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PREFACE 

It is with great pleasure that the Climate Prediction Center (CPC) and the Office of Science and 
Technology Integration (STI) offer you this synthesis of the 42nd Climate Diagnostics and Prediction 
Workshop (CDPW).  The CDPW remains a must attend workshop for the climate monitoring and 
prediction community.  As is clearly evident in this digest, considerable progress is being made both 
in our ability to monitor and predict climate.  The purpose of this digest is to ensure that climate 
research advances are shared with the broader community and also transitioned into operations.  This 
is especially important as NOAA works to enhance climate services both across the agency and with 
external partners.  We hope you find this digest to be useful and stimulating.  And please drop me a 
note if you have suggestions to improve the digest. 

I would like to thank Dr. Jiayu Zhou of the Office of Science and Technology Integration, for 
developing the digest concept and seeing it through to completion.  This partnership between STI 
and CPC is an essential element of NOAA climate services. 

 

Director, Climate Prediction Center 
National Centers for Environmental Prediction 
NOAA’s National Weather Service  
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OVERVIEW 

NOAA's 43rd Climate Diagnostics and Prediction Workshop was held in Santa Barbara, California on 23-
25 October 2018. The workshop was hosted by the Earth Research Institute and Department of Geography at 
the University of California Santa Barbara and co-sponsored by the Climate Prediction Center (CPC) of the 
National Centers for Environmental Prediction (NCEP) and the Climate Services Branch (CSB) of the 
National Weather Service (NWS). 

The workshop focused on five major themes, with an emphasis on climate prediction, monitoring, 
attribution, diagnostics, and service delivery related to: 

1. Improved understanding of the coupled atmosphere-ocean climate system through dynamical and 
statistical models and methods, forecaster practices and protocols, reanalysis data and model 
improvement, and scientific concepts; 

2. Prospects for improved understanding, prediction, and simulation of intra-seasonal, seasonal, and 
inter-annual climate variability, including the extratropical annular modes, stratosphere/troposphere 
coupling, tropical-extratropical interactions, land-surface forcing, atmospheric river events and 
drought/precipitation events etc.; 

3. Climate variability and prediction in relation to the hydrologic cycle and in particular Western water 
resources.;  

4. Observation, prediction and attribution of recent high impact weather and climate events, and 
implications for extreme precipitation and temperatures, heat/cold waves, droughts and wildfires; 

5. Improving climate information delivery for impact-based decision support services through the 
application of new technologies, including GIS, statistical tools, and software development practices. 

The workshop featured daytime oral presentations, invited speakers, and discussions with a poster session 
event in one evening. 

This Digest is a collection of extended summaries of the presentations contributed by participants. The 
workshop is continuing to grow and expected to provide a stimulus for further improvements in climate 
monitoring, diagnostics, prediction, applications and services. 
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A Hybrid Dynamic-Statistical Approach to Link Predictive Understanding to 
Improve Seasonal Prediction of Rainfall Anomalies at the Regional Scale 

Rong Fu1, Amir Erfanian1, Nelun Fernando2, Sudip Chakraborty1, and Bing Pu3 
1Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles 

 2Texas Water Development Board 
3Department of Geography and Atmospheric Science, University of Kansas 

1.  Introduction 

Seasonal prediction of summer rainfall anomalies over the United State (US) Great Plains (GP) is central 
for drought early warning and society preparedness.  Yet, current dynamic models’ predictions have failed to 
predict recent extreme droughts in 2011 and 2012 and shown virtually no skills for seasonal prediction of the 
summer rainfall anomalies (e.g. Quan et al. 2012; Hoerling et al. 2014).  In addition, whether summer rainfall 
anomalies, especially droughts, are intrinsically predictable without oceanic forcing, if so, what are the 
underlying physical mechanisms, are still debatable. Namias (1982) have observed a persistent circulation 
anomaly from March to June for 1980 and 1988 summer droughts.  He suggested that such persistence can 
provide reasonably good seasonal predictability. Fernando et al. (2016) have shown that 13 out of 18 severe-
to-extreme summer droughts over the US southern GP since 1895 were linked to dry spring, only 3 summer 
droughts occurred after wet springs. There is a significant correlation between soil moisture anomalies and the 
500 hPa geopotential height anomalies 2-4 weeks later that is stronger than the autocorrelation of the 500 hPa 
geopotential height anomalies. Thus, the observed drought persistence is likely due to land surface feedbacks, 
as suggested by previous studies (e.g. Carson and Sangster 1981; Dirmeyer 1994; Myoung and Nielsen-
Gammon 2010; Oglesby and Erickson 1989). However, soil moisture feedbacks in the current dynamic models 
can only sustain drought memory for about a month. Why soil moisture memory in these models is so short 
lived compared to that appears in observation is not clear.  In addition, the apparent drought memory can be a 
result of a sequence of random weather events induced by stationary Rossby waves (e.g.  Hoerling et al. 2014, 
Schubert et al. 2011). Whether soil moisture memory plays a significant role in sustaining the dry anomalies 
between these random dry spells is not clear.  Furthermore, soil moisture anomalies can lead to Rossby wave 
like large-scale circulation anomalies (e.g. van den Dool et al. 2003; Koster et al. 2014). Our research is 
motivated by these outstanding questions, focusing on the role of land-atmospheric coupling processes in 
determining the observed spring to summer drought persistence, its implication for seasonal predictability and 
potential causes of the inadequate representation of the spring to summer drought memory.  
2.  Data and model products 

We have used the monthly precipitation of Precipitation Reconstruction over Land (Chen et al. 2002; 
hereafter PRECL) from National Oceanic and Atmospheric Admiration (NOAA) from 1948 to present at 1° by 
1° resolution, the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis 
(ERA-Interim) (Dee et al. 2011) for the moisture budget analysis (Erfanian and Fu 2019) and the radiosonde 
profiles provided by the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) at its 
southern GP site. In addition, we have used the Climate Forecasting System Version 2 (CFSv2) real time 
forecasts and the CFS reanalysis (CFSR) products to train a Canonical Correlation Analysis (CCA) based 
statistical model provided by Climate Predictability Tool (CPT) of the International Research Institute for 
Climate and Society at Columbia University.  The predictors of this model are the anomalous large-scale 
atmospheric circulation (500 hPa geopotential height), convective inhibition energy (CIN) and soil moisture 
anomalies in April.  The predictant is the rainfall anomalies during May-July. 
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3.  Highlight of the results 

What process initiates the summer 
droughts over the US GP? Figure 1 
suggests a connection between rainfall 
deficit over the southwestern (SW) US in 
spring (March-May) and rainfall deficit 
over the US GP in summer (June-August), 
through anomalous zonal advection of drier 
air.  In particular, Fig. 1a shows a 
significant positive correlation between 
rainfall anomalies over SW US and the 
zonal moisture advection anomalies into 
the GP during March-May. The dry 
anomalies over the SW US in spring is 
often induced by La Niñas (e.g. Leathers et 
al. 1991)). Figure 1b shows a significant 
positive correlation between the zonal 
moisture advection anomalies into the GP 
in spring and the rainfall anomalies over the 
GP in summer. Figure 1c shows persistent 
dry zonal advection anomalies to the GP 
during 2012 in the lower troposphere (900 
– 600 hPa) started in March, and intensified 
in May-June.  This persistence is in contrast 
to the zonal moisture advection in the 
middle and upper troposphere, which 
changed between dry and wet anomalies, 
presumably influenced by random large-
scale circulation anomalies associated with 
the Rossby waves.  Thus, the persistent dry 
advection to the GP due to rainfall deficits 
over the SW US from late winter to early 
summer plays a significant role in initiating 
the summer rainfall deficit over the US GP, 
as illustrated schematically in Fig. 1d.  This 
result has been reported as part of the publication (Erfanian and Fu 2019).  

What process intensify the summer droughts over the US GP?  In particular, whether the dry anomalies are 
intensified by a bottom-up land-atmospheric interaction, or by a top-down Rossby wave induced atmospheric 
circulation anomalies?  Figure 2 shows the evolution of the dry atmospheric layers associated with the 
intensification of the 2011 and 2012 droughts, compared to that of 2013, a non-drought year, based on the 
radiosonde profiles provided by the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) 
at its Southern GP site.  As one can see, a drier relative humidity layer started in the atmospheric boundary layer 
and the lower troposphere (below 3 km in height) in April of 2011, and 2012 (Fig. 2a).  The drier layer deepened 
and reached mid-troposphere (surface to 7 km height) in May (Fig. 2b), and then further deepened and reached 
to the upper troposphere (surface to 13 km height) in June (Fig. 2c) and July (Fig. 2d) of 2011 and 2012, 
respectively.  Such a gradual deepening of the drier layer from the lower troposphere to the mid-troposphere 
and then to the upper troposphere suggest that a drier air advection from the US SW in spring reduces shallow 
convection and increasing land surface dryness, which reduces moisture transport to the mid-troposphere and 
suppresses convective congests and deep convection (e.g. Holloway and Neelin 2009; Zhang and Klein 2010). 
The latter reduces moisture in the middle and upper troposphere.  Fig. 2 suggests that the intensification of the 
2011 and 2012 GP droughts is primary contributed by a bottom-up positive land-atmospheric feedbacks. 

Fig. 1  a) and b) Single point correlation maps between the 
standardized time series (1979-2018) of the March-May zonal 
moisture advection at 700 mb averaged over the GP (shown by 
the black box) with the standardized anomalies of precipitation 
in (a) the March-May; (b) in June-August.  The correlation 
coefficients greater than 0.3 and 0.4 are statistically significant 
at the 90% and 98% confidence level, respectively. c) The 
seasonal evolution of the standardized mean zonal moisture 
advection anomalies induced by the anomalous moisture 
gradient as a function of the pressure (hPa) for the 2012 GP 
drought.  d) Schematic illustration of the mechanism that initiates 
the summer drought over the US GP. 
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Could the above discussed 
mechanisms enable us to improve seasonal 
prediction of the US GP summer rainfall 
anomalies? To answer this question, in Fig. 
3 we compare the prediction skills of our 
CCA based statistical model (Figs. 3a-3c) 
with the skills of the North American 
Multi-model Ensemble (NMME) seasonal 
predictions (including all the ensemble 
members of the seven models, Figs. 3d-3f) 
for the southern GP, both are initialized in 
April. The statistical prediction shows 
overall higher prediction skills than those 
of the NMME ensemble predictions, as 
measured by the Spearman’s correlation 
(Figs. 3a, 3d), the Receiving Operating 
Characteristic (ROC, Figs. 3b, 3e) and 
Two-Alternative Forced Choice (2AFC, 
Figs. 3c, 3f), especially over Texas, the 
central area of the southern GP. The 
statistical prediction shows less skills than 
the NMME predictions near the western 
margin of the domain though.  In addition, 
this statistical model can be used to 
improve NMME extended seasonal 
prediction of rainfall anomalies during 
May-July through a hybrid dynamic-
statistical approach. This hybrid system 
uses NMME ensemble predictions for 
April as the predictors of the statistical 
prediction for the rainfall anomalies in 
May-July. Using the NMME ensemble 
predictions initialized in January, February 
and March, respectively, this hybrid 
dynamic-statistical prediction system can 
provide extended seasonal prediction with 
lead-time up to 4-6 months, with the 
prediction skills higher than those of the 
NMME prediction of rainfall anomalies 
initialized in April (not shown here due to 
page space limit). This result further 
suggests the importance of the adequate 
representation of mechanisms that initiate 
and intensify the summer droughts over the 
US GP, as suggested by figures 1 and 2. 
The aforementioned statistical and the 
hybrid dynamic-statistical prediction 
systems have been used as an important 
climate indicator by the Texas Water 
Development Board (TWDB) in the 
drought briefing newsletter and at their Water For Texas website since 2015 to support water management 
decisions (http://waterdatafortexas.org/drought/drought-forecast).  

Fig. 2  Monthly mean relative humidity profiles derived from the 
radiosonde profiles provided by the DOE ARM program at its 
Southern GP site for a) April, b) May, c) June, and d) July for 
2011 (brown curves), 2012 (orange curves) and 2013 (blue 
curves), respectively.  The shades represent the standard error. 

 

Fig. 3  Maps of the statistical seasonal prediction skills (a-c), 
compared to those of the NMME multi-model ensemble seasonal 
predictions for May-July rainfall anomalies initialized in April. 
The prediction skills are measured by the Spearman’s correlation 
(a, d), ROC Area (b, e), and 2AFC (c, f), respectively.  The 
period of evaluation is 1982-2010 using the 3-point cross-
validation (Barnston et al., 1992). 
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4.  Conclusions and Discussion 

Our observational analysis supported by the NOAA MAPP program has shown that the reduced westerly 
moisture transport in the lower troposphere, due to dryness over US SW and the positive feedbacks between 
surface dryness and large-scale circulation, especially through the coupling between land surface, shallow 
clouds, deep convection, play important roles in initiating and intensify summer droughts over the US GP. 
These mechanisms can be used to improve predictability of the summer rainfall anomalies over the US GP, as 
shown by improved prediction skills of a statistical prediction model based on these mechanisms, over those of 
the ensemble dynamic seasonal predictions by the NMME. Our hybrid dynamic-statistical seasonal prediction 
system has shown skills to improve summer rainfall predictions over the US GP using NMME seasonal 
predictions of the large-scale atmospheric circulation, CIN and soil moisture anomalies in April as predictors 
for the statistical prediction.  Thus, this approach can provide a value-added product of NMME to support 
NOAA’s mission of improving seasonal prediction of regional rainfall over the US to support societal drought 
preparedness. 
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Mechanisms for the Formation of Super El Niños  
Tim Li and Lin Chen 

Department of Atmospheric Sciences, University of Hawaii at Manoa, HI 

EXTENDED SUMMARY 

 Current operational models have difficulty in predicting the intensity of El Niños. To improve the El 
Niño forecast skill, it is critical to understand statistically significant precursory signals between regular and 
super El Niños. With the use of observed sea surface temperature (SST) and rainfall data and oceanic and 
atmospheric reanalysis datasets, El Niño events during 1958-2008 were separated into two groups, a super El 
Niño group (with Niño 3.4 index being greater than 2.5 standard deviation, hereafter S-group) and a regular 
El Niño group (with Niño 3.4 index being less than 2.0 standard deviation, hereafter R-group) (Chen et al. 
2016). A composite analysis shows that during the El Niño onset phase (Apr-May) when the amplitude of the 

Fig. 1  Evolution of composite sea surface height anomaly (unit: m) for JJ[−1], AS[−1], ON[−1], D[−1]J[0], FM[0] 
and AM[0], derived from (a) S-group, (b) R-group and (c) the difference between S-group and R-group. The 
stippling in (c) indicates that the difference exceeds a 95% confidence level using a t-test. The ocean 
reanalysis dataset SODA was used.  (From Chen et al. 2016) 
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eastern Pacific SST anomaly (SSTA) is still small in both the groups, a significantly larger positive SSTA 
tendency appears in S-group than in R-group. A mixed-layer heat budget analysis was further conducted, and 
the result indicated that the SSTA tendency difference arises primarily from the difference in anomalous 
advection of mean temperature by zonal current anomaly. The major factor controlling the zonal current 
anomaly is geostrophic current associated with oceanic thermocline depth anomaly (D').  

To understand the cause of the D' difference during the onset phase, we investigated the evolution of D' 
from the pre-onset stage to the onset phase. Figure 1 shows the evolution of D' from June-July of the 
preceding year (denoted as year [-1]) to April-May of El Niño developing year (denoted as year [0]) in the S-
group and R-group, as well as their difference (S minus R). A similar buildup of positive D' (which represents 
the upper ocean heat content anomaly) appeared in the western equatorial Pacific in both the S- and R- group 
(Fig. 1a–b). However, the signal of D' was much stronger in the S-group. Most important difference lies in the 
off-equatorial region from JJ[-1] to ON[-1]. A significantly larger positive D' anomaly appeared over the off-
equatorial (10°N-20°N and 10°S-20°S) western Pacific region in S-group than in R-group (Fig. 1c).  As the  
significantly different D' signals propagated westward as Rossby waves and were reflected in the western 
boundary, they contributed to distinctive differences in the magnitude of D' at the equator in FM[0] and 
AM[0], with a much larger positive D' in S-group than in R-group. Thus, the accumulation of deepened 
thermocline depth anomaly in the off-equatorial western Pacific in preceding months (JJAM[−1]) holds a key 
for the subsequent differences in the thermocline depth, zonal current and vertical velocity anomalies in later 
months (i.e., FM[0] and AM[0]). The difference in D' was further caused by the difference in anomalous wind 
stress curl patterns in JJAS[-1] in the western Pacific, which were regulated by anomalous SST and 
precipitation fields over the Maritime Continent and western Pacific. 

