NCEP’s Role in a National Unified Weather-Climate Modeling Strategy

Chris Bretherton (University of Washington)

Outline

• NRC report on ‘A National Strategy for Advancing Climate Modeling’ – scope, issues, status.
• NCEP CFSv2: A tough act to follow.
• Personal thoughts about NCEP’s role in the future of US unified weather-climate modeling.
A National Strategy for Advancing Climate Modeling
A Study from the National Academy of Sciences
Chris Bretherton, Chair
Edward Dunlea, Study Director

- Overall goals
 - How to improve climate modeling in next 10-20 years
 - Big picture look at whole of US climate modeling
 - Holistic approach

- History
 - Initiated with conversations with Navy, DOE, and Intelligence Community
 - Users of climate models

- Funding
 - DOE, NASA, NSF, NOAA, and Intelligence Community
Committee

- Chris Bretherton (Chair)
 - University of Washington
- V. Balaji
 - Princeton University
- Thomas Delworth
 - NOAA / GFDL
- Robert E. Dickinson
 - University of Texas
- James S. Famiglietti
 - U. of California, Irvine
- James A. Edmonds
 - PNNL (Maryland)
- Inez Fung
 - Univ. of California, Berkeley
- James J. Hack
 - Oak Ridge National Lab
- James W. Hurrell
 - NCAR
- Daniel J. Jacob
 - Harvard University
- James L. Kinter III
 - COLA
- Lai-Yung Ruby Leung
 - PNNL
- Shawn Marshall
 - University of Calgary
- Wieslaw Maslowski
 - Naval Postgraduate School
- Linda Mears
 - NCAR
- Richard B. Rood
 - University of Michigan
- Larry L. Smarr
 - Calit2
Process

- Five meetings throughout 2011.
- April 2011 Community Workshop, NCAR
 - 50 participants, lots of discussion.
- Also Heard from:
 - Sponsoring agencies
 - USGCRP, OSTP/OMB
 - NCAR, GFDL, NCEP, UKMO, ECMWF
 - Climate model users, PCMDI
- March 2012: Report sent out for external review. 13 reviews received late-April 2012; now in response phase.
- Summer 2012: Deliver report

Content of report is confidential until report is released

...but some issues discussed in our meetings were...
1) What do model prediction systems of the future look like?
 - Breadth of earth system modeling
 - Seamless prediction: weather / climate interface, regional/global interface
 - Maintaining an interoperable hierarchy of models
 - Role of regional, global and ‘hybrid’ models
 - Balance between ‘application-driven’ and ‘science-driven’ modeling

2) Evolving computational environment
 - Returning climate modeling to the forefront of supercomputing?
 - Codes must develop extreme parallelism to achieve exascale potential
 - Data explosion – a storage, dissemination, and interpretation challenge
 - Sophisticated, adaptive software engineering
 - Effective collaboration: how to best exploit available human resources

3) User requirements— hardware, software, data analysis, human capital
 - Helping diverse user communities get the most out of model output firehose.
 - Predictability, credibility, and uncertainty quantification.
 - Communicating model uncertainty and how to work with it.
 - Keeping our user communities informed and being responsive to their needs.
 - Role of national operational climate modeling

4) Structural issues
 - Workforce issues in climate model development
 - Fostering collaboration in a multiagency, multi-objective, multi-group environment
 - Value of international model intercomparisons (CMIP, WCRP)
CFSv2: A remarkably skillful climate model … and a tough act to follow

Free-run climatology of CFSv2 beats coupled 2011 GFS in all the above climate metrics, and NCAR model on all but clouds!

In future, try to:
• Bring CFS model improvements back into operational GFS?
• Assess climate impacts of GFS model changes?
Weather forecasts are an excellent testbed for developing the ‘fast physics’ of climate models (as CFSv2 shows).

CFSv2 and GFS are a partly unified modeling effort (new CFS versions rely on GFS development but not vice versa).

A fully unified UKMO-style weather-climate model might facilitate taking GFS and CFS ‘to the next level’.

It could benefit climate-quality data assimilation and U.S. climate research.

It could also entrain both the academic community and collaborations with other U.S. climate modeling centers.

This would require a large national commitment with strong leadership and extensive funding from outside NCEP.

Are NCEP’s operational requirements too tight to allow such an effort?
Useful intermediate stepping stones?

• A systematic project for parallel weather hindcast testing of CFSv2 and other U.S. climate models (using a skillful ‘neutral’ initial condition such as ECMWF) to assess their strengths and weaknesses as weather forecast models.
• A project to develop comprehensive, user-friendly, on-line technical documentation of CFS and GFS.
• Careful analysis of GFS and CFS systematic bias evolution at leads less than one month, and its relation to their climatological biases.
• Evaluation of changes in operational GFS skill as a seasonal climate forecast model before making major model changes.