The NOAA Environmental Modeling System (NEMS)

William. M. Lapenta
Acting Director
Environmental Modeling Center

NOAA/NWS/NCEP
The EMC Mission.....

In response to operational requirements:

- **Develop and Enhance** numerical guidance
 - Improve NCEP’s numerical forecast model systems via:
 - Scientific upgrades
 - Optimization
 - Additional observations

- **Transition** operational numerical forecast models from research to operations
 - Transform & integrate
 - Code
 - Algorithms
 - Techniques
 - Manages and executes transition process including technical and system performance review before implementation

- **Maintain** operational model suite
 - The scientific correctness and integrity of operational forecast modeling systems
 - Modify current operational system to adapt to ever-present external changes
NWS Seamless Suite of Forecast Products Spanning Weather and Climate

NCEP Model Perspective

Outlook
Guidance
Threats
Assessments
Forecasts
Watches
Warnings & Alert Coordination

Forecast Lead Time

Minutes
Hours
Days
1 Week
2 Week
Months
Seasons
Years

Forecast Uncertainty

Benefits

Life & Property
Aviation
Maritime
Space Operations
Fire Weather
Emergency Management
Commerce
Energy Planning
Hydropower
Reservoir Control
Agriculture
Recreation
Ecosystem
Health
Environment

- Climate Forecast System
- North American Ensemble Forecast System
- Global Ensemble Forecast System
- Global Forecast System
- Short-Range Ensemble Forecast
- North American Mesoscale
- Rapid Update Cycle for Aviation
- Dispersion Models for DHS
- Real Time Ocean Forecast System
- Waves
- Hurricane WRF & GFDL
- Space Weather
- Tsunami
Linkage of Model Systems Within Production Suite

Global Data Assimilation

CLIMATE
CFS
GFS + MOM3/4

Global Forecast System

North American Mesoscale
NMM

Hurricane
GFDL
HWRF (NMM)

Coupled

Oceans
HYCOM
WaveWatch III

Dispersion, Ash, Smoke & Dust
ARL’s HYSPLIT

Severe Weather
NMM + ARW

Air Quality
NAM + EPA/ARL’s CMAQ

North American Ensemble Forecast System
GFS + Canadian Global +…

Regional Data Assimilation

Short-Range Ensemble Forecast
NMM + ARW + ETA + RSM

Very Short Range Ensemble Forecasts
Time-Lagged RUC+NAM

Rapid Update for Aviation
GSD’s RUC

~3.5B Obs / Day
'Mostly' Satellite + Radar

GFS + Canadian Global +…
NOAA Environmental Modeling System

- A shared, portable, high performance software superstructure and infrastructure

- For use in operational prediction models at National Centers for Environmental Prediction (NCEP)

- National Unified Operational Prediction Capability (NUOPC) with Navy and Air Force

- Eventual support to community through Developmental Test Center (DTC)

- http://www.emc.ncep.noaa.gov/NEMS/
Motivation for NEMS

- Develop a common superstructure for all NCEP models
- Modularize large pieces of the models with ESMF components and interfaces
- Divide atmospheric models down into Dynamics and Physics components but no further
- Take history file I/O outside the science parts and into a common Write component
- Keep science code and parallelization code in the respective models the same as before
<table>
<thead>
<tr>
<th>Name</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom Black</td>
<td>NAM</td>
</tr>
<tr>
<td>Dusan Jovic</td>
<td></td>
</tr>
<tr>
<td>Jim Abeles</td>
<td></td>
</tr>
<tr>
<td>S Moorthi</td>
<td>GFS</td>
</tr>
<tr>
<td>Henry Juang</td>
<td></td>
</tr>
<tr>
<td>Jesse Meng</td>
<td>Land</td>
</tr>
<tr>
<td>Jim Geiger</td>
<td></td>
</tr>
<tr>
<td>Sarah Lu</td>
<td>GOCART</td>
</tr>
<tr>
<td>Arlindo da Silva</td>
<td></td>
</tr>
<tr>
<td>Tom Henderson</td>
<td>FIM</td>
</tr>
<tr>
<td>Jim Rosinski</td>
<td></td>
</tr>
<tr>
<td>Eugene Mirvis</td>
<td>DTC</td>
</tr>
</tbody>
</table>
Below the dashed line the source codes are organized by the model developers.
Operational Implementation Q3FY11

- 12 km NAM will still run to 84 hr
- Fixed domain nests run to 60 hr
 - 4 km CONUS
 - 6 km Alaska
 - 3 km HI & PR
- Single locatable 1.33 km (CONUS) or 1.5 km (Alaska) nest to 36 hr
- Nests
 - Static, 1-way
 - Boundaries from parent every timestep
 - Nest is “grid-associated” with parent (same orientation w.r.t. earth)
 - Moving nests and 2-way interaction under development
- Dynamics, physics and chemistry run on the same grid in the same decomposition
- GOCART does not own aerosol tracers (i.e., do not allocate aerosol tracer fields)
- **PHY2CHEM coupler component** transfers/converts data from physics export state to GOCART import state
 - Convert units (e.g., precip rate, surface roughness)
 - Calculations (e.g., soil wetness, tropopause pressure, relative humidity, air density, geopotential height)
 - Flip the vertical index for 3D fields from bottom-up to top-down
- **CHEM2PHY coupler component** transfers data from GOCART export state to physics export state
 - Flip vertical index back to bottom-up
 - Update 2d aerosol diagnostic fields
NEMS Delivery Plans