While a clear positive D' signal was seen in western Pacific during the onset phase of super El Niños in 
1982 and 1997, such a precursory signal was not presented in the 2015 El Niño case (Chen et al. 2017). 
Figure 2 compares the evolutions of the Niño3 SSTA for 2015 El Niño (hereafter 2015EN) and traditional 
super El Niño (defined as 
ensemble average of 1982 
and 1997 events, hereafter 
TR-super EN). Two 
marked differences are 
worth noting.  Firstly, in 
contrast to TR-super EN 
that started from a cold 
episode in the preceding 
year, 2015EN was 
preceded by a weak 
warming event peaked in 
November 2014. In the 
preceding winter 
(November to ensuing 
February, i.e., the pre-
onset phase), the TR-
super EN shows a 
warming tendency but 
2015EN shows a cooling 
tendency. Secondly, in 
2015EN a marked 
turnabout of the SSTA 
tendency (from negative 
to positive) happened 
around February 2015. 

Fig. 2  Time evolution of Niño3 SSTA. Purple line indicates the 2015 El Niño, red 
line indicates the composite of traditional super El Niño events (i.e., 1982 and 
1997 events), and the blue line indicates the composite of regular El Niño events 
during 1980-2015 (including 1986/87, 1987/88, 1991/92, 1994/95, 2002/03, 
2004/05, 2006/07 and 2009/10 El Niños). The light blue shading indicates the 
inter-case spread, estimated with the inter-case standard deviation of the regular 
El Niño events.  (From Chen et al. 2017) 
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A mixed layer heat budget 
analysis indicated that the turnabout 
of the SSTA tendency in February 
2015 was caused by the change of 
anomalous zonal advection 
associated with sudden built-up of 
positive D' over equatorial central 
Pacific. A further examination 
showed that the sudden increase of 
D' resulted from exceptionally strong 
westerly wind events (WWEs) in 
early 2015. An accumulated WWE 
index was introduced by Chen et al. 
(2017), and the result showed that 
this index attained the largest value 
in the past 37 years (i.e., 1979-2015). 
Idealized ocean modeling 
experiments were further carried out 
to illustrate the important role of the 
WWEs in setting up the positive D' 
in early 2015.  

In summary, the occurrence of a series of exceptionally strong WWEs in early 2015 is the major driver to 
flare up a positive D' center over equatorial Pacific and cause the formation of the 2015 super El Niño. The 
unique developing characteristic breaks our traditional view of El Niño formation, which emphasized the off-
equatorial thermocline recharging process. The result suggests that two routes may lead to super El Niño 
formation (Fig. 3). The first route is the occurrence of exceptionally strong positive precursory D' signal in 
off-equatorial western Pacific. The 1997 and 1982 events are such examples. The second route is the 
occurrence of exceptionally strong WWEs. The formation of 2015EN is such an example – while a precursory 
negative off-equatorial D’ signal favored the occurrence of thermocline shoaling at the equator in subsequent 
months, such a discharging process was interrupted by the consecutive extremely strong WWEs. Thus the 
2015 episode is a shining example showing how important WWEs are. They can turn around slow coupled 
dynamics and cause the generation of a super El Niño. 

The works above have been published in referred journals (see references below).  

Reference 

Chen, L., T. Li, B. Wang, and L. Wang, 2017: Formation mechanism for 2015/16 super El Niño. Scientific 
Reports, 7, doi:10.1038/s41598-017-02926-3. 

Chen, L., T. Li, Swadhin K. Behera, and Takeshi Doi, 2016: Distinctive precursor air-sea signals between 
regular and super El Niños.  Adv. Atmos. Sci., 33, 996-1004. 

Fig. 3  Scatter diagram for each El Niño since 1979 as a function of 
precursory thermocline anomaly signal (horizontal axis) and an 
accumulated WWE index (vertical axis). Green circle indicates two 
distinctive regimes for super El Niño formation: exceptionally strong 
WWEs versus exceptional strong D' signal.  (From Chen et al. 2017) 

http://dx.doi.org/10.1038/s41598-017-02926-3
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The Influence of the Atlantic Multidecadal Oscillation on the Eastern Andes 
Low-Level Jet and Precipitation in South America  

Charles Jones and Leila M. V. Carvalho 
Department of Geography, University of California, Santa Barbara, California 

ABSTRACT 

 The South America low-level jet (SALLJ) on the eastern slopes of the Andes is a unique climatological 
feature in the continent. The SALLJ transports large amounts of moisture and controls the spatiotemporal 
variability of precipitation in southeast South America. This study shows a remarkable influence of the 
Atlantic Multidecadal Oscillation (AMO) on decadal-to-multidecadal variability of the SALLJ. The results 
show a consistent pattern in which active SALLJ days during negative AMO phases are associated with 
negative precipitation anomalies over northern Amazon and the Atlantic Intertropical Convergence Zone 
(ITCZ). Increased cross-equatorial flow over northwestern South America combined with the outflow 
associated with the atmospheric subsidence over the negative precipitation anomalies enhances northerly 
winds along the eastern slopes of the Andes and Amazon. This atmospheric circulation response, which is 
more prevalent in the austral winter, intensifies the SALLJ. In the exit region of the SALLJ over southern 
Brazil, Uruguay and northern Argentina, an anomalous low-level cyclonic circulation is associated with 
enhanced precipitation. The influence of the AMO on the SALLJ is consistent with paleo-proxy studies 
showing multidecadal changes in precipitation over the La Plata River drainage basin. The analysis shows 
that secular trends reinforce the SALLJ and precipitation patterns. Moreover, the study highlights the 
importance of natural variability (i.e., decadal-multidecadal variations) occurring within long-term trends in 
the mean state, possibly associated with global warming, and significant changes in the SALLJ and 
precipitation over South America. 

This work has been published in npj Climate and Atmospheric Science in 2018.  

Reference 

Jones, C., and L. M. V. Carvalho, 2018: The influence of the Atlantic Multidecadal Oscillation on the eastern 
Andes low-level jet and precipitation in South America.  npj Climate and Atmospheric Science, 1, 
doi:10.1038/s41612-018-0050-8 

Fig. 1  a) Differences in mean winds (850-hPa) and precipitation during SALLJ days between negative (Nov 
1965–Aug 1996) and positive (Sep1924–Oct 1965) AMO phases. Time series of winds and precipitation 
contain linear trends. b) As in (a), but linear trends in winds and precipitation have been removed before 
calculating the difference between negative and positive AMO phases. Vectors in blue colors are statistically 
significant at 5% confidence; vectors in red are not statistically significant. Vector scale is shown in the inset. 
Shading shows statistically significant (5% level) differences in mean precipitation. 
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Enhanced Ocean Monitoring Products Using Ensemble Ocean Reanalyses: 
 ENSO Precursors and NMME False Alarms 

Y. Xue1, C. Wen1,2, A. Kumar1, and E. Becker1,2 
1Climate Prediction Center, NOAA/NWS/NCEP, College Park, MD 

2Innovim, Greenbelt, Maryland 

ABSTRACT 

For those ocean reanalyses (ORA) produced by operational centers for initialization of climate 
models, e.g. the North American Multi-Model Ensemble (NMME), there is an opportunity to conduct 
ORA intercomparison in real-time, and to use the ensemble approach to quantify the signal (ensemble 
mean) and noise (ensemble spread) in our estimation of climate variability such as ENSO. In support of 
the Tropical Pacific Observing System (TPOS) 2020 Project (http://tpos2020.org), an ensemble of nine 
operational ORAs has been routinely collected at the Climate Prediction Center to monitor the 
consistency and discrepancy in the tropical Pacific temperature analysis in real time in support of ENSO 
monitoring and prediction. 

Two ENSO precursors, referred to as Warm Water Volume (WWV) and Central Tropical Pacific 
(CTP) index respectively, have been derived with the ensemble ORAs. The two precursors have 
comparable skill in forecasting El Niño with a hit rate of 0.6-0.7, while the CTP is more skillful than the 
WWV in forecasting La Niña, with a hit rate of 0.85 from June initial conditions. 

The two ENSO precursors provide independent information that is complementary to the NMME 
ensemble forecast. For example, for the La Niña years in 2000, 2008, and 2017, the NMME forecast 
warm conditions, while the CTP successfully forecasts La Niña conditions. For the neutral years in 2001 
and 2012, the NMME models forecast false-alarm El Niño, while the CTP forecasts neutral-to-cold 
conditions. Therefore, the two ENSO precursors can not only be used to forecast the chances for El 
Niño/Neutral/La Niña conditions, but also to assess false alarms in the NMME forecast. 

1.  Introduction 

Ocean reanalyses (ORAs) aim to provide an optimal estimation of the time-varying, 3-dimensional 
structures of the ocean by combining model dynamics with ocean observations via data assimilation methods. 
The accuracy of ORAs, however, varies spatially and temporally, depending on the biases of ocean models, the 
uncertainties of atmospheric fluxes, the amount of ocean observations, and the assumptions used in data 
assimilation methods. For the purpose of analyzing the tropical Pacific ENSO variability, the accuracy of ORAs 
depends critically on the Tropical Pacific Observing System (TPOS), which was initially populated by the 
Tropical Atmospheric Ocean (TAO) array in the early 1980s (McPhaden et al. 1998), and was later enhanced 
by the Triangle Trans-Ocean Buoy Network (TRITON) array in the western tropical Pacific (west of 160°E) 
after 2000 (Ando et al. 2005). There was a massive data loss of the TAO array in 2012-2013 due to resource 
constraints. Concurrently, there was an ongoing decline of the TRITON array. This degradation of the 
TAO/TRITON array raised serious concerns as to whether the quality of the operational ORAs has been (or 
will be) compromised due to the loss of observations. One of the recommendations from the TPOS 2020 
workshop held at Scripps in 2014 (http://www.ioc-goos.org/tpos2020) was to monitor the consistency and 
discrepancy across the operational ORAs in real time in order to assess the impact of changes in the 
TAO/TRITON array on our ability to monitor and forecast ENSO (Fujii et al. 2015). 
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Following the recommendation of the TPOS2020 workshop, the Climate Prediction Center (CPC) at the 
National Centers for Environmental Prediction (NCEP) initiated and led the Real-Time Ocean Reanalysis 
Intercomparison Project (Real-Time ORA-IP, Xue et al. 2017), which follows the framework of the ORA-IP 
that was organized by the CLIVAR Global Synthesis and Observations Panel (GSOP) a few years earlier 
(Balmaseda et al. 2015). With the goal of analyzing upper ocean heat content variability in support of seasonal 
forecast, the Real-Time ORA-IP focuses on the monthly temperature analysis in the upper 300m of the global 
ocean. A similar effort has been undertaken at the Australian Bureau of Meteorology, focusing on the monthly 
salinity analyses (http://poama.bom.gov.au/project/salinity/). CPC has collected an ensemble of seven ORAs 
that cover the period from 1979 to present, and a second ensemble of nine ORAs from 1993 to present. For the 
first ensemble, anomalies were calculated with the 1981-2010 climatology, and available plots show the 
anomalies of individual ORAs, the ensemble mean (signal), the ensemble spread (noise), and the signal-to-
noise ratio for each month from January 1979 to present (http://www.cpc.ncep. 
noaa.gov/products/GODAS/multiora_body.html).  For the second ensemble, anomalies were calculated with 
the 1993-2013 climatology, and the plots show the anomalies for each month from January 1993 to present 
(http://www. cpc.ncep.noaa.gov/products/GODAS/multiora93_body.html).  

All of the nine ORAs included in the Real-Time ORA-IP have been used as ocean initial conditions for 
seasonal forecast models in operational centers around the world. Thus, monitoring the consistency and 
discrepancy among the operational ORAs provides an assessment of the uncertainties in ocean initial conditions 
for seasonal forecast models, which are particularly important for ENSO forecasting. The spread among the 
ensemble ORAs is also a good indicator of the adequacy of ocean observing systems in constraining the 
operational ORAs in real-time. Most importantly, the individual ORAs included in the Real-Time ORA-IP have 
been upgraded with time, in synchronization with those that have been continuously upgraded in each 
operational center around the world. For example, we have upgraded the Japan Meteorological Agency (JMA) 
product in 2017 and the European Centre for Medium-Range Weather Forecasts (ECMWF) product in early 
2019.  

The ensemble mean has been shown to be more accurate than individual ORA, suggesting the ensemble 
approach is an effective tool in reducing uncertainties in the temperature analysis for ENSO (Xue et al. 2017). 
In this paper, the ensemble ORAs have been used to obtain a best estimation of the upper ocean heat content 
variability critical for ENSO forecasting. In Section 2, we describe two ENSO precursors that are based on heat 
content analyses from six ORAs, and demonstrate that they are skillful in forecasting El Niño/Neutral/La Niña 
conditions. Furthermore, one of the ENSO precursors has excellent skill in forecasting La Niña conditions that 
is not well known by the ENSO forecasting community. In Section 3, we compare the forecast skill of the two 
ENSO precursors with that of the ensemble forecast of the NMME models. We find that the two ENSO 
precursors provide independent information complementary to the ensemble NMME forecast, and specifically 
that they can be used to assess false alarms in the NMME forecast. Section 4 includes summary and discussions.  

2.  Results 

2.1 ENSO precursors based on ensemble ORAs  

One important indicator of ENSO is the variability of the depth of the thermocline, often measured by the 
depth of the 20oC isotherm (D20). According to the “recharge oscillator” paradigm, the recharge (discharge) of 
the equatorial ocean heat content, measured by D20 anomalies, provides the necessary conditions for the onset 
of El Niño (La Niña) (Jin 1997). A measure of the equatorial ocean heat content is the volume of water warmer 
than 20°C, referred to as WWV.  Meinen and McPhaden (2000) suggest that WWV is a good ENSO precursor 
as it leads the NINO3.4 SST index by 6–9 months.  

The WWV is calculated as the average of the D20 anomaly in the equatorial Pacific in [120oE-80oW, 5oS-
5oN]. The WWV indices calculated from six ORAs, the ensemble mean, and the ensemble spread of WWV 
indices in 1979-2019 are shown in Fig. 1. The ensemble spread of WWV indices is about 4m in early 1980s, 
and decreases to less than 2m in the early 1990s, after the TAO array was fully implemented. The ensemble 
mean provides the best estimation of ENSO variability, and is generally much larger than the ensemble spread. 
It is noted that the variability of WWV has much larger amplitude and a longer period before 2000 compared 
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to after 2000. The relationship between 
WWV and NINO3.4, the average SST 
anomaly in [5oN-5oS, 120o-170oW], also 
experienced a significant shift after 2000 
(McPhaden 2012; Hu et al. 2013). The 
lower correlation and shorter lead-time 
between WWV and NINO3.4 after 2000 
raises the question if the characteristics of 
the ocean heat content precursor for ENSO 
have changed after 2000.  

The ocean heat content precursor 
signal for ENSO has been further analyzed 
by Wen et al. (2014). They found that 
WWV is a poor precursor for forecasting 
neutral and La Niña conditions after 2000 
(Fig. 7 in Wen et al. 2014). This change of 
WWV as a good ENSO precursor was 
related to the decadal shift around 1999 that 
led to increased (decreased) ocean heat 
content in the western (eastern) Pacific 
after 2000 (England et al. 2014). This 
decadal shift led to a positive mean shift in 
WWV after 2000 (Fig. 1), which 
predisposes it to forecast El Niño 
conditions more frequently than La Niña 
conditions. Wen et al. (2014) found that the 
D20 anomaly averaged in the central tropical Pacific in [160oW-110oW, 10oS-10oN], referred to as the CTP 
index, is a better ENSO precursor than the WWV, and it has similar forecast skill for ENSO in the period before 
and after 2000, without the sudden reduction of skill around 2000 that is seen in the WWV index. The physical 
mechanism behind the CTP precursor is that it includes both equatorial and off-equatorial D20 anomalies, both 
of which contribute to the onset of ENSO. Since there are uncertainties in the off-equatorial D20 anomaly, it is 
not clear if the conclusion is sensitive to the choice of individual ocean reanalysis used in that study. In this 
paper, we calculate the CTP indices using six ORAs and the ensemble mean CTP index is used to further 
explore the forecast skill of the CTP index. 

The uncertainties in the CTP indices are relatively high (10m) in the 1980s, and decrease to less than 2m in 
1990s and 2000s, but increase again to greater than 2m after 2010 (Fig. 1). This highlights the needs to maintain 
stationarity in the quality of ORAs with time. Due to the ensemble approach, uncertainties in this index have 
been minimized. Compared to the WWV, the variability of the CTP index is largely stationary throughout the 
period and does not have an apparent decadal shift around 1999. In addition, the CTP is dominated by low 
frequency variability throughout the period, while the WWV is dominated by low frequency variability before 
2000 and high frequency variability after 2000. 

2.2  Forecast skill of ENSO precursors 

The ensemble mean WWV and CTP indices are used to forecast El Niño and La Niña events. The criterion 
for selecting El Niño and La Niña events is set at a threshold of +/- 0.5oC for 3 month-running-mean of NINO3.4 
when the threshold is met for a minimum of 5 consecutive overlapping seasons. With this criterion, in 1980-
2018 (a total of 39 years), there are 13 El Niño years (82, 86, 87, 91, 94, 97, 02, 04, 06, 09, 14, 15, 18), 13 La 
Niña years (83, 84, 88, 95, 98, 99, 00, 07, 08, 10, 11, 16, 17) and 13 neutral years.  

To forecast El Niño/Neutral/La Niña years with the ENSO precursors, a threshold of +/- 0.5 standard 
deviations (STD) of the WWV and CTP is used. In other words, when the index is above (below) +0.5 (-0.5) 
STD, an El Niño (a La Niña) year is forecast. Otherwise, a neutral year is forecast. The forecast is made from 

Fig. 1 Time evolution of 5-month running mean of WWV (upper 
panel) and CTP (bottom panel) indices from six ORAs (color 
lines), the ensemble mean (shade) and ensemble spread of the 
indices (black line) starting from January 1979 to February 2019. 
The y-axis on the left is for the indices, while the y-axis on the 
right is the ensemble spread. 
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each initial month from January to September. 
The forecast skill is measured by the hit rate and 
false alarm rate calculated for each initial month 
and for El Niño and La Niña events separately. 
If the number of observed events is O and the 
number of events forecast correctly is C, the hit 
rate is C/O. If the number of events forecast 
incorrectly is F and the number of events forecast 
correctly is C, the false alarm rate is F/(F+C). A 
forecast is considered more skillful if the hit rate 
is higher and the false alarm rate is lower.  

The hit rate of WWV and CTP for 
forecasting El Niño events is comparable, which 
typically increases from 0.5 in February to 0.8 in 
September (not shown). For CTP, the false alarm 
rate decreases from 0.55 in February to 0.01 in 
September, suggesting CTP is a reliable 
indicator for El Niño when the forecast is made 
in late summer. However, for WWV, the false 
alarm rate decreases from 0.55 in February to 0.3 
in September, indicating it is less reliable than 
the CTP. For forecasting La Niña events, CTP is 
generally superior to WWV. The hit rate of CTP 
increases from 0.5 in March to 0.85 in June, indicating CTP is an excellent precursor for forecasting La Niña 
events when the forecast is made in June. In addition, the false alarm rate of CTP reduces to 0.08 in June.  

To see how the WWV and CTP forecast all El Niño/Neutral/La Niña years since 1979, Fig. 2-3 show scatter 
plots between the WWV and CTP in June and observed NINO3.4 in Nov-Dec-Jan (NDJ). The correlation 
between the WWV (CTP) in June and observed NINO3.4 in NDJ is 0.6 (0.8) respectively. This indicates CTP 
in June is a better predictor for NINO3.4 in NDJ than WWV in June, when all years are considered. Considering 
the El Niño years only, the hit rate of WWV and CTP is 0.69 and 0.62 respectively, while the false alarm rate 
is 0.36 and 0.2. So the WWV and CTP have comparable skill in forecasting El Niño years. Considering the La 
Niña years only, CTP is more skillful than WWV. For example, the hit rate of CTP and WWV is 0.85 and 0.54 
respectively, while the false alarm of CTP and WWV is 0.1 and 0.3. The CTP only missed two La Niña events 
in 1995 and 2017, and for 2017 the CTP in June almost met the threshold for forecasting a La Niña (Fig. 3). In 
addition, the CTP had only one false alarm in 2012, in which it called for La Niña instead of neutral conditions, 
as were observed. In contrast, WWV missed six La Niña events in 1999, 2000, 2007, 2008, 2011 and 2017 
respectively.  In fact, it called for El Niño conditions in 2000, 2011 and 2008, and neutral conditions in 1999, 
2007 and 2017. The WWV had three false-alarm La Niña forecasts, in 1987, 1992 and 1993, while an El Niño 
year was observed in 1987 and neutral years in 1992 and 1993 (Fig. 2).   

The fact that the forecast skill for La Niña events is higher than that for El Niño events as shown by the two 
ENSO precursors may be related to the asymmetry in ENSO. It is well known that about 50% of La Niña events 
last two years or longer, while El Niño events rarely last more than one year (Okumura and Deser 2010). Hu et 
al. (2014) suggest a strong 1st year La Niña is necessary for developing a 2nd year La Niña. Furthermore, 
DiNezio and Deser (2014) suggest that the nonlinearity in the delayed thermocline feedback is the sole process 
controlling the duration of La Niña events. Therefore, the precursory signal for La Niña events largely reside 
in the thermocline variations and the influences of atmospheric noises are relatively small in La Niña events 
compared to El Niño events. 

The reason that CTP is more skillful than WWV in forecasting La Niña is because it includes D20 anomalies 
in the central tropical Pacific that includes both equatorial and off-equatorial regions. However, WWV includes 
D20 anomalies across the equatorial Pacific and therefore includes the positive D20 anomalies in the western 

Fig. 2 Scatter plot between the WWV index in June and 
observed NINO3.4 in Nov-Dec-Jan (NDJ) in 1979-2018. 
The numbers indicate the El Nino (red), Neutral (black) 
and La Nina (blue) years. The correlation is 0.6, 
indicating there is a moderate skill in forecasting 
NINO3.4 in NDJ with the WWV index in June. The 
purple lines indicate +/- 0.5 standard deviation of WWV. 
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equatorial Pacific due to the decadal shift around 
1999, which is not helpful for forecasting La 
Niñas. In fact, the WWV is positive in the 2nd year 
La Niña in 2008 and 2011, and in the 3rd year La 
Niña in 2000. In contrast, the CTP is negative in 
all those years, which favors a development of La 
Niña. So we hypothesize that D20 anomalies in 
the central tropical Pacific in off-equatorial 
regions (10oS-5oS, 5oN-10oN) play an important 
role in ENSO dynamics. A future study is needed 
to understand how temperature anomalies near 
the thermocline in off-equatorial regions are 
entrained into the equator, and upwelled to the 
mixed layer to influence ENSO development. 
Since the subtropical cell circulation is 
significantly enhanced after 2000 (Wen et al. 
2014), off-equatorial D20 anomalies are expected 
to play a more important role in ENSO 
development after 2000 than before 2000.  

Therefore, both WWV and CTP are useful for 
ENSO monitoring and prediction. CTP is a more 
reliable precursor than WWV in anticipating a La 
Niña. In addition, the two ENSO precursors 
provide independent information that can be complementary to the ensemble forecast of NMME models, which 
will be discussed next.  
2.3 The NMME ensemble forecast of ENSO 

The North American Multi-Model Ensemble (NMME) is an experimental multi-model seasonal forecasting 
system consisting of coupled models from US modeling centers and Canadian Meteorological Center. The 
multi-model ensemble approach has proven to produce better prediction quality (on average) than any single 
model ensemble (Kirtman et al. 2014). It is currently delivering real-time seasonal predictions on the CPC 
operational schedule (https://www.cpc.ncep.noaa.gov/products/NMME).  

The ensemble forecast is made of about 100 members from 7-8 models. The deterministic skill of ENSO 
predictions from NMME has been documented by Barnston et al. (2017). However, the forecast skill was not 
calculated for El Niño, Neutral and La Niña years separately. The recent paper by Timmermann et al. (2018) 
studied the forecast skill of El Niño and La Niña events in the NMME separately. They found that the forecast 
skill of El Niño is generally higher than that of La Niña, and correspondingly the spring predictability barrier 
is stronger in forecasting La Niña than in forecasting El Niño. They attribute this asymmetry in ENSO forecast 
skill to the asymmetry in the precursor signal of the western tropical Pacific heat content. 

The results of Timmermann et al. (2018) appear at odds with our conclusion that the forecast skill of La 
Niña is higher than that of El Niño based on the two ocean heat content precursors. Since the NMME ensemble 
forecast contains about 100 members from 7-8 models, the systematic errors in each model and the influences 
of atmospheric noises in each member forecast should have been smoothed out and the ensemble mean forecast 
of NINO3.4 should have the best forecast skill.  

To understand how well the ensemble mean forecast of NMME agrees with observation, Fig. 4 shows the 
scatter plot between the NMME forecast from July 1 initial conditions and observed NINO3.4 in NDJ for all 
years in 1982-2017. The correlation between the NMME forecast and observed NINO3.4 is 0.9, indicating a 
very high skill score. However, for the La Niña events, the NMME only captured 7 of 13 events (a hit rate of 
0.53) while in contrast it captured 10 of 12 El Niño events (a hit rate of 0.83). This is consistent with the finding 

Fig. 3 Scatter plot between the CTP index in June and 
observed NINO3.4 in Nov-Dec-Jan (NDJ) in 1979-2018. 
The numbers indicate the El Nino (red), Neutral (black) 
and La Nina (blue) years. The correlation is 0.8, 
indicating there is a high skill in forecasting NINO3.4 in 
NDJ with the CTP index in June. The purple lines indicate 
+/- 0.5 standard deviation of CTP. 
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of Timmermann et al. (2018) that the forecast 
skill of La Niña is lower than that of El Niño in 
the NMME forecast.  

The NMME forecast had three false alarms of 
El Niño, in 2001, 2012 and 2017. In addition, the 
NMME forecast missed the La Niña events in 
2000, 2008 and 2011, which were all very well 
forecast by the CTP (Fig. 3).The common feature 
among the false alarms and missed La Niña events 
in the NMME forecast is that they are either the 
2nd year La Niña (2008, 2011, 2017), the 3rd year 
La Niña (2000), or the neutral year following the 
3rd and 2nd La Niña years (2001, 2012). In all those 
cases, the CTP in June is negative or neutral, 
suggesting a high likelihood of La Niña or neutral. 
However, the NMME models had a tendency to 
forecast warm conditions in these cases, since 
subsurface temperature anomalies were positive 
in the western tropical Pacific and positive along 
the narrow belt of the equatorial Pacific. As an 
example, we will show how the warm biases in 
the NMME forecasts in 2011 and 2012 are related 
to subsurface temperature anomalies in initial 
conditions next. 

The ensemble mean forecast from the NMME 
had a warm bias starting from spring/summer 2011 and 2012 (Fig. 5). In spring 2011, the positive D20 anomaly 
in the western tropical Pacific that was generated from the mature phase of the 2009/10 El Niño quickly 
discharged to the eastern Pacific, probably due to downwelling Kelvin waves. Due to the subsurface warming 
in initial conditions, the ensemble NMME forecast had a fast warming tendency in NINO3.4. When negative 
D20 anomalies emerged in the central equatorial Pacific in August, the NMME forecast reversed, indicating 
cold conditions in the winter.  

The situation in spring 2012 was similar to that in spring 2011, except the SST in the far eastern Pacific had 
warmed to +1oC above-normal in spring, and NINO3.4 crossed +0.5oC threshold in summer 2012. The 
ensemble NMME forecast NINO3.4 to exceed +1oC in winter 2012/13, which was not realized in observations.  

In both 2011 and 2012 cases, negative D20 anomalies averaged in 10oS-10oN had persisted in the central 
tropical Pacific in 160oW-110oW. This explains why the CTP is capable of avoiding El Niño forecast. Therefore, 
the CTP index provides independent information that can be used to assess false alarms in the NMME forecast. 

3.  Summary and discussions 

In support of the Tropical Pacific Observing System (TPOS) 2020 Project (http://tpos2020.org), an 
ensemble of nine operational ocean reanalyses (ORAs) has been routinely collected at CPC to monitor the 
consistency and discrepancy in the tropical Pacific temperature analysis in real time in support of ENSO 
monitoring and prediction. All of the nine ORAs included in the real-time intercomparison have been used as 
ocean initial conditions for seasonal forecast models, e.g. the North American Multi-Model Ensemble 
(NMME).  So monitoring the consistency and discrepancy among the operational ORAs provides an assessment 
of the uncertainties in ocean initial conditions for seasonal forecast models. The spread among the ensemble 
ORAs is also a good indicator of the adequacy of TPOS in constraining the operational ORAs for ENSO. 
Another advantage of the ensemble ORAs is that individual ORAs have been upgraded with time, in 
synchronization with those upgrades implemented by operational centers around the world.  

Fig. 4 Scatter plot of NINO3.4 in Nov-Dec-Jan (NDJ) 
between the NMME forecast and observation for all the 
years in 1982-2017. The NMME forecast in NDJ is the 
ensemble mean forecast of about 100 members initialized 
from July 1 initial condition. The numbers indicate the El 
Nino (red), Neutral (black) and La Nina (blue) years. The 
correlation is 0.9, indicating there is a high consistency 
between the NMME forecast and observed NINO3.4 in 
NDJ. 
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CPC has collected an ensemble of 
seven ORAs that cover the period from 
1979 to present, and a second ensemble of 
nine ORAs from 1993 to present. For the 
first ensemble, anomalies were calculated 
with the 1981-2010 climatology, and plots 
show anomalies of individual ORAs, the 
ensemble mean (signal), the ensemble 
spread (noise), and the signal-to-noise ratio 
for each month from January 1979 to 
present; see http://www.cpc.ncep. 
noaa.gov/products/GODAS/multiora 
_body.html.  For the second ensemble, 
anomalies were calculated with the 1993-
2013 climatology and plots show 
anomalies for each month from January 
1993 to present; see http://www. 
cpc.ncep.noaa.gov/products/GODAS/ 
multiora93_body. html.  

The ensemble mean has been shown to 
have better accuracy than individual ORA. 
Thus, the ensemble mean provides the best 
estimation of ENSO variability since 1979 
(Xue et al. 2017). Two ENSO precursors 
were calculated with six ORAs that cover 
the period from 1979-present. The first 
ENSO precursor is Warm Water Volume 
(WWV), defined as the average of the 
depth of the 20oC (D20) anomaly in the 
equatorial Pacific in [120oE-80oW, 5oS-
5oN] (Meinen and McPhaden 2000). The 
second ENSO precursor is the Central 
Tropical Pacific (CTP) index, defined as 
the average of the D20 anomaly in [160oW-
110oW, 10oS-10oN] (Wen et al. 2014). Due 
to the ensemble approach, the signal-to-
noise ratio is quite high in both the indices.  

The ensemble mean of WWV and CTP 
indices based on six ORAs are used to 
forecast El Niño and La Niña events from 
each initial month in 1979-2019. For 
forecasting El Niño events, the hit rate of 
WWV and CTP is comparable, which 
typically increases from 0.5 in February to 
0.8 in September. For forecasting La Niña 
events, CTP is generally superior to WWV. 
The hit rate of CTP increases from 0.5 in 
March to 0.85 in June, indicating CTP is an 
excellent precursor for forecasting La Niña 
events when a forecast is made from June. 

Fig. 5  The ensemble mean NMME forecast of NINO3.4 out to 9 
months starting from January 1 to October 1 of 2011 (top panel) 
and 2012 (middle panel).  SST anomaly average in 5oS-5oN 
(bottom left), D20 anomaly (m) average in 2oS-2oN (bottom 
middle) and in 10oS-10oN (bottom right) in 2009-2012 based on 
the ensemble mean of six ocean reanalyses. 
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In addition, the false alarm rate of CTP reduces to 0.08 in June. 

From June initial conditions, CTP only missed two La Niña events in 1995 and 2017, and for 2017 the CTP 
in June almost met the threshold for forecasting a La Niña. In addition, CTP had only one false alarm in 2012, 
in which it called for La Niña instead of neutral as in observation. In contrast, WWV missed six La Niña events 
in 1999, 2000, 2007, 2008, 2011 and 2017 respectively.  In fact, it called for El Niño conditions in 2000, 2011 
and 2008, and neutral conditions in 1999, 2007 and 2017. WWV also had three false alarms of La Niña forecast 
in 1987, 1992 and 1993. 

We compared the forecast skill of the two ENSO precursors from June with that of the NMME ensemble 
forecast from July 1 initial conditions. The correlation between the NMME forecast and observed NINO3.4 in 
Nov-Dec-Jan is 0.9, indicating a very high skill score. However, for the La Niña events, the NMME only 
captured 7 of 13 events (hit rate=0.53), while in contrast it captured 10 of 12 El Niño events (hit rate=0.83). 
This is consistent with the finding of Timmermann et al. (2018) that the forecast skill of La Niña is lower than 
that of El Niño in the NMME forecast.  

From July 1 initial conditions, the NMME forecast had three false alarm predictions of El Niño in 2001, 
2012 and 2017. In addition, the NMME forecast missed the La Niña events in 2000, 2008 and 2011, which 
were all very well forecast by the CTP. The common feature among the false alarms and missed La Niña events 
is that they are either the 2nd year La Niña (2008, 2011, 2017) or the 3rd year La Niña (2000) or the neutral 
year coming out of the 3rd and 2nd La Niña year (2001, 2012). In all those cases, the CTP in June is negative or 
neutral, suggesting a high likelihood of La Niña or neutral conditions.  

