) and measures the mean squared error of the forecasts. It is a
measure of both the reliability and the resolution of the forecasts.
Resolution means the extent to which the individual probability forecast
approaches the correct values of zero or one.

The F and P scores were computed for individual MDR blocks for each of
10 probability categories, for each MDR block for all categories combined,
and for the whole MDR grid for all categories. Limits of the 10 probability
categories were as follows: 0.00 to 0.09, 0.10 to 0.19, 0.20 to 0.29, ...,
and 0.90 to 0.99. The basic tabulation consisted of the number of thunder-
storm cases or forecasts and the number of severe local storm cases for
each MDR grid block and for each category. Note that the conditional
probability forecasts are verified against thunderstorm cases since they
were developed from a similar sample. The F score is defined as:

N; x Ry) - 04
i Ny

For the thunderstorm equation,

N; = Number of forecasts in category i,
R; = Average probability for N;j forecasts, and
0j = Number of thunderstorms in N; forecasts.

For the severe local storm equation,

Nj = Number of thunderstorm cases in category i,
R; = Average conditional probability for N; thunderstorm cases, and
0i = Number of severe local storm cases in the Nj cases.

For example, if there were 100 thunderstorm cases within the 0.50 to 0.59
conditional probability category with a mean conditional probability of 0.55
and there were 55 severe local storm cases, the F score would be 0% (perfect
reliability) for the severe local storm equation. If there were no severe
storm cases, the F score would be +55% (overforecast). If the average con-
ditional probability in a category was 0% and there were 55 severe local
storm cases, F would be -55% (underforecast). The range of F is from -100%
to +100%, with 0% being a perfect score, i.e., no bias.

The P score as used here is defined as

P =

2| =

N
2
> ®Re-1%
i=1

where R; is the absolute or conditional probability for the ith forecast and
I; is the observation. I; is 1 if a thunderstorm or severe local storm event
was observed and 0 otherwise.
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A statistical summary for the 6-hr thunderstorm probability forecasts is
given in table 9. The results are tabulated for each forecast category
for the entire MDR grid area. The verification includes a few test runms
made in early June followed by a fairly complete set of operational fore-
casts from June 12 to September 30, 1975.

0f the 81,234 forecasts made, 19,706 had thunderstorm occurrences. This
resulted in an average probability of occurrence of 24%. The average
forecast probability was 23% or 18,658 forecasts expected to be accompanied
by thunderstorms. The overall F score was -1% (slightly underforecast) and
the total P score was 0.15. For the whole grid, the thunderstorm probability
forecast equation performed quite well. However, when examining the F score
on a regional basis, underforecasting was found over the southern States.
P scores were also higher for the same area. Table 9 shows that forecasts
in categories between 0.40 and 0.69 would have verified better if they had
been one or two categories higher, especially in the southern States.

Verification statistics for the 6-hr severe local storm conditional prob-
ability forecasts are given in table 10. F scores of +1 for the month of
June and -1 for July through September 1975 indicate good overall forecast
reliability. The average forecast probabilities of 0.08 and 0.02 were very
close to the actual probabilities of occurrence of 0.06 and 0.03. Even more
important was the fact that during June we were able to forecast severe local
storm probabilities as high as 30-39% with good reliability, as shown in table
10, even though the climatological probability for the same period was only
6%. A broad glance indicates that the forecast equations performed satis-
factorily. However, on a day-to-day and block-by-block basis, large fluctu-
ations were observed in the F and P scores indicating the need for improved
resolution in the operational models that generate the predictors. For ex-
ample, the probability forecast shown in figure 2 for May 27, 1976 was. out-
standing in delineating the region where most of the severe local storms were
later observed. In contrast, figures 4, 5, and 6 illustrate a case where im-
proved resolution in the forecasts of low-level temperature, moisture, and
winds would be extremely helpful in isolating the potential convective 'hot
spots". Figure 4 depicts a large trough at 500 mb dominating the central
United States. Associated with this trough is a broad frontal zone extending
from southern Texas to a low-pressure area in Canada (figure 5). The fore-
cast probabilities of severe local storms (figure 6) lie along a similarly
broad band more or less parallel to the front. Yet the actual severe storm
activity, consisting of large hail in southern Texas and one tornado along
the Oklahoma-Texas border, was concentrated in a few active pockets along
this band. To accurately predict the location and intensity of isolated
severe convective activity, we obviously have to predict the small-scale fea-
tures which are important to severe storm formation, e.g., low-level jet
streams, localized zones of intense convergence, moisture gradients associat—
ed with dry lines, dry-air intrusions at mid levels, etc. Current operation-
al models cannot provide this degree of resolution because of the coarse
forecast grids and fairly heavy smoothing employed. We obviously require
high-resolution forecasts of temperature, moisture, and wind such as may be
obtained from an advanced boundary-layer model. We anticipate that forecasts
from a first-generation operational boundary-layer model, under development
at TDL (Shaffer and Long 1975), will become available by late 1977.
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7. SUMMARY AND FUTURE PLANS

Key predictors in the general thunderstorm equation were found to be the
stability and vertical motion fields below 700 mb and the boundary-layer
wind field. As expected, the spring equation for tornadoes, hail, and
wind damage indicates the importance of predictors that reflect large-scale
atmospheric circulation and dynamics, e.g., temperature advection, wind
shear, zonal wind component, etc. In the summer, when the circulation is
weak, the thermodynamic conditions become predominant factors.

The thunderstorm probability forecasts, when verified for the entire MDR
grid for the entire June to September convective season, were generally
quite good. When studied on a regional basis, the probabilities were
somewhat low over the States bordering the Gulf of Mexico where thunder-
storm frequencies are high resulting from sub-synoptic scale processes.

We were also satisfied with the overall verification statistics for the
severe local storm conditional probability forecasts. However, on a
day-to-day and a block-by-block basis, fluctuations from the overall
scores indicate considerable room for improvement in the forecast equations,
reflecting the need for improved resolution in the operational numerical
models that generate the predictors.

In the 1977 probability equations, we plan to introduce an interactive
thunderstorm predictor in which the effect of climatology is modulated by
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the synoptic situation. The role of this predictor will be to simulate the
seasonal and regional variations in thunderstorm occurrence. Such variations
are often related to sub-synoptic scale processes which are not adequately
resolved by large-scale model predictors. Examples of such processes are
land-sea breeze and terrain effects which are very often important to
thunderstorm formation. The interactive predictor will be formed by
combining the large-scale K stability index with thunderstorm relative
frequencies obtained from MDR data. Initial probability estimates will then
be obtained for individual MDR grid blocks by screening regression tech-
niques. These probability estimates will then be included in the final
regression run to develop a generalized equation for the entire MDR grid.

We also plan to develop separate probability equations for tornadoes and
large hail. The geographical distribution of these severe weather events
differs enough to warrant such an investigation.

In addition, we plan to incorporate predictors from NMC's Limited-Area Fine
Mesh (LFM) model (Howcroft 1971) in our developmental sample. Eventually,
we will use detailed forecasts of low-level temperature, moisture, and wind
from a boundary-layer model currently under development at TDL (Shaffer and
Long 1975). Obviously, the use of high-resolution model forecasts will re-
quire a careful formulation of new derived predictors to adequately capture
small-scale features important to severe local storm formation, e.g., low-level
jets, convergence zones, moisture gradients (dry lines), dry-air intrusioms,
etc.

-
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