• 2011
 – GFS
 – GEFS
 – Postprocessor
 – FIM
 – Multimodel ensemble
 – GRIB2 output

• 2012+
 – NMM nested in GFS
 – Moving nests
 – Coupled ocean atmosphere
 – Tiled land model
 – netCDF output
 – ARW
Questions Welcome

For the past several years, a common modeling framework called the NOAA Environmental Modeling System (NEMS) has been in development to...
NWS Seamless Suite of Forecast Products Spanning Weather and Climate

NCEP Model Perspective

- Forecast Lead Time
 - Outlook
 - Guidance
 - Threats
 - Assessments
 - Forecasts
 - Watches
 - Warnings & Alert Coordination

- Forecast Uncertainty
 - Years
 - Seasons
 - Months
 - 2 Week
 - 1 Week
 - Days
 - Hours
 - Minutes

Benefits

- **Climate Forecast System**
 - North American Ensemble Forecast System
 - North American Mesoscale
 - Rapid Update Cycle for Aviation
 - Dispersion Models for DHS
 - Global Ensemble Forecast System
 - Global Forecast System
 - Short-Range Ensemble Forecast
 - North American Mesoscale

- **Real Time Ocean Forecast System**
 - Waves
 - Hurricane WRF & GFDL

- **Space Weather**
 - Tsunami
Production Suite on Supercomputer

January 2010

Development Work

Fence

High Water Mark

Time of the day (utc)

Number of Nodes
Production Suite on Supercomputer

December 2010

Capacity Change:
50% increase in production
80% decrease in development
Mid Q3 FY11
Includes: GEFS Prod & Para, SREF Prod & Para, 37 nodes for HRW/Hurricanes
Comparison of the NCEP and ECMWF Production Suites from a Computational Perspective

CPU Utilization for 24 Hour Cycle of Production Suite on IBM P6

ECMWF: 2 cycles/day; NCEP 4 cycles/day
NCEP: note complexity of production suite (many colors)
ECMWF: fills the “valleys” in production; NCEP developing capability
Comparison of the NCEP and ECMWF Production Suites from a Computational Perspective

CPU Utilization for 24 Hour Cycle of Production Suite on IBM P6

With compute capacity scaled......

ECMWF: High water mark is ~210 nodes (EPS)
NCEP: maximum available for production ~132 nodes
NCEP: High water mark is ~ 110 nodes
Comparison of the NCEP and ECMWF Production Suites from a Computational Perspective

CPU Utilization for 24 Hour Cycle of Production Suite on IBM P6

ECMWF to a IBM P7 in late FY11

ECMWF: High water mark is ~210 nodes (EPS)
NCEP: maximum available for production ~132 nodes
NCEP: High water mark is ~110 nodes
NCEP Aggressively Porting Codes to Other Compute Centers

• Current Porting Activities:
 - HEVDAS development in Boulder
 - NASA—ARC, GSFC (JCSDA), projects
 - Benchmarks for computer acquisition
 - In discussion with NSF

• Coming Attractions:
 - NOAA Climate Computing at ORNL (GAEA)
 - NOAA R&D at Fairmont WV—First drop early FY12
 - Upgrade of Operational Compute in FY14

Schedule for NOAA Computing at ORNL CRAY XT6 (GAEA)

<table>
<thead>
<tr>
<th>Milestone Date</th>
<th>System Configuration/Milestone</th>
<th>CPU Cores</th>
<th>Tflops</th>
<th>Memory Per Core (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>October ’10</td>
<td>CMRS.1 Available to Users</td>
<td>~31,000</td>
<td>260</td>
<td>~2.67</td>
</tr>
<tr>
<td>October ’11</td>
<td>CMRS.2 Available to Users</td>
<td>~78,000</td>
<td>720</td>
<td>2.0</td>
</tr>
<tr>
<td>Oct ’11 – Feb ’12</td>
<td>CMRS.1 + CMRS.2</td>
<td>~109,000</td>
<td>980</td>
<td>2.0</td>
</tr>
<tr>
<td>February ’12</td>
<td>CMRS.1 Upgrade</td>
<td>~41,000</td>
<td>386</td>
<td>2.0</td>
</tr>
<tr>
<td>Feb’12 – Sep’14</td>
<td>Final CMRS Configuration</td>
<td>119,000</td>
<td>1,106</td>
<td>2.0</td>
</tr>
</tbody>
</table>