The NMME models tended to forecast warm conditions, since subsurface temperature anomalies were 
positive in the western tropical Pacific and positive along the equatorial Pacific in those cases. However, for 
those cases, negative D20 anomalies averaged in 10oS-10oN had persisted in the central tropical Pacific in 
160oW-110oW. Therefore, the CTP index provides independent information that can be used to assess false-
alarm predictions of El Niño or warm biases in the NMME forecast. 

The above study identified the warm biases in the ensemble NMME forecast in forecasting the 2nd and 3rd 
year La Niña events, as well as the neutral year following the 2nd and 3rd La Niña year. The warm biases are 
systematic biases in all the models, and are related to positive subsurface temperature anomalies near the equator 
in initial conditions. It is urgent to investigate why all the models had responded too strongly to positive 
subsurface temperature anomalies (overestimated the thermocline feedback) during those cases.  Efforts should 
be devoted to understanding the nonlinearity in the delayed thermocline feedback during the long lasting La 
Niña cycle as suggested by DiNezio and Deser (2014).  In observation, thermocline variations in off-equatorial 
regions in the central tropical Pacific appear play a critical role in the long lasting La Niña cycle. Therefore, a 
further study on the roles of off-equatorial D20 anomaly on the 2nd or 3rd year La Niña development is needed. 
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ABSTRACT 
In the backdrop of an extended drought and growing concerns for water management related issues 

over Southern California (SCA), anticipation of a large amplitude El Niño during the winter of 2015/16 
generated expectations for above normal rainfall, thus building hopes for a much needed drought relief. 
Expectations for above normal SCA rainfall were generated by the average rainfall response to El Niño 
sea surface temperature (SST) anomalies inferred based on the analysis of the observational data, 
supported further by model simulations. Indeed, seasonal forecasts based on North American Multi-
Model Ensemble (NMME), and official predictions for December-January-February (DJF) 2015/16 
indicated increased odds for the above normal seasonal mean rainfall anomaly. The observed DJF 
2015/16 SCA rainfall anomalies, however, were below normal. The discrepancy between the 
expectations for above normal predicted rainfall versus below normal observed rainfall anomalies led to 
questions about the accuracy of seasonal predictions, and since then, has also led to a series of studies 
analyzing the atmospheric response during the winter of 2015/16. Despite vigorous attempts, a consensus 
on the question of the forecast performance during one of the biggest El Niño in the historical record has 
not emerged. This note proposes pathways to resolve some fundamental questions in the context of 
understanding atmospheric response to ENSO SSTs that are critical for the practice of seasonal 
predictions. 

1.  Background 

In the backdrop of an extended drought and growing concerns for water management related issues over 
Southern California (SCA), anticipation of a large amplitude El Niño during the winter of 2015/16 generated 
expectations for above normal rainfall, thus building hopes for a much needed drought relief. The expectations 
for above normal SCA rainfall were supported by the rainfall composites during El Niño (inferred based on 
historical data), and also from dynamical model predictions using multi-model ensembles. Indeed, relying on 
such information, official seasonal forecast from Climate Prediction Center (CPC) indicated increased odds for 
above normal rainfall for December-January-February (DJF) 2015/16 seasonal mean. The observed seasonal 
mean rainfall anomalies over the SCA, however, were below normal (Fig. 1). An apparent discrepancy between 
various seasonal forecasts (for increased odds for above normal SCA rainfall) and observations led to the 
perception of a failed forecast during one of the strongest El Niño’s in the historical record. This led to a series 
of studies that attempted to explain why the observed seasonal mean rainfall anomalies may have differed from 
the historical expectations as well as from model based predictions. Possibilities addressed included: 

● Whether the uniqueness in the spatial structure of 2015/16 El Niño SST conditions altered the 
atmospheric response? In other words, while seasonal forecasts keyed more on the mean El Niño 
response, they failed to take into account the changes in atmospheric response to the “flavors of El 
Niño.” 

● Did a general warming of tropical SSTs (that has occurred in recent decades) have led to changes in 
atmospheric response to El Niño? 

● Was drying over SCA due to extreme drought conditions modulated the canonical atmospheric 
response to El Niño? 
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● Did recent decline in sea-ice may have played a role?  
● Were the boundary conditions in the seasonal prediction systems themselves predicted well enough? 

● How model biases may have influenced our inferences about the atmospheric response to El Niño? 

● What was the role of atmospheric noise (or internal variability) in influencing observed seasonal mean 
rainfall anomalies? Under the influence of atmospheric internal variability, was discrepancy between 
the forecast and the observed outcome a consequence of incorrect forecast (i.e., the response to El Niño) 
or just a consequence of internal variability having a large contribution to a single observed outcome? 

Such questions present a baffling array of choices and the papers that have appeared in peer reviewed literature 
did not lead to a consensus viewpoint as to why forecast and observed anomalies may have differed, and if 
anything, likely added to further confusion. Given an already long history of research efforts spanning almost 
40 years (using observational and model simulations) in quantifying atmospheric response to ENSO SSTs 
(Madden 1976; Horel and Wallace 1981; Kumar et al. 2007; Jha et al. 2017), and that we are still continually 
surprised by discrepancies between seasonal forecasts and observed outcomes, particularly during years with 
large amplitude anomalous boundary forcings, begs the question as what needs to be done to reach a consensus 
on some of the fundamental science questions that are of importance for the practice of seasonal predictions. 
  

Fig. 1  (top left) NMME prediction of DJF 2015/16 rainfall anomaly; (top right) CPC’s DJF 2015/16 forecast for 
rainfall. Forecast is in terms of probability for rainfall to be in the above normal (green) or below normal 
(yellow) category; (bottom left) observed DJF 2015/16 rainfall anomaly; and (bottom right) observed DJF 
composite rainfall anomaly during El Niño. 

70N 70N 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

24 

 2.  Thoughts on next steps 

Some of the key science questions in the context of the practice of seasonal prediction are:  

● What are the limits of ENSO related predictability for seasonal mean atmospheric variability? 

● How linear is the atmospheric response to ENSO, for example, to the amplitude of the ENSO associated 
SST anomalies? 

● How much flavors of ENSO should matter in constructing seasonal forecasts from one-year-to-another? 

● How does the spread of the seasonal mean change under the influence of ENSO SSTs? 

● To what extent model biases influence the realization of ENSO related predictability in the observed 
system? 

● If the role of internal atmospheric variability in shaping observed seasonal means (particularly in 
extratropical latitudes) is large, and consequently the signal-to-noise (SNR) is small, how best the user 
expectations can be managed? 

 As mentioned earlier, despite a long history of research in understanding atmospheric response to ENSO, 
clear answers have not yet emerged or have been internalized by the seasonal forecasting community. Towards 
answering these questions, it is understood that the historical observational record is not long enough to provide 
enough samples of ENSO events for us to address above questions with any confidence. The answers, therefore, 
have to rely on model simulations where a large realization of atmospheric state under unique boundary focings 
can be generated. The model based approach, however, gets criticized because of model biases (on various 
spatial and temporal scales) could easily influence the inferences about atmospheric responses to ENSO. To 
place confidence in model based results, there is a critical need to establish metrics to assess if models are good 
enough to address the questions we are posing 

Besides developing some metrics to assess “goodness” of the model to address a specific question (Kumar 
et al. 1996), the second pathway to establish “what factors in boundary conditions really matter in determining 
atmospheric response to ENSO” has to rely on community based multi-model approach. An example of such 
an approach was the effort under the US CLIVAR Drought Working Group (DWG) that attempted to establish 
which SST forcings may be important for modulating drought conditions over the US (Schubert et al. 2009). 
Building on that effort, the approach we propose would call for a (CMIP like) periodic and coordinated multi-
model assessment under a varying degree of ENSO responses. It is possible that such an effort may still not 
lead to clear answers, however, an appropriate guidance to the practitioners of the seasonal forecasters can still 
be provided and could as well state that “at present no clear inference about the role of a particular aspect of 
ENSO SST forcing in modulating atmospheric response can be given.” 

In our attempts to establish what really matters in determining the atmospheric response to ENSO, it is also 
conceivable that not every detail in boundary condition matter, for such a scenario will make the practice of 
seasonal predictions an impossible endeavor. Further, scale analysis (or Taylor’s expansion) is one of the basic 
tenets of making scientific advances, and is also likely to be true in quantifying ENSO response beyond what 
is inferred based on simple regression or composite based approaches (which quantify the first order influence 
of “average or canonical” ENSO SSTs on the atmospheric variability). The fact that establishing consensus 
beyond the first order response has proven to be such a difficult task may point to the fact that higher order 
influences of variations in ENSO on the atmospheric response are small (as they should be if the implicit 
meaning of higher order response does carries forward); however, such indications remain to be confirmed 
based on a periodic assessment of atmospheric responses to ENSO using multi-model approach. 
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1.  Introduction 

Atmospheric rivers (ARs) are narrow, elongated, synoptic jets of water vapor that play important roles in 
the global water cycle and regional weather/hydrology. A recent study (Guan and Waliser 2017) revealed 
considerable challenges and inter-model differences in simulating the phenomenology of ARs (e.g., geometry, 
frequency, intensity) with the state-of-the-art weather/climate models. The current work takes a step further to 
diagnose model errors at process levels, with a focus on quantifying the AR water vapor budget. 

2.  Data and methods 

An AR detection algorithm (Guan and 
Waliser 2015; Guan et al. 2018) is applied to 20-
year, 6-hourly simulations by 24 global 
weather/climate models from the GEWEX 
Atmosphere System Study - WCRP-
WWRP/THORPEX Year of Tropical Convection 
(GASS-YoTC) Multi-model Experiment (Jiang et 
al., 2015). Water vapor budget terms, including 
tendency of integrated water vapor (IWV), 
convergence of integrated water vapor transport 
(IVT), evaporation, and precipitation are 
calculated for four distinctive sectors (post-
frontal, frontal, pre-frontal, and pre-AR) of ~6000 
ARs in the northeastern Pacific during the winter 
months of 1991–2010, with the dominant terms 
identified in each sector. The simulated water 
vapor budget is evaluated against the ERA-
Interim and MERRA-2 reanalyses, with the 
difference between the two reanalyses serving as 
a rough measure of observational uncertainty.  
3.  Key results 

The results reveal the dominant water balance 
is different across the four AR sectors, with 
overall good agreement between ERA-Interim 
and MERRA-2. The largest observational 
uncertainty is associated with IVT convergence 
due to mass convergence in the frontal sector (difference between cyan and magenta circles in Fig. 1). Model 
spread is notable compared to observational uncertainty. The largest model spread occurs in post-frontal and 
frontal sectors in their respective dominant budget terms (box-whiskers in Fig. 1). Model performance in terms 

Fig. 1  Water vapor budget terms in four AR sectors based on 
~6000 ARs in the northeastern Pacific during the winter 
months of 1991–2010 identified in ERA-Interim and 
MERRA-2 reanalyses (cyan and magenta circles) and 24 
global weather/climate models from the GASS-YoTC 
Multi-model Experiment (box-whiskers). 
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of the correlation between each pair of the water vapor budget terms is also examined (not shown). The work 
contributes to the ongoing development of a suite of AR simulation diagnostics and model performance metrics 
and associated software packages, and can help guide dedicated observational efforts for better constraining 
AR processes in weather and climate models. 
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ABSTRACT 
 Not all El Niño-Southern Oscillation (ENSO) events are the same. A significant component of ENSO 

complexity is manifested in the way one ENSO event transits to another. Some events are followed by events 
of the opposite phase (i.e., El Niño to La Niña or La Niña to El Niño) to give rise to ENSO cycles, others are 
followed by neutral years to become episodic events, and still others are followed by events of the same phase 
to become multi-year El Niño or La Niña events. This study finds the seasonal footprinting (SF) mechanism 
to be a key source of ENSO complexity whereas the charged-discharged (CD) mechanism acts to reduce 
complexity. The CD mechanism forces El Niño and La Niña to follow each other resulting in a more cyclic 
and less complex ENSO evolution, while the SF mechanism involves subtropical forcing and results in an 
ENSO evolution that is more episodic and irregular (Fig. 1). The SF mechanism also contributes to El Niño-
La Niña asymmetries by producing multi-year La Niña events but not multi-year El Niño events. It is found 
that the strength of CD mechanism has been steady over the past 60 years but SF mechanism has intensified 
during the past two decades making ENSO more complicated. For model simulations, most CMIP5 models 
overestimate the strength of the CD mechanism but underestimate the strength of the SF mechanism, causing 
their simulated ENSOs to be too regular and symmetric.  

Fig. 1  (a)-(d) The evolution of equatorial Pacific (5°S-5°N) SST anomalies composited for (a) the positive CD 
mechanism, (b) the negative CD mechanism, (c) the positive SF mechanism, and (d) the negative SF 
mechanism. (e)-(h) The percentages of the composited months that are in an El Niño (red), La Niña (blue), or 
neutral (white) state during the period 12 months before to 12 months after the positive and negative phases of 
the CD mode (e and f) and the SF mode (g and h) reach their peak (at lag 0).   

This work has been published in Geophysical Research Letters in 2018.  
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Responses of Global Atmospheric Circulation to Climate Indices 
Based on APCC Hindcast Data 

Daeun Jeong and Yun-Young Lee 
APEC Climate Center, Busan, South Korea 

1.  Introduction 

From 14 centers in 10 countries, the Asia-Pacific Economic Cooperation (APEC) Climate Center (APCC) 
collects global climate prediction data every month and issues monthly-rolling Multi-Model Ensemble (MME) 
predictions for the upcoming six-month seasons, which are disseminated through the website 
(www.apcc21.org). In cooperation with KMA (Korea Meteorological Administration), the APCC also produces 
climate predictions of temperature and precipitation over South Korea every month. The climate indices e.g. 
Niño3.4 from reanalysis data have been taken into account for the predictions of the temperature and 
precipitation over South Korea even though the MME prediction data is also essential. The responses of 
atmospheric circulation to the climate indices and correlation between temperature and precipitation over South 
Korea and the indices are studied by using both reanalysis and hindcast data, which are finally provided as a 
guidance so that the APCC forecasters can produce more reliable predictions.  
2.  Data and methodology 

APCC currently monitors 20 atmospheric and oceanic indices and predicts 9 indices out of them. The 
criteria for selecting indices for this study are as follows: 1) be predicted by APCC; 2) have high correlations 
with observed indices; and 3) have high correlations with temperature and rainfall over South Korea.  

The data sets used in this 
study is described in Table 1. The 
station data of mean temperature 
and precipitation over South 
Korea are obtained from ASOS. 
With these data sets, four of 
global atmospheric variables of 
reanalysis and hindcast data are 
analyzed: geopotential height at 
500 hPa, sea level pressure, 
temperature at 2m, and wind at 
850 hPa. 

The variables are regressed 
onto the selected climate indices 
for the months when the 
correlation between indices from 
reanalysis data and those from 
MME hindcast data is high. The 
regressed patterns of MME 
hindcast data are displayed as colored shadings, whereas those of individual model data spread are displayed 
as dots when standard deviations being less than average ones of regression coefficients of individual models. 

3.  Results and conclusions 

The Niño3.4 and AO (Arictic Oscillation) out of 20 indices are selected based on the correlations between 
indices from reanalysis and MME hindcast data (Fig. 1). The Niño3.4 shows high prediction skill all year round. 

Data Description Variables 
Automated Synoptic 

Observing system 
(ASOS; data.kma.go.kr) 

61 stations over 
South Korea 

- Mean temperature 
- Precipitation 

CAMS OPI 
(Janowiak and Xie, 1999)  - Precipitation 

NCEP-DOE Reanalysis  
(Kanamitsu et al., 2002)  

- Geopotential height 
at 500 hPa 

- Sea level pressure 
- Temperature at 2m 
- Wind at 850 hPa 

MME hindcast data of 
APCC 

Simple Composite 
Method (SCM) 

Hindcast data of 
individual models 

JMA NASA 
APCC NCEP 
CMCC PNU 
CWB POAMA 
MSC  

Table 1  Descriptions of the data sets used in this study. The common data 
period of the above data is 1983-2005. 
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The AO has significant prediction skill for January, which is taken into account for the prediction of winter 
temperature over South Korea.  

The correlation coefficients between rainfall over South Korea and Niño3.4 for December are 0.63 in OBS 
and 0.79 in SCM, respectively (Fig. 2(a) and (b)). The wet condition and the southwesterly over South Korea 
are well simulated by SCM. The consistent responses of MME participating models on Niño3.4 are also shown. 
The anticyclonic circulation over the western Pacific and the cyclonic one over the eastern Pacific is predicted 
by SCM (Fig. 2(c) and (d)). Based on these results, not only the observed Niño3.4 but also the predicted one 
should be considered for the prediction of precipitation over South Korea for December. 

