Porting the CFS V2 model suite to the NASA Ames SGI ICE platform (pleiades)

Larry Marx
Center for Ocean-Land-Atmosphere Studies
25 August 2011
TOPICS

• Timeline
• Program environment considerations
• Learning steps
• Installing model components and dependent libraries
• Installing post-processing program suite
• Ideas for CFS Version 3
• Conclusions
Timeline

- Preliminary code understanding and port to NCAR Bluefire running LSF: one month
- Installation of model libraries, component and support executables, debugging and testing: three months
- Installation of post-processing executable suite, debugging and testing: three months
Program environment considerations

- Key considerations:
 - Native big vs. little endian “byte gender”
 - Software availability
 - Fortran and C compiler: which vendor, which version?
 - Which Message Passing Interface (MPI) version works best with existing hardware and selected compilers
 - Other available software
 - NetCDF compatible with selected compilers and MPI
 - NetCDF operators to assist in manipulating and processing ocean model data
 - Library packages containing LAPACK and BLAS routines
Program environment considerations (cont.)

- Key considerations (cont.)
 - Batch environment
 - Local settings for MPI, working directories, etc.
 - Time, memory and processor limits
 - Dependencies with specific version of the operating system
 - Queues for testing and debugging

- Other considerations
 - Debug and performance tools
 - System support
Learning Steps

- Detailed understanding of model run scripts
 - Several thousand lines spanning many script files (up to 6 or 7 levels)
 - Can this be simplified?
 - Change scripts for local environment and batch system
- Determining which executables need to be built to prepare data in-stream and actually run the coupled model system.
- How can CFS v2 be changed to become a community model?
Installing model components and dependent libraries

- Build libraries for atmosphere model and related executables
- Build and test simple executables
- Build and test atmosphere model
- Build coupler and ocean model
- Test coupled system

➡ Problems:
 - Many versions of the same library
 - Some library versions lack big to little-endian conversion: merge required. Some outside NCEP versions needed.
 - Non-standard Fortran code and MPI usage
 - Ocean model (as modified) cannot run stand alone
Installing model components and dependent libraries (cont)

- Problems: (cont.)
 - Coupled system fails early in random locations and times in the ocean model. Not traceable via print statements. Solution: add more processors to the ocean model. Likely cause: lack of memory.
 - Some additional bugs uncovered while tracking down this problem

- Result:
 - Model completes one month in 75 minutes using 144 cores (vs 105 minutes for IBM running 128 cores)
Installing post-processing suite

- Similar steps to model installation with:
 - Additional libraries, including a full build of WRF
 - Why?
 - Many more executables needed, some not selected for installation by COLA due to lack of need.
 - Switch parallelization strategy from CPU based scaling to I/O based scaling.

- Addition of site specific data archival

- Post-processing and data archival usually completes in under 30 min. using a single 8-core node
Installation of post-processing suite (cont)

- Problem: due to I/O load and many sub-steps, a high probability of failure exists: at least one month per year can be expected to fail.
- Solution: add more robust features to run script for recovery. Develop complicated recipe for typical failure recovery procedures (very messy).
- Are modern high performance disk systems unable to work with such a high I/O load? Can things be simplified?
Ideas for CFS Version 3

- Develop and test model components on many platforms and compilers at the same time
- Allow each model component to be tested stand alone
- Allow parts of each model to be switched on or off at execution time to aid in debugging and validation
- Provide workable low resolution data sets for testing
- Provide adequate documentation:
 - Scientific
 - Model installation
 - Model use
 - Technical, e.g. parallelization strategies and configuration
Ideas for CFS Version 3 (cont)

- Consider NetCDF (version 4 preferable) as an internal data standard. This allows better I/O performance, better scalability, use of more available tools including those developed at other centers. Distributed data can be converted to Grib2 with more complete meta-data.
Conclusions

- Porting CFS V2 to a new platform is a difficult labor intensive task.
- Substantial revisions are needed to the full NCEP software infrastructure in order to improve the portability and utility to the outside community.
- These changes can result in a more sustainable software environment and provide a larger pool of well qualified new staff members for NCEP.