Fig. 1  Temporal correlations between observed and predicted indices. Red bars denote correlations which are 
significant at 95% level. 

Fig. 2  Regressed precipitation (top) and sea level pressure (bottom) anomalies onto Niño 3.4 SST for December 
from reanalysis (left) and SCM hindcast (right) data. 
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On the other hand, no significant correlation between the temperature over South Korea and AO from SCM 
for January is shown. The regressed patterns of SCM are similar to that of OBS though (Fig. 3 (a) and (b)). The 
positive temperature anomalies over Northeast Asia, Siberia, and eastern USA and negative ones over Canada, 
Middle East, and North Africa from SCM are similar to the ones from OBS. The positive anomalies over South 
Korea in OBS don’t cover it in SCM though. The AO-related pattern of geopotential height at 500 hPa - negative 

Fig. 3  Regressed temperature at 2m (top) and geopotential height at 500 hPa (bottom) anomalies onto AO index for 
January from reanalysis (left) and SCM hindcast (right) data. 
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anomalies over the Arctic and positive ones over the northern North Pacific and Atlantic is predicted by SCM 
and the consistency among the responses of the individual models is shown (Fig. 3 (c) and (d)). 

This study covers the prediction skill of hindcast data. The predictability for the indices and related 
atmospheric circulation patterns with the real-time forecast data of APCC will be further studied. 
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Seamless Coupled Prediction System (SCoPS): Assessment of the APCC 
In-house Model Real-Time Seasonal Forecast  

A-Young Lim, Young-Mi Min, and Suryun Ham 
APEC Climate Center, Busan, South Korea 

ABSTRACT 

 Asia-Pacific economic cooperation Climate Center (APCC) has made great efforts to develop and improve 
a seasonal forecast model to provide more reliable forecast information for the Asia-Pacific regions.  Recently, 
as a result of the efforts, the APCC has launched a new dynamical seasonal forecast system, Seamless Coupled 
Prediction System (SCoPS).  The newly developed SCoPS model is state-of-the-art global prediction system 
based on the fully-coupled atmosphere, land, ocean, and sea-ice model has been operationally implemented and 
participated in the APCC Multi Model Ensemble (MME) prediction since November 2017.  This study focused 
on the skill assessment of SCoPS seasonal forecasts for sea surface temperature (SST), temperature, 
precipitation, and circulation fields on a monthly basis compared to that of Community Climate System Model 
version 3 (CCSM3) which is previous version of APCC in-house model in past years.  Relative performances 
of SCoPS and participating models in the APCC MME prediction (e.g., National Centers for Environmental 
Prediction (NCEP) Climate Forecast System, Predictive Ocean Atmosphere Model for Australia (POAMA), 
and Meteorological Service of Canada (MSC) Coupled Climate Model) are also discussed.  Results indicate 
that SCoPS consistently better performance than CCSM3 in anomaly pattern correlation and temporal 
correlation skills for the spatial distribution of SST and Nino 3.4 index predictions (Fig.1).  Similar results can 
also be found in temperature and precipitation that the real-time forecast skill of SCoPS generally outperforms 
that of CCSM3 for the whole period in both global and regional scales.  Further, SCoPS is more skillful than 
CCSM3 in predicting the seasonal climate variability, including the ENSO, East Asian summer and winter 
monsoon.  
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Fig. 1  Pattern correlation coefficient (PCC) of the SST anomalies between observation and APCC MME participant 
models over the tropical (20˚N-20˚S).  Left panel shows the observed (black line) Nino3.4 index and PCC of 
SCoPS (red square) and CCSM3 (blue square) for strong El Nino events (2015-2016).  Right panel shows PCC 
skill of participant models and MME 
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1.  Introduction 

 In this study, we aim to understand the influence of tropical Pacific sea surface temperature (SST) changes 
on Arctic sea-ice decline in September. Arctic sea ice has shown accelerated melting from the early 2000’s to 
the early 2010’s and a slowing down thereafter (Swart et al. 2015). However, this slowdown is not expected 
with a steadily increasing rate of 
greenhouse gas emissions over this 
period. Our analysis of observational 
and model evidence shows that the 
recent slowdown of summer sea ice 
loss reflects a continuous 
anthropogenically forced melting 
enhanced and then masked by 
interdecadal variability of Arctic 
atmospheric circulation. This variation 
is driven by teleconnections 
originating from SST changes in the 
eastern-central tropical Pacific via a 
Rossby wave train propagating into the 
Arctic. This teleconnection, which we 
refer to as the “PARC”, or Pacific-
Arctic teleconnection, has contributed 
to abrupt warming and Arctic sea ice 
loss from 2007 to 2012, followed by a 
much slower decline in recent years, 
resulting in the slowdown appearance. 
Given the importance of this process in 
driving the Arctic climate on low–
frequency time scales, accurate 
representation and prediction of the 
PARC mode in climate models is 
critical for future projections of the 
Arctic climate.   

Fig. 1 1979-2006 linear trend in (a) ERA-Interim JJA 200hPa 
geopotential height and (b) ERSSTv4 JJA sea surface temperatures. 
(c) and (d) are the same as (a) and (b) but for 2007-2012 anomaly 
from 1979-2017 mean.  (e) and (f) are the same as (c) and (d) but for 
2013 to 2017 anomaly. 
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2. The observed Pacific-Arctic teleconnection 

We first examined all linear trends longer than 10 years in the total September Arctic sea ice index and 
found two prominent trends: a period of the fastest melting from 2001 to 2012 and the only near-zero trend 
from 2007 to 2017. These two periods overlap from 2007 to 2012. Thus, to focus on this period and its role in 
the slowdown, we divided our analysis into three epochs: the linear trend from 1979 to 2006 and the anomalies 
from 2007 to 2012 and 2013 to 2017 (Fig. 1). The linear trend from 1979 to 2006 does not show a strong change 
in the eastern Pacific or in the Arctic. However, from 2007 to 2012 there is cooling in the eastern tropical Pacific 
that generates high pressure in the Arctic troposphere through Rossby wave propagation. The barotropic high 
pressure structure then leads to adiabatic descent of air, that warms and moistens the lower Arctic troposphere, 
increasing emission of longwave radiation and contributing to enhanced sea ice melt (Ding et al. 2014, 2017). 
Between 2012 and 2013, eastern-central Pacific SST switched to a warm phase, leading to a cooling effect in 
the Arctic and masking of CO2-driven melting. 

The PARC is the leading internal mode obtained through Maximum Covariance Analysis (also called 
Singular Value Decomposition) using a covariance matrix between detrended June-July-August (JJA) SST 
from 30°S to 30°N and 200 hPa geopotential height from 60°N to 90°N. The PARC links changes in eastern 
tropical Pacific SST to abrupt changes in geopotential height, temperature, and sea ice in the Arctic through a 
poleward propagating Rossby wave train. The PARC shows a peak between 2007 and 2012, coinciding with 
the most rapid period of September sea ice decline. 

3.  Model experiment 

We utilize a pacemaker experiment to 
test the ability of tropical Pacific sea surface 
temperatures to drive Rossby wave 
propagation from the eastern-central Pacific 
to the Arctic during the enhanced melting 
period from 2007 to 2012. For this, we use 
the ECHAM4.6 general circulation model 
(GCM) coupled with a simple 
thermodynamic sea ice-ocean model. Since 
our model uses only a simple 
thermodynamic model, we focus primarily 
on the influence of tropical Pacific SST on 
Arctic circulation. The sensitivity 
simulation was driven by the observed SSTs 
in the eastern central Pacific (30°S to 30°N) 
averaged from 2007 to 2012 and run for 40 
years with the first 10 years considered spin 
up. With this method, each year can be 
considered an individual realization and the 
30-year average as an ensemble mean. The 
control simulation was driven by observed 
climatological SSTs (12-month annual 
cycle) everywhere and run for 40 years.  The 
difference between the 30-year average of 
the sensitivity and control runs shows SST 
changes in the eastern-central Pacific can 
generate Rossby wave propagation to the 
Arctic from 2007 to 2012 with a high 
pressure center near Greenland similar to 
that seen in observations (Fig. 2). 
  

Fig. 2  a) Observed JJA 200hPa geopotential height anomaly (unit: 
m) for 2007-2012 against the 1979-2017 mean. (b) Same as 
(a) but for the model response from the sensitivity experiment 
described in the text.  The dashed, black box (145°E-285°E, 
25°S-30°N) indicates the region where observed SSTs were 
prescribed to force the model. Stippling in (b) indicates 
statistically significant differences at the 95% confidence 
level by the two-sample t-test. 
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4.  Conclusions 

Our observational analysis in combination with the results from the pacemaker experiment suggest an 
eastern-central Pacific-Arctic teleconnection (PARC) is partially responsible for the recent slowdown 
appearance in the decline of September Arctic sea ice.  Through changes in Arctic circulation, the PARC is able 
to strengthen or mask the effects of CO2-driven atmospheric warming in the Arctic.  This is most clearly seen 
from 2007 to 2012 as cooling in the eastern-central Pacific led to Rossby wave propagation to high latitudes, 
high pressure near Greenland and in the Arctic and decreased September sea ice cover.  A shift from the 
strengthening phase (2007-2012) to a masking phase (2013-2017) gives the appearance of a slowdown in 
September Arctic sea-ice decline. 
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1.  Introduction 

Developing week 2 to 4 severe weather outlooks is one of the CPC projects under the Office of Science and 
Technology Policy initiative.  The goals of this project are (1) to expand development and perform evaluation 
of week-2 severe weather model guidance, and (2) to explore the potential and develop experimental forecast 
tools for week 3 and 4 severe weather.  The results presented at the workshop focus on week-2 severe weather 
forecast. 

A study by Carbin et al. 
(2016) uses the Supercell 
Composite Parameter (SCP) 
derived from the CFSv2 45-day 
forecasts to provide extended-
range severe weather 
environment guidance.  When 
SCP is greater than 1, the chance 
for severe weather to occur is 
high.  Here we take one more 
step to explicitly forecast severe 
weather based on the empirical 
relationship between model-
predicted SCP and actual severe 
weather activity in historical 
records.     

2.  Data and methods 

The data used in this study 
include both observational dada 
and model forecasts.  For 
observations, the NCEP Climate 
Forecast System Reanalysis 
(CFSR) and NWS local storm 
reports (LSRs) are employed.  
The LSR consists of hail, 
tornado, and damaging wind 
reports, as well as their location, 
time and intensity.  The sum of 
the LSRs for hail, tornado and 
damaging wind are referred to as 
LSR3 hereafter.  They are re-gridded to a 0.5o×0.5o grid.  We use the NCEP GEFS 16-day hindcasts to develop 
the forecast model for week-2 severe weather.  The hindcast period is from 1996 to 2012.  The hindcasts were 

Fig. 1  Observed seasonal climatology of SCP (left) and LSR3 (right) for the 
four seasons. 
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made every 4 days with 5 members and 0.5o×0.5o resolution.  The analysis presented was performed using the 
5-member ensemble mean forecasts. 

Following Carbin et al. (2016), the SCP is defined as 

SCP = (CAPE/1000 J kg−1) × (SRH/50 m−2 s−2) × (BWD/20 m s−1), 

where CAPE is convective available potential energy, SRH storm-relative helicity, and BWD bulk wind 
difference.  The three constants are used to normalize SCP so that when SCP is greater than 1, severe weather 
likely occurs.  

The forecast model developed in this study is a hybrid dynamical-statistical model (e.g., Wang et al. 2009).  
It uses the dynamical model (GEFS) predicted SCP as a predictor, and then forecast severe weather (LSR3) 
based on the statistical relationship between model SCP and actual LSR3 in historical records.  The forecast 
skill is cross-validated over the GEFS hindcast period (1996–2012). 

3.  Results 

The observed seasonality of 
SCP is examined first.  Figure 1 
(left) shows the climatological 
seasonal mean daily SCP over 
the U.S. for the four seasons 
(DJF, MAM, JJA, and SON), 
respectively, derived from 
CFSR.  The seasonal variation 
of SCP is characterized by 
relatively large values of SCP 
appearing in the Gulf States 
during winter.  Then SCP 
intensifies and peaks in spring.  
The region of the maximums 
moves northward from the 
Southern Plain in spring to the 
Northern Plain in summer.  
From summer to fall, the SCP 
value decreases and the center of 
the maximums movers back to 
the south.  The SCP displays 
strong seasonality over the 
central U.S.  Over the same 
region, the LSR3 also shows 
similar seasonality with strong 
severe weather activity in spring 
and summer (Fig. 1, right).  
During these two seasons, 
however, there are also strong 
activities in the eastern U.S. 
where SCP value is small.  
Therefore, in terms of the 
seasonal cycle, there is a good 
correspondence between SCP 
and LSR3 in the central U.S.  
The SCP from the GEFS forecasts captures the observed seasonality of SCP for both week 1 and week 2 (not 
shown). 

Fig. 2  Maps of one-point correlation for weekly SCP (top) and LSR3 
(bottom) with anomalies at the 0.5o × 0.5o grid (left) and those area-
averaged over the 5o × 5o box (right), respectively. 

Fig. 3 Correlation between the GEFS predicted SCP and observed LSR3 for 
week 1 (top) and week2 (bottom) with anomalies at the 0.5o × 0.5o grid 
(left) and those area-averaged over the 5o × 5o box (right), respectively. 
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The difficulty in forecasting 
severe weather is mainly due to 
its short lifetime and a small 
spatial scale.  Figure 2a–b shows 
the one-point correlation map 
for weekly CFSR SCP and 
LSR3, respectively, at the 
0.5o×0.5o grid.  It is the 
correlation map between weekly 
anomaly at one grid point (here 
95.5oW, 37.5oN) and that at 
every grid point over the U.S.  
For SCP (Fig. 2a), there are high 
correlations between the 
selected grid point and the 
surrounding grid points, 
indicating that SCP has a large-
scale feature.  For LSR3  (Fig. 
2b), in contrast, the correlations 
are small, except for the 
correlation with itself, consistent 
with the small spatial scale of 
severe weather.  However, when 
averaging LSR3 over a 5o×5o 
box and then re-calculating the 
one-point correlation, the result 
(Fig. 2d) shows much higher 
spatial coherence for LSR3 and 
is comparable to that of SCP 
(Fig. 2c).  It is thus reasonable to 
expect that forecasting weekly 
severe weather over a larger 
domain may have a better skill.  

To develop a hybrid forecast 
model, we first establish some 
statistical relationship between 
GEFS predicted SCP and 
observed LSR3.  Given the 
strong seasonality of both SCP 
and SLR3 (Fig. 1), a 3-month 
moving window is used in the 
analysis.  Figure 3a-b shows the 
correlations between observed 
LSR3 and GEFS week-1 and 
week-2 forecasts of SCP at the 
0.5o × 0.5o grid, respectively, for 
MAM, the peak severe weather 
season.  The correlation with the 
week-2 forecast is less than the 
week-1 forecast, indicating a weak relationship between GEFS SCP and LSR3 for week 2. However, when 
using the 5o×5o area-averaged anomalies to reestablish the relationship between model SCP and observed LSR3,  
their correlations (Fig. 3c-d) are much higher than those at the 0.5o×0.5o grid (Fig. 3a-b) for both week 1 and 

Fig. 4  Maps of homogeneous correlation for the first three SVD modes between 
weekly CFSR SCP and observed LSR3 during the MAM of 1996–2012.  
The percentage of the variance explained by each SVD mode is also 
provided at the bottom right of each panel. 

 

Fig. 5  Same as Fig. 4, but for the three leading SVD modes between the GEFS 
week-2 SCP and observed LSR3. 
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week 2.  The result indicates a stronger relationship between the model SCP and LSR3 when considering 
averaging severe weather activity over a larger domain.  

In addition to the relationship between the GEFS SCP and LSR3 at each grid point, their statistical 
relationship can also be established by the singular value decomposition (SVD) technique (Bretherton et al. 
1992).  This method can objectively identify pairs of modes (spatial patterns) of SCP and LSR3, both of which 
vary with a maximum temporal covariance between each other.  Figure 4 shows the spatial patterns of the three 
leading SVD modes for weekly SCP (left) and LSR3 (right), respectively, using the observational data.  Each 
SVD mode displays a distinctive pattern with consistent distributions between SCP and LSR3.  The three modes 
account for 62% of weekly LSR3 variance.  A similar SVD analysis using the GEFS week-2 SCP (Fig. 5) can 
reproduce the observed relationship between SCP and LSR3 well (Fig. 4). 

A hybrid model is developed to forecast the number of severe weather (LSR3) using the GEFS predicted 
week-2 SCP as a predictor and based on their relationships depicted in either Fig. 3 or Fig. 5.  The former 
applies a linear regression model to forecast LSR3 at each grid point, whereas the latter projects the week-2 
GEFS SCP onto the SCP SVD modes and then predicts LSR3 based on the SCP-LSR3 relationship depicted by 
the SVD analysis (Fig 5). 

The forecast skill for week-2 severe weather is cross-validated over the GEFS hindcast period (1996–2012).  
The anomaly correlation skill at the 0.5o × 0.5o grid is relatively low (Fig. 6a), and is very similar to the 
corresponding correlation between GEFS SCP and LSR3 (Fig. 3b).  The forecast skill of the hybrid model is 
improved (Fig. 6b) by using the 5o×5o area-averaged anomalies, consistent with the stronger relationship 
between model SCP and LSR3 (Fig. 3d).  The forecast skill is significantly improved (Fig. 6c) when using the 
SVD-based relationship.  This may be due to the inclusion of the covariation of both SCP and LSR3 with their 
surrounding regions. 

4.  Conclusions 

Following Carbin’s work, the Supercell Composite Parameter (SCP) was selected as a variable to represent 
the large-scale environment and link the model forecast to actual severe weather.  The hybrid model forecasts 
suggest a low skill for week-2 severe weather.  However, the forecast can be improved by using the 5o×5o area-
averaged anomalies and the SVD-based statistical relationship.  Based on the analysis and results presented at 
the workshop, an experimental week-2 severe weather outlook has been implemented in real time. 

For future work, we plan to extend the analysis for weeks 3 and 4 using the CFSv2 45-day hindcasts and 
forecasts.  Because the forecast skill for week 3 and 4 SCP is expected to be low, we may consider forecasting 
week 3 and 4 severe weather over a larger domain, such as Midwest and Southeast US.   

Acknowledgements.  We would like to thank our colleagues Stephen Baxter, Jon Gottshalck, Daniel Harnos, 
Melissa Ou, Brad Pugh, and Matthew Rosencrans at CPC for helpful discussions and also Yuejian Zhu and 
Hong Guan at EMC for providing GEFS model forecast data. 

Fig. 6  Forecast skills for week-2 severe weather cross-validated over MAM 1996–2012 with (a) simple linear 
regression model at the 0.5o × 0.5o grid, (b) 5o × 5o area-averaged anomalies, and (c) the SVD-based hybrid 
model. 
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1.  Introduction 

For climate sensitive sectors such as agriculture, weather forecasts are an essential component of early 
warning, which contribute to reducing costs of replacing agricultural infrastructure, inputs and the planning of 
scheduling on-farm management activities. The costs associated with extreme devastation of infrastructure and 
crop loss in Canada, for example, can attain billions of dollars in a particular year. 

Weather forecasts are provided at different scales both in time and space. Ideally, skillful weather forecasts 
at a finer scale and longer temporal resolution are needed for the majority of agricultural operations, however 
such forecasts are difficult to find as the science of weather forecasting has not developed to the level of making 
point specific forecasts and at longer time scales with a high degree of accuracy (Cai et al. 2011).  In spite of 
this difficulty, significant efforts have been made or are under way to test a range of predictions from short 
range to sub-seasonal scales using ensemble forecasts from a variety of prediction models (Merryfield et al. 
2013; Vitart 2004). As these products become increasingly available, there is a need to demonstrate their 
usability in climate sensitive sectors. Our goal in this study was to demonstrate how short (weeks) to medium 
range (up to a month)  forecasts can be tailored to answering questions in the agricultural sector. Some typical 
questions which agricultural users ask include: Will there be enough precipitation in the next few weeks to end 
a dry spell? Will there be enough heat for the crop to mature? Is the crop on schedule or running behind in its 
development? 

2.  Methods 

To make the most out of weather and climate forecasts in agriculture, we calculated agro-meteorological 
indices from the primary weather forecasts as multi-index products for direct use in management decisions for 
specific crops and operations. Forecast data sets were obtained from the Canadian Meteorological Centre’s 
(CMC) Global Ensemble Prediction System (GEPS) and consisted of 16-day and 32-day integrations every 
Thursday at the 39km resolution, and each run had 21-ensemble members. The GEPS outputs were found 
skillful from a previous study (1995 to 2012 data) with correlation skill levels between predictions and 
observations of (R=0.4 to 0.8) for temperature and (R=0.3 to 0.6) for precipitation (Lin et al. 2016). The indices 
were calculated for three crop types: 1) cool season such as barley and oats, 2) warm season such as peas and 
soybean, and 3) over-winter crops such as forages and woody fruit trees.  Agrometeorological indices included 
the water demand (the difference between precipitation and evapotranspiration), accumulation of precipitation 
at harvest time, effective growing degree days, heat stress and the drying index at harvest. 

3.  Results 

A comparative analysis of selected agrometeorological indices in forecast mode was made with actual 
observations during the latter part of 2018 growing season (September) across southern Canada. Greatest daily 
precipitation amounts ranging from 16 to 30mm for weeks 1 and 2 (August 31 to September 6 and September 
7 to 13, 2018 respectively) were forecasted for southern Ontario and Quebec as well as the east central areas of 
Saskatchewan and Manitoba (Fig. 1). While the observed precipitation accumulation totals were not exactly of 
the same order of magnitude as the predictions (the observed totals were higher than predictions), there was a 
spatial agreement about areas with the highest amounts. Traditionally, September is the month when the 
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majority of crop harvesting takes place, and while high precipitation accumulation can occur at any time, 
September is not usually associated with heavy precipitation accumulation (see Bonsal et al. 1999). Due to the 
wide-spread wetter conditions across the agricultural zone, the majority of the crop reporting districts reported 
less than the optimum progression of harvesting, which in the case of the Canadian Prairies was at around 40 
to 70% completion (Saskatchewan Crop report: http://publications.gov.sk.ca/details.cfm?p=91572).  Wetter 
conditions were accompanied by less than the optimum heat units required to dry the crop in readiness for 
harvesting as shown in Fig. 2.  By the end of the season (see the right panel of Fig. 2), the accumulated heat 
units were less than what would be expected for cool and warm season crops, that are 1482 and 1376 
respectively (Brown and Bootsma 1993; Stewart et al. 1998). Because of the relative wetter and low heat 
accumulation harvest period in September, there were fears that a potentially good grain harvest would be 
compromised by frost in early autumn. In order to avoid a total loss, the forecast products if used diligently 
would be used to carry out alternative actions. Where a harvest for grain is not possible, the crop could be put 
into animal feeds as silage and under very dire conditions, it could be ploughed under as a land management 
strategy. Large machinery such as combine harvesters are moved around at harvest. The movement of large 
machinery will be guided by the presence of good weather. This will in turn help with fuel usage and reduce 
the emission of GHGs at the farm level as machinery will be moved when the window for successful harvesting 
exists.  
  

Fig. 1  Precipitation forecast and actual observations across southern Canada during weeks 1 (top) and 2 (bottom) 
in September of 2018. The left panel shows forecasts while the right panel shows observations. 
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4.  Summary 

Greatest precipitation and heat units were forecasted during the first and second week in September (harvest 
time) in 2018 across the agricultural landscape of Canada. The predicted conditions were not ideal for harvesting 
and as a result, there were delays in taking the crop off the fields.  Armed with forecast information designed 
for specific crops (warm and cool season in this study), this information is useful for selecting alternative farm 
management actions which will prevent total loss as a result of climatic risks. 
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(lower) season crops.  



CHIPANSHI ET AL. 
 

 

47 

Lin, H., N. Gagnon, S. Beauregard, R. Muncaster, M. Markovic, B. Denis, and M. Charron, 2016: GEPS-based 
monthly prediction at the Canadian Meteorological Centre. Mon. Wea. Rev., 144, 4867–4883, 
doi.org/10.1175/MWR-D-16-0138.1. 

Merryfield, W. J., and Coauthors, 2013: The Canadian Seasonal to Interannual Prediction System. Part I: 
Models and initialization. Mon. Wea. Rev., 141, 2910–2945, doi:https://doi.org/10.1175/MWR-D-12-
00216.1. 

Stewart, D. W., and Coauthors, 1998:  Phenological temperature response of maize. Agronomy J., 90, 73-79. 
Vitart, F., 2004: Monthly forecasting at ECMWF. Mon. Wea. Rev., 132, 2761–2779, 

doi:https://doi.org/10.1175/MWR2826.1 



Science and Technology Infusion Climate Bulletin 
NOAA’s National Weather Service  
43rd NOAA Annual Climate Diagnostics and Prediction Workshop  
Santa Barbara, CA, 23-25 October 2018 

______________ 
Correspondence to: Yutong Pan, Climate Prediction Center, NOAA/NWS/NCEP, 5830 University Research Court, 
College Park, MD 20740, and Innovim, LLC, Greenbelt, MD;  E-mail: yutong.pan@noaa.gov 

Development of an Hourly Analysis of  
Surface Air Temperature over the Global Land 

Yutong Pan1,2 and Pingping Xie1 
1Climate Prediction Center, NOAA/NWS/NCEP, College Park, MD  

 2Innovim, LLC, Greenbelt, MD 

1.  Background 

This work is to construct an 
hourly analysis of surface air 
temperature (T2m) over the global 
land.  A conceptual model is 
developed by adjusting the hourly 
T2m generated by the NCEP 
operational global models against 
the observation-based CPC daily 
maximum (Tmax) and minimum 
(Tmin) surface air temperature. 

2.  Data and methodology 

2.1 Data 

Global elevation data used are 
the Climatic Research Unit (CRU, 
0.16o lat/lon) and Digital 
Elevation Model (DEM, 0.01o 

lat/lon) data sets.  The observed 
surface air temperatures are the 
Global Telecommunication 
System (GTS)-based CPC global 
analysis of daily Tmax and Tmin 
(2011−present, 0.16o lat/lon), and 
the Integrated Surface Database 
(ISD) station observations of 

Fig.1. Correlation coefficient, bias, and RMSE between the CPC Tmin and 
CFSR Tmin for 2012. 

Fig. 2. (a) Time series of the CPC Tmin and CFSR Tmin at a selected location (lon=249.25o, lat=35.08o) in the US for 
2012 and scatter plots between the CPC Tmin and CFSR Tmin (b) before adjustment and (c) after adjustment. 



PAN AND XIE 
 

 

49 

hourly air temperature.  Surface air temperatures from the NCEP CFS Reanalysis (CFSR, 2011−present, 
0.2045o lat/lon) and the GFS 6-12 hour forecasts (March, 2018−present, 0.117o lat/lon) are used to define the 
global hourly T2m for the retrospective production and real-time updates, respectively. 

2.2 Methodology 

The three-step adjustments include elevation correction, synoptic scale bias correction, and diurnal range 
adjustment.  The CFSR hourly T2m is adjusted on a monthly basis at target analysis grid of 0.16o lat/lon, and the 
GFS hourly T2m is real-time adjusted 6-hourly at target analysis grid of 0.05o lat/lon.  

First, the model T2m data are down-scaled from their native Gaussian grids to the target analysis grids, 
through the local empirical relationship between T2m and elevation. Elevation correction is applied based on the 
difference between the model 
elevation and real topography.  
For the synoptic scale bias 
correction, daily Tmax and Tmin are 
derived from the model hourly 
outputs.  Then daily means for 
both the CPC GTS analysis and 
the model T2m are calculated as the 
arithmetic mean of Tmax and Tmin.  
Synoptic scale bias is thus 
removed from the raw model 
hourly T2m as the difference 
between the 5-day running means 
from the CPC analysis and the 
model values. The third step is 
implemented to further adjust the 
magnitude of the diurnal cycle in 
the model hourly T2m after the 
removal of the synoptic scale bias.  
The magnitude of a diurnal cycle, 
defined as the difference between 
the daily Tmax and Tmin, is 
determined for each day for both 
the observations and the model 
T2m.  Ratio between the 
observation and model based 
diurnal amplitudes are calculated Fig.3. Same as Fig. 1, but for CPC Tmin and GFS Tmin from March 26 to June 

06, 2018. 

Fig. 4. Same as Fig. 2, but for (a) time series of CPC Tmin and GFS Tmin at a selected location (lon=55.5o, lat=38o) in 
Iran from March 26 to June 06, 2018 and scatter plots between the CPC Tmin and GFS Tmin (b) before adjustment 
and (c) after adjustment. 
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using data over the 5-day window and applied to correct the diurnal range of the model hourly T2m for the target 
date.  
3.  Results 

Figure 1 displays the correlation coefficient, bias, and root mean square error (RMSE) between the CPC 
Tmin and CFSR Tmin for 2012.  Results indicate significant improvements of the adjusted CFSR T2m globally.  
Figure 2 shows the time series of the CPC Tmin and CFSR Tmin at a selected location (lon=249.25o, lat=35.08o) 
in the US for 2012 and scatter plots between the CPC Tmin and CFSR Tmin before adjustment and after adjustment, 
respectively.  Both the bias and the RMSE are reduced after adjustment. Similar results are obtained for Tmax 
(not shown). 

Figure 3 is another example of the correlation coefficient, bias, and RMSE, but between the CPC Tmin and 
GFS Tmin from March 26 to June 06, 2018.  There are improvements of the GFS T2m after adjustment, 
particularly for the mean bias.  The time series of both the CPC Tmin and GFS Tmin at a selected location 
(lon=55.5o, lat=38o) in Iran from March 26 to June 06, 2018 are shown in Figure 4, together with the scatter 
plots between the CPC Tmin and GFS Tmin before adjustment and after adjustment, respectively.  Both the bias 
and RMSE are reduced after adjustment.  Results are similar for Tmax (not shown). 

Figure 5 presents the time series of the ISD and CFSR hourly T2m at a selected location (lon=288.92o, 
lat=48.25o) in Canada from March 23 to June 06, 2018.  The scatter plots between the ISD and CFSR T2m before 
and after the adjustment are also displayed, respectively.  Figure 6 is same as Figure 5, but for the ISD and GFS 
hourly T2m at a location (lon=357.62o, lat=53.37o) in UK.  Compared to the unadjusted data, both the bias and 
RMSE are reduced after the adjustment. 

4.  Conclusion 

Evaluation of the adjusted hourly T2m against independent observations of hourly surface air temperature 
(ISD station data) indicates improved quality of the adjusted CFSR/GFS T2m compared to the unadjusted fields.  

Fig. 5. (a) Time series of the ISD and CFSR hourly T2m at a selected location (lon=288.92o, lat=48.25o) in Canada, 
from March 23 to June 06, 2018 and scatter plots between the ISD and CFSR T2m (b) before adjustment and 
(c) after adjustment. 

Fig. 6.  Same as Fig. 5, but for the ISD and GFS hourly T2m at a location (lon=357.62o, lat=53.37o) in UK. 



PAN AND XIE 
 

 

51 

In general, the improvements in the CFSR hourly T2m are relatively larger than the GFS.  Possible reasons may 
be related to larger forecast error in the GFS model (e.g., phase shift between model and observations) and 
approximations made in calculating daily mean values for the GFS adjustment.  The global hourly T2m analysis 
has been done for an 8-year period starting from 2011 and an automatic system has been established on a CPC 
server to real-time update the analysis. 
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1.  Introduction 

This study supports the current experimental Climate Prediction Center (CPC) week 3-4 temperature and 
precipitation outlooks, which are released once per week and focus on mean climate conditions anticipated for 
a two week forecast period. CPC is preparing to add realtime forecasts of the Global Ensemble Prediction 
System (GEPS) from the Environment Canada (EC) to its set of week3-4 forecast tools. Evaluation of the 
realtime forecast of GEPS is for development of model tools to improve CPC week3-4 outlooks.     

2.  Model and data procedure 

The GEPS reforecast was implemented at the Canadian Meteorological Center (CMC) of Environment 
Canada for operations in December 2013 (see Gagnon et al. 2015). The main goal of the reforecast procedure 
is to generate a historical dataset that is representative of the current operational GEPS forecast. GEPS forecasts 
are an integral part of the collaboration with the United States National Centers for Environmental Prediction 
(NCEP) in the North American Ensemble Forecast System (NAEFS) project. 

The reforecast dataset used in this study is the extension reforecast initialized once per week on Thursdays 
(2016 calendar) out to 32-days. There are 4 members (1 control run with 3 perturbation runs) at 1x1 spatial 
resolution. We evaluate the variables of 2m temperature, surface precipitation, 500hPa and 200hPa heights. We 
estimate model mean bias as well as derive skill information from the ensemble mean over the reforecast period 
(1995-2014). For comparing with observations, the verification data used are the CPC’s unified temperature, 
CPC land only gauge-satellite merged precipitation data, and CDAS reanalysis for 500hPa and 200hPa heights. 

3.  Results 
In order to assess model forecast ability, mean biases for the week 3-4 forecast period were 

removed from model climatology (1995-2014) of the ensemble mean (4 member averaged) for each 
IC to against the observed climatology. For convenience of discussion and easy display seasonal model 
biases of 4 variables were averaged for DJF, MAM, JJA and SON. Anomaly correlations were 
calculated to represent the ensemble mean forecast skill for DJF, MAM, JJA and SON of 2m 
temperature and precipitation from GEPS.  The anomalies are uncalibrated but remove the model 
systematic errors by the reforecast from 1982-2014. The forecast skill of week3-4 temperature is 
relatively low on average over the U.S. The forecast skill of precipitation is even lower (see Fig. 1) 
than that of temperature, which is similar to the assessment results of ECMWF and JMA models. 

4.  Summary 
In order to improve realtime week3/4 forecast for U.S. temperature and precipitation, a new week3/4 

dynamic model forecast tool derived from Global Ensemble prediction system (GEPS) of Environment Canada 
is implemented in CPC. The realtime forecasts include the ensemble mean anomalies and probability prediction 
for temperature and precipitation over U.S., as well as 500hPa height over the Northern Hemisphere. This study 
examined the prospects of GEFS extension productions for week 3/4.  Temperature anomaly correlations show 
some useful prediction skills of week3/4 in both temporal and spatial scores, which are calculated from the 
ensemble mean anomalies after the model bias being removed.  We also evaluated forecasts by applying the 
ensemble regression to calibration from reforecast, which is initialized once a week with 4 members for period 
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1995-2014. The skills measured by Brier Skill Score and Heidke Skill Score indicate moderate improvement  
for temperature forecasts. The skills of precipitation forecast for week3/4 are relatively low on average over 
U.S. and similar to that of ECMWF and JMA models. However, forecast opportunities exist in some regions 
and seasons.   

Acknowledgements.  We thank N. Gagnon for the reforecast data of GEPS from Environment Canada. 
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Fig. 1  Week 3-4 forecast skill of precipitation for DJF, MAM, JJA and SON seasons. 
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1.  Introduction 

The Climate Prediction Center (CPC) currently produces a product called the Global Tropics Hazards and 
Benefits Outlook which highlights areas of tropical cyclone (TC) formation and above- and below-average 
rainfall for the upcoming Week 1-2 forecast period.  The product is issued each Tuesday with an update on 
Friday during the peak of the Northern Hemisphere (NH) TC season (June 1st – November 30th).  It consists of 
a graphic highlighting Moderate and High Confidence of TC development and rainfall in the upper and lower 
third tercile, a live briefing, and a detailed 
discussion summarizing the forecaster’s 
reasoning.  CPC is working to shift this 
product to weeks 2 and 3 (with an eye on 
week 4) and make it a probabilistic 
forecast.  The goal of this study is to 
provide tools to support these TC forecasts 
at weeks 2-4.  Work is also being 
performed on precipitation at these leads, 
but is beyond the scope of this 
presentation. 

2.  Data and methods 

The CPC has access to three models in 
real-time that extend out to the week 4 time 
period.  NCEP’s Climate Forecast System 
Version 2 (CFSv2), the European Centre 
for Medium-Range Weather Forecasts’s 
(ECMWF) Integrated Forecasting System, 
and the Canadian Meteorological Centre’s 
(CMC) Environment Canada are examined 
to identify skill at the week 1 to 4 leads.  
Verification is performed using the Best 
Track datasets from NOAA and the Joint 
Typhoon Warning Center (JTWC).    

In order to track TCs in the models, a 
detection algorithm based on Carmargo & 
Zebiak (2002) is utilized.  This method 
uses seven criteria to designate a grid point 
as a TC.  These criteria guarantee that the 
TC is a warm-core system, has a local 
minimum in sea level pressure, and a local 

Fig. 1  Anomaly correlations of TC counts averaged over 1999-2012 
with lead times from week 1 to week 4 for the a) Atlantic, b) 
Eastern North Pacific, c) Western North Pacific, d) North Indian, 
e) South Indian, f) Australian, and g) South Pacific basins for the 
CFSv2 (red), the CMC (blue), and the ECMWF (green).  Note 
data from ECMWF does not yet extend into the full SH season.   



LONG 
 

 

55 

maximum in wind speed.  The TC point is 
then tracked forward and backward in time 
following the vorticity maxima.   For 
analysis, the globe in broken up into seven 
ocean basins: Atlantic (ATL), Eastern 
North Pacific (ENP), Western North 
Pacific (WNP), North Indian (NI), South 
Indian (SI), Australian (AUS), and South 
Pacific (SP).   

The models produce a high number of 
False Alarms (FAs), which are storms that 
do not occur in observations but are 
produced by the model.  Because of this, a 
filtering technique is employed on the 
tracks.  Storm tracks are converted into a 
grid format to create storm track density 
distributions.  Using this grid format, the 
number of FA storms are calculated and 
used to filter the tracks.  A track is filtered 
by subtracting out the model climatology 
and the weekly FA climatology.  Any point 
remaining above zero is considered a TC.  
This method increases skill when trying to 
predict TC track locations. 

3.  Results 

Skill scores for both TC count and 
storm track are calculated using the model 
hindcasts to examine the viability of using 
these forecasts.   Because the hindcasts are 
over different periods, only the 
overlapping years of 1999-2012 are used 
to compare results.  Also note that 
ECMWF has only been available for this 
study since May, so values for November 
through April are not yet available, which 
includes the southern hemisphere (SH)  
season.   

For the TC count, the number of storms occurring in each week are averaged by ensemble member and 
compared to observations using an anomaly correlation (AC) which removes the skill from the seasonal cycle.  
The AC is calculated for each year during the basin’s active season and averaged over the 14-year period to 
create the correlations seen in Figure 1.  Because data for the ECMWF were not yet available during the SH 
season, results for this model are only included for the NH basins.  As expected, correlations drop with increased 
lead, but there is some skill retained in later weeks.  CFSv2 and ECMWF tend to outperform CMC with 
ECMWF having the highest correlations in week 1 and CFSv2 leading in weeks 2-4.  The ATL tends to be the 
exception with low correlations from the CFSv2.  Overall, the SI and three Pacific basins (ENP, WNP, and SP) 
show the highest level of predictability.    

In order to quantify the skill in the storm track forecast, the Heidke Skill Score (HSS) is used as a 
verification tool.  The HSS is based on a 2x2 contingency matrix of hits, misses, FAs, and correct null forecasts.   
A hit is defined as having a forecasted storm within three grid points (or 3o) of an observed storm. This score 
only gives credit for correct forecasts when a storm is observed, meaning no skill is given for correctly 

d) NI 

c) WNP 

b) ENP 

a) ATL e) SI 

f) AUS 

g) SP 

Fig. 2  Heidke skill scores for filtered storm tracks for Week 1 (red) 
and Week 2 (blue) for the a) Atlantic, b) Eastern North Pacific, 
c) Western North Pacific, d) North Indian, e) South Indian, f) 
Australian, and g) South Pacific basins averaged from 1999-
2012.  The CFSv2 is in solid lines, the CMC in dashed lines, and 
the ECMWF in dotted lines.  The black dashed line at 0.2 is 
included as a reference point.  Note the x-axis change from May-
December for NH basins (a-c) to March-February for NI (d) and 
to July-June for SH basins (e-g). 

CFS         CMC      ECMWF 
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predicting a lack of activity if a storm is 
never present.  Therefore, months with no 
activity will have a zero score.    Figure 2 
shows HSSs for weeks 1 and 2, and Figure 
3 shows the scores for weeks 3 and 4.  
During the earlier leads in weeks 1 and 2, 
ECMWF outperforms CFSv2 and CMC 
with scores surpassing 0.4 during the peak 
in the seasons.  Skill is highest for the two 
NH Pacific basins (ENP and WNP) which 
is consistent with storm count ACs.  The 
two SH Pacific basins do not show as 
much skill in TC track location as they do 
with storm count.  The CMC does show 
some skill in week 1 for the Australian 
basin which is also consistent with the 
count correlations.  In the longer leads of 
weeks 3 and 4, the ECMWF levels out with 
the rest of the models, rarely breaking the 
0.2 mark.  The WNP and ENP remain the 
most skillful basins for the ECMWF and 
CFSv2 with HSSs staying between 0.1 and 
0.2. 

4.  Concluding remarks 

The results presented here show that 
there is skill in predicting TC frequency 
and track at week 2 and somewhat in week 
3.  ECMWF shows the most skill in week 
1, but by week 2 through 4, both the 
ECMWF and CFSv2 show similar skill.  They both tend to outperform the CMC model.  Basins with the most 
predictability in both storm count and track are the ENP and WNP. 

These methods will soon be utilized to create a probabilistic forecast that will serve as a first guess for CPC 
forecasters.   Work is ongoing to incorporate both a dynamical-statistical model and forecasts of equatorial 
waves and other modes into the information provided by the dynamical models.  These additional tools will 
assist in forecasting the longer leads of weeks 3 and 4. 
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Fig. 3  Same as Figure 2 but for Week 3 (orange) and Week 4 
(green). 
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ABSTRACT 

 The atmospheric response to variations in tropical latent heating is known to extend well beyond its 
source region, and therefore it is thought that a reduction of tropical forecast errors in numerical prediction 
models should also benefit forecasts over the extratropics. This study is based on the hypothesis that a 
positive correlation between  short range tropical forecast skill and later lead times extratropical forecast skill  
implies that when the tropics is well predicted, subsequent extratropical skill is gained due to a better handling 
of connections between the two.  This relationship between tropical and extratropical predictive skill is 
evaluated using a conditional skill analysis 
applied to subseasonal reforecasts from the 
National Centers for Environmental Prediction 
Coupled Forecast System (NCEP CFSv2) and 
the European Centre for Medium-Range Weather 
Forecasts Integrated Forecast System (ECMWF 
IFS).  These two prediction systems are chosen 
to contrast the link between tropical and 
extratropical skill in a model that is known to 
perform relatively well in the tropics (IFS) to a 
model with lower tropical skill (CFSv2).  It is 
shown that in both systems there is enhanced or 
attenuated skill in Northern Hemisphere Week 2-
4 forecasts when tropical short range 
precipitation forecasts are ``good'' or ``poor'', 
respectively (Fig. 1). This conditional skill is 
further modulated by both El Nino Southern 
Oscillation (ENSO) and the Madden and Julian 
Oscillation (MJO), particularly in the IFS. The 
results presented here indicate that while 
midlatitude Week 2-4 predictive skill in both 
systems would benefit from improvements in 
Week 1 tropical performance, this improvement 
would be particularly advantageous for the 
NCEP system.    

The paper has been submitted to 
Geophysical Research Letters (GRL) for 
publication.  
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Fig. 1  Solid (dashed) lines show the fractional increase 
(decrease) in N.H. z500 anomaly pattern correlation 
(APC) when Day-2 tropical precipitation model 
forecasts are “good” (“poor”) relative to the mean 
APC. The x-axis correspond to the lead and averaging 
window used to calculate the APC (Zhu and Wheeler 
2014), e.g. 1w1w is the APC of the average Week 2 
prediction. CFSv2 (ECMWF) fractional APCs are 
shown in blue (red). CFSv2 (ECMWF) APCs are 
averaged from October through March from 1999-2010 
(1999-2016), using reforecasts from the S2S database.  

(Figure 3b from the manuscript submitted to GRL) 
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1.  Introduction 

The public demand for sub-seasonal forecasts have been steadily increasing in recent years, primarily driven 
by many industries, such as water management, agriculture, transportation, commerce and insurance etc., to 
prepare for and reduce risk from damaging meteorological events well in advance. Numerical forecasts on the 
Week 3-4 time scale are relatively new and to be one of the most challenging and difficult forecast time scales. 
Past forecast efforts have been focused on the short term weather forecasts out to 7-10 days and operational 
short term climate outlooks from month to several seasons. There is a clear forecast gap between the Week 3 
and 4. 

In 2016, the National Oceanic and Atmospheric Administration (NOAA) initiated the efforts to improve its 
capability for the Weeks 3 and 4 extended range forecasts. Covering this extended-range Week 3~4 forecasts 
will enable NOAA to provide seamless S2S forecasts to the public for protecting life and property. So far, the 
Week 3 ~4 forecast skills from direct dynamical forecast models are much lower than the short range forecasts, 
such as 1~7 days and the Week 1~2 forecasts. In this study, the deep machine learning (i.e. Neural Network – 
NN) techniques are proposed to explore, test, evaluate, and eventually implement a reliable statistical post 
processing method utilizing model derived fields to improve the original NOAA CFS Week 3-4 time range 
model precipitation (P) and 2 meter air temperature (T2m) forecasts.  
2.  Methodology and data 

Usually statistical post processing of model outputs is based on a reasonable assumption that there is a 
relationship between target variables (predictands) (e.g. observed weather and climate elements) and input 
variables (predictors) (e.g. the NWP model forecast variables).  In a very generic symbolic way, this relationship 
can be written as:  

𝑍𝑍 = 𝑀𝑀(𝑋𝑋);     𝑋𝑋 ∈ ℜ𝑛𝑛, 𝑍𝑍 ∈ ℜ𝑚𝑚       (1) 

where X is a input vector composed of model forecast variables or predictors, Z is a output vector composed of 
observed meteorological elements or predictands, n is the dimensionality of the vector X (or input space), and 
m is the dimensionality of the vector Z (or output space).  M denotes the mapping (relationship between the two 
vectors) that relates vectors X and Z.  

 Since both model forecast variables (predictors) and observations (predictands) contain errors in their data 
representations, a statistical approximation of the mapping Eq.(1) can be written as, 

𝑌𝑌 = 𝑀𝑀𝑠𝑠(𝑋𝑋)           (2) 

here vector Y can be considered as a vector of corrected model variables X and Ms isa statistical approximation 
for the mapping M in Eq (1). 

The NN techniques are very flexible and convenient mathematical/statistical tools that can allow users to 
approximate different complicated nonlinear input/output relationships/mappings, by using statistical deep 
machine learning algorithms (Krasnopolsky 2013). The simplest NN approximations use a family of analytical 
functions like: 
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𝑦𝑦𝑞𝑞 = 𝑁𝑁𝑁𝑁(𝑋𝑋,𝒂𝒂,𝒃𝒃) =  𝑎𝑎𝑞𝑞0 + ∑ 𝑎𝑎𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡𝑞𝑞;𝑘𝑘
𝑞𝑞=1          𝑞𝑞 = 1,2, … ,𝑚𝑚    (3)  

where 

      𝑡𝑡𝑞𝑞   =  𝐹𝐹(𝑏𝑏𝑞𝑞0 + ∑ 𝑏𝑏𝑞𝑞𝑗𝑗 ∙ 𝑥𝑥𝑗𝑗) = 𝑛𝑛
𝑗𝑗=1 tanh (𝑏𝑏𝑞𝑞0 + ∑ 𝑏𝑏𝑞𝑞𝑗𝑗 ∙ 𝑥𝑥𝑗𝑗);   𝑛𝑛

𝑗𝑗=1      (4) 

here xi and yq are components of the input and output 
vectors X and Y, respectively, a and b are NN weights, n 
and m are the numbers of inputs and outputs respectively, 
and k is the number of the nonlinear basis activation 
function  𝑡𝑡𝑞𝑞  (or hidden neurons). Here the hyperbolic 
tangent is used as an activation function. Eq. (3) is a 
mapping, which can approximate any continuous or 
almost continuous (with final discontinuities) mapping 
(Krasnopolsky 2013). A pictographic representation of 
the entire NN was shown in Fig.1 and the connections 
(arrows) correspond to the NN weights. 

To find coefficients aqj and bji in NN Eq. (3, 4), an 
error function, E, is created,  

𝐸𝐸 =  1
𝑁𝑁
∑ [𝑍𝑍𝑗𝑗 − 𝑁𝑁𝑁𝑁(𝑋𝑋𝑗𝑗)]2𝑁𝑁
𝑗𝑗=1    (5)                                                                                                                                                                                                                                               

where vector Zi  is composed of observed weather 
elements, and N is the total number of paired records 
included in the training data set.  Then, the error function 
(5) is minimized to obtain an optimal set of all coefficients aqj and bji via a simplified version of the procedure 
known as the back propagation training algorithm. The back propagation algorithm searches for minimum of 
error (or cost) function in weight space through the steepest (gradient) descent method. It partitions the final 
total cost to each of the single neuron in the network and repeatedly adjusts the weights of neurons whose cost 
is high, and back propagate the error through the entire network from output to its inputs.  

The data set used for predictors here is the bias corrected Week 3~4 forecast total precipitation (P) and  
mean 2 meter (T2m) temperature etc., and from the NOAA Climate Forecast System (CFS) (Saha et al. 2006, 
2014) for period Jan. 01, 1999 to Dec. 31, 2018. The data domain used in this study covers the Conterminous 
US (CONUS) only, has 1x1 degree spatial resolution and on daily temporal resolution initialized at 4 different 
times (00Z, 06Z, 12Z and 18Z) per day.  

The data set used for correspondent target variables (predictands) are the observed P from the gauge based 
daily CPC Unified Precipitation Analysis and the observed T2m from the Global Telecommunications System 
(GTS) based daily maximum and minimum 2 meter temperature analysis (Chen et al. 2008, Shi personal 
communication, Fan et al. 2008). Both the above observed P and T2m are converted to two weekly total and 
two weekly mean, and re-gridded to the same spatial-temporal resolutions as the above predictors. 

3.  Results 

It is well known that the forecasts for the Week 3-4 time scale is one of toughest forecast areas and the 
skills are very low in general. In this study, an open question wanted to be addressed is if the deep machine 
learning techniques used here can add additional values to improve the targeted forecasts in the Week 3-4 time 
scale, when compared with the benchmark multiple linear regression (MLR) tools and also the bias corrected 
CFS the Week 3~4 forecasts as the inputs (or predictors).   

Several tests have been conducted and the results indicate that using ensemble mean from 4 initial time 
(00Z, 06Z, 12Z and 18Z) the resultant Week 3~4 NN P and T2m forecasts in general are better than the results 
from using the CFS P and T2m forecasts on the individual initial time. In the following part of this paper, the 
main focus will be all on a more beneficial NN configuration that the entire NN training and testing at all 
locations will be done simultaneously in just one same training cycle.  

Fig.1 The simplest NN with one hidden layer and 
linear neurons in the output layer. 
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Figure 2 shows that overall the root mean square errors (RMSE) and anomaly correlation coefficients (ACC) 
of the bias corrected ensemble mean CFS P forecasts improved by the NN are better than that of the forecast 
results obtained from the benchmark multiple linear regression method for most locations. Here the NN training 
period is from 01/01/1991 to 12/31/2016 (6575 day records). The period of 01/01/2017 to 10/31/2018 (~670 
day records) is used as independent verification period. The above results indicate both the NN and the MLR 
methods improved the bias corrected CFS Week 3~4 P forecasts, especially the forecast skills in quite parts of 
the western CONUS are encouraging (ACC over 0.4 or 0.5). The NN forecasts show clearly better forecast 
skills than the MLR forecasts over most locations in term of the RMSE and ACC. It may also indicate that the 
NN corrections which take into account of the non-linearity, pattern relationship and co-variability impacts are 
important for improving P forecasts. 

Same as precipitation, Figure 3 shows that the root mean square errors (RMSE) and anomaly correlation 
coefficients (ACC) of the bias corrected ensemble mean CFS T2m forecasts by the NN are better than that of 
the forecast results obtained from both CFS and the benchmark MLR method for most locations. The above 
results indicate both the NN and the MLR methods improved the bias corrected CFS Week 3~4 T2m forecasts, 
especially the forecast skills in large parts of the southwestern CONUS and the eastern half of the CONUS are 
quite encouraging (ACC over 0.4 or 0.5). The NN forecasts show clearly better forecast skills than the MLR 

Fig.2  The RMSE and ACC of daily Week 3~4 total P by (a, d) Bias corrected CFS ensemble mean forecasts, (b, e) 
MLR forecasts, (c, f) NN forecasts, against correspondent observation for period of  Jan.1 2017 to Oct. 31, 2018. 
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forecasts over most locations in term of the RMSE and ACC. It may also represent that the impacts of the non-
linearity, pattern relationship and co-variability are also very important for the T2m correction. 

Checking the overall forecast performance of three (CFS, MLR and NN) forecasts over the 2017-2018 two 
years verification period, both the MLR and the NN constantly beat the CFS.  But the NN forecasts did much 
better job than the MLR forecasts in many aspects. Figure 4 depicts that the examples of the observed P and 
T2m anomalies, together with the correspondent Week 3-4 CFS, MLR and NN forecast anomalies. In both 
cases, the NN techniques show very impressive ability to reverse the wrong P and T2m forecast patterns. 

4.  Conclusion 

In this study, the artificial neural network (deep machine learning) techniques are used to improve the NCEP 
CFS Week 3~4 P and T2m forecasts. Benefiting from the great advance in machine learning in recent years, 
the NN techniques show some advantages over traditional statistical methods (e.g. multiple linear regressions): 
such as flexible algorithm that can account for complicated linear and non-linear relationships, spatial 
dependency and co-variability etc., at the same time is able to handle big data easily. Those learned statistical 

Fig. 3  The RMSE and ACC of daily Week 3~4 T2m by (a, d) Bias corrected CFS ensemble mean forecasts, (b,e) 
MLR forecasts, (c,f) NN-A forecasts,  against daily observation for period of Jan.1 2017 to Oct. 31, 2018. 
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patterns and relationships from the 
NN training processes then are 
used by the NN to make the 
corrected forecasts.  

Better data representation is 
very important for the NN 
training. The EOF analysis 
indicates that the CFS is very good 
at predicting large-scale patterns 
and low frequency variations in 
observed precipitation, rather than 
at capturing those highly 
parameterized and unresolved 
processes in precipitation. Better 
data representation may be 
archived by using ensemble means 
to increase the explained 
percentage of the total variance 
and to reduce noise in the data. 

Although the improvement on 
the Week 3~4 precipitation and 
T2m is very encouraging, the 
overall forecast skill (in terms of 
RMSE and ACC) for the Week 
3~4 precipitation and 2m air 
temperature predictions is still not 
great. Further studies are 
definitely needed. 
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T2m (bottom 4 plots) week 3-4 forecast anomalies.   
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ABSTRACT 

 El Niño-Southern Oscillation (ENSO) exerts tremendous influences on the global climate. Through 
dynamic lifting and thermal forcing, the Maritime Continent (MC) plays an important role in affecting global 
atmospheric circulation. In spite of the extensive studies on ENSO mechanisms, the influence of MC on the 
characteristics of ENSO life cycle remains unclear. Our coupled model experiments reveal that the absence of 
the MC land contributes to a strong ENSO asymmetry and a weakened nonlinear atmospheric response to the 
combined seasonal and interannual SST variations (i.e. the combination mode) that prolongs the warm events, 
resulting in a reduction of ENSO frequency (see Figs. 1d and 1h). On the other hand, our experiments suggest 
that the global climate model applied (NCAR CESM) overestimates the MC topographic uplifting effect on 
ENSO simulation. Overall, this study provides a new physical insight into the nature of the MC influence on 
ENSO evolution. 

 
This work has been published in Scientific Reports in 2018.  
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Fig. 1  First combined EOF modes of 925-hPa wind, 
representing the ENSO mode.  Spatial pattern 
(left) and corresponding principal component 
(PC) (right) for (a-b) NCEP CFSR, (c-d) CTL 
experiment, (e-f) NOTOPO experiment (the 
elevation is reduced to zero over the MC to 
highlight the topographic effect which is 
dominated by dynamical lifting), and (g-h) 
NOLAND experiment (the land surface over the 
MC is replaced by a layer of seawater of 10-meter 
depth to show the combined effect of MC 
topography and thermal forcing), respectively. 
Shadings in the left panels represent the pattern of 
zonal wind. In the right panels, solid black lines 
denote the corresponding PC1s, and dashed red 
lines denote Niño-3.4 indices. 
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1.  Introduction 

The current seasonal forecast process at NOAA’s Climate Prediction Center (CPC) dates back to 1995, and 
involves issuing temperature and precipitation forecasts for the upcoming 13 three-month overlapping seasons. 
Statistical and dynamical models are both used to inform the forecast process, with an objective consolidation 
introduced in 2006 (O’Lenic et al., 2008). Beginning in 2011, forecasts from the National Multi-Model 
Ensemble (NMME) have been available to forecasters and used heavily in constructing official outlooks. A 
looming issue for seasonal forecasts, especially temperature, is the role of long-term trends – much of the skill 
of seasonal temperature forecasts can be attributed to the fact that above-normal temperatures are observed 
more in real time than over the reference climatology (currently 1981-2010).The first section will detail some 
recent developments in seasonal forecasting using empirical forecast techniques, as well as post-processing of 
dynamical guidance and subsequent consolidation across suites of forecast guidance.  The second section will 
discuss research results related to a project that explores how to better handle long-term trends in seasonal 
forecasts.    

2.  Developments in the seasonal forecast process 

Beginning in 2016 there have been multiple efforts to update the legacy empirical tools suite that forms the 
basis of the seasonal forecasts. Post-processing and calibration of dynamical model data from the NMME has 
been prioritized, and most recently a new 
consolidation of the statistical and dynamical 
forecast tools has been developed and made 
available to forecasters in real time.  

Since 2017, three new empirical forecast 
tools have been derived and used in the forecast 
process: 

• ENSO-OCN: This empirical model 
uses the official CPC Niño 3.4 
consolidation forecast as a predictor in 
a linear regression model. The 15-year 
optimal climate normal (OCN; running 
15-year mean anomaly relative to 
reference climatology) is removed 
prior to regression and then added back 
in the end. The process uses a leave-
one-year-out cross validation to 
generate skill metrics and calibrate the 
forecast anomalies using linear 
regression. Probabilistic temperature 
and precipitation (precipitation data are 
subject to a square root correction) 

Fig. 1  Reliability diagram of lead-1 temperature forecasts valid 
for DJF from the NMME and final consolidation forecast 
over North America from 1981-2018. The blue line shows 
the reliability of the mean of individually PAC-calibrated 
NMME models, while the red line shows the reliability 
after the second pass PAC calibration. The final 
consolidation and perfect reliability are in green and purple, 
respectively. 
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forecasts are created by using the 
model’s residual error to fit a single 
Gaussian distribution around the 
forecast anomaly.  

• CCA: The current operational 
canonical correlation analysis (CCA) 
used for Niño 3.4 prediction is 
extended to temperature and 
precipitation by changing the 
predictands. This forecast system 
currently uses sea surface temperature 
(SST) and sea level pressure anomalies 
as predictors. A forward-moving 
hindcast from 1995 onward is used to 
calculate skill and calibrate using 
regression. Probability forecasts are 
likewise calculated by using the 
unexplained variance from the 
regression calibration process. 

• SST Constructed Analog: A long-time 
favorite of CPC forecasters, this 
product has been reinvigorated by 
using its cross-validated hindcast to 
generate probabilistic forecasts. 

The NMME dynamical model suite is 
currently calibrated using probability anomaly 
correlation (PAC; van den Dool et al. 2017). In 
real time this process works by calibrating each 
model and then averaging across models using 
equal weights; this can lead to under-confident 
forecasts (Fig. 1). This issue can be understood 
intuitively by considering two models – one that is skillful and one that is not skillful. The probabilities from 
the model with no skill are damped to climatology in the PAC calibration process; however, some portion of 
the probability anomalies from the skillful model is retained.  In this case the forecaster would not want to 
consider the skill-less model, however it has the effect of further damping the skillful model when included in 
the final, averaged product. To address this as part of the new consolidation process, the NMME constituent 
model forecasts are combined by weighting according to their PAC coefficients as a function of grid point. This 
combination is then subject to a second pass PAC calibration, thus eliminating the under-confidence. The 
statistical models are likewise combined into a statistical model constituent. The NMME and statistical 
combinations are then consolidated by weighting based on PAC coefficient and calibrating over the entire 
hindcast – this yields the final consolidation that can serve as a first guess for the official forecast. This process 
continues to update in real time, so model biases and the PAC coefficients are based on the maximum amount 
of available data.  
3.  Ongoing challenges – Long-term trends 

An ongoing challenge in seasonal climate forecasting is how to optimally handle long-term trends. We 
know, for instance, that CPC’s seasonal temperature forecast skill is largely due to observed long-term warming 
trends (e.g. Peng et al., 2012). At first glance this might seem to indicate that beyond the linear trend there is 
little seasonal forecast skill. However, the apparent skill in predicting interannual and even decadal variability 
can be muted by the dominance of long-term trends in forecasts and observations. Therefore separating secular 
warming from decadal and interannual climate variability is potentially important for short-term climate 

Fig. 2  Loading patterns for the non-stationary trend (PC2, top 
panel) and AMV (PC6, middle panel) shown as correlations 
between the PCs and SST anomalies from 1900-2017. The 
bottom panel shows the PC times series over the 1900-2017 
period. 
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prediction. Furthermore, 
distinguishing between climate 
variability as a function of time 
scale can provide an on-the-fly 
attribution of forecast and 
observed seasonal climate 
anomalies.   

Historically CPC has 
incorporated trends through the 
OCN tool, which takes advantage 
of the fact that the fixed 30-year 
WMO climatology is not likely the 
ideal ‘first guess’ for seasonal 
temperature and precipitation. One 
can test for the ideal number of 
preceding years, which will 
varying seasonally and spatially, 
but a fixed 15-year OCN is a 
simple and reasonable method 
currently used.  

An ongoing research project 
has attempted to deal with the issue 
of trends by decomposing seasonal 
SST data following Guan and 
Nigam (2008). A rotated, extended 
EOF analysis of 20th century SST 
anomalies yields principal 
components (PCs) that correspond 
to variability ranging from ENSO to the secular trend. Preliminary results showed that using the trend PC or a 
linear trend line was better than the OCN-15 at reconstructing seasonal temperature anomalies. Adding a PC 
corresponding to Atlantic multidecadal variability (AMV) closed the gap between the linear trend line and the 
SST PC comprising the secular trend. The overarching idea is that it would be desirable to have a small subset 
of physically-grounded time series (e.g. derived from SST) through which one might attribute climate anomalies 
to variability on decadal time scales or longer.  

These preliminary results, however, were data dependent reconstructions, and so an experiment was devised 
that would test these PCs in a predictive capacity. Starting in 1980, the extended, rotated EOF analysis is 
computed for 1900-1980 using ERSSTv5, and various PCs are used as predictors. Temperature and 
precipitation data (GHCN+CAMS and CPC’s gauge-based reconstruction, respectively) from 1950-1980 is 
used in a linear regression model to generate a forecast for seasons in 1981, using no future data. This process 
is repeated for each year from 1981 to 2017 resulting in a forward moving hindcast.  Figure 2 shows the loading 
patterns associated with the long-term trend and AMV and their PC time series. Hindcast skill is calculated 
using anomaly correlation coefficients, and results are compared to the skill of an OCN-15 forecast. This 
process is repeated using a fixed climatology (anomalies relative to fixed mean and zeroed out in correlation 
calculation), a trailing 30-year WMO climatology (i.e. using 1951-1980 climatology from 1981-1990), and a 
trailing 15-year climatology (zeroing out OCN).  

To emphasize the empirical model skill relative to OCN, Figures 3 and 4 show the skill of three 
reconstructions (trend alone, AMV along, and the leading 10 PCs) relative to a trailing 15-year climatology, for 
each of the four meteorological seasons. The AMV component seems to yield skillful temperature forecasts 
relative to OCN over the Plains during JJA and over much of southern Canada during SON. The Trend PC 
provides little value relative to OCN in this framework with marginal and mixed temperature results. The role 

Fig. 3  Anomaly correlation between the temperature hindcast and 
observations where anomalies are with respect to a trailing 15-year 
climatology. Left (right) column is for lead-3 DJF (MAM) forecasts. 
From top to bottom rows: forecast using trend PC as predictor, forecast 
using AMV PC as predictor, forecast using the leading 10 PCs as 
predictors. 
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of ENSO can be seen in the skill of 
temperature forecasts using the 10 
leading PCs (ENSO variability is 
contained in three to four of the 
leading patterns), especially during 
the transition seasons. The results 
with respect to precipitation are 
difficult to interpret (not shown). 
The skill with respect to a trailing 
15-year climatology is surprisingly 
high, but this might point to the 
relative futility of OCN-based 
precipitation forecasts, at least as 
compared to temperature forecasts. 
Precipitation climatologies are 
more stationary than temperature, 
and these results may suggest that 
longer climate base periods are 
more appropriate for precipitation 
forecasts.  

Overall the results of the 
forward-moving hindcast 
experiment are mixed – OCN 
proves difficult to beat on 
independent data for temperature forecasts, but OCN may be ill-advised for precipitation forecasts. Some ideas 
for future directions include using a Hadley-OI blended dataset from 1900-present, which would be more akin 
to the Guan and Nigam (2008) method. Because ERSST uses recent data in its reconstruction of past data, it 
may not be as well suited to analyses targeting variability on decadal or longer time scales. The forward-moving 
approach is intentionally restrictive, but even outside of a prediction framework this analysis can be useful for 
monitoring and attribution of SST anomalies and associated climate impacts. 
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1.  Introduction 

In this study, the possible reasons why the seasonal mean precipitation prediction skill over the US west 
coast during December-January-February (DJF)  is low in the National Centers for Environmental Prediction 
(NCEP)’s Climate Forecast Systems version 2 (CFSv2) are explored. The analysis is based on the hindcasts 
and real-time forecasts from the North American Multi-Model Ensemble (NMME, Kirtman et al. 2014). We 
first examine how well basic features of the DJF precipitation in terms of its climatological mean, total 
interannual variability, and the mean response to ENSO SST are predicted across each of seven models in the 
NMME. We also assess the anomaly correlation skill and the signal-to-noise ratio (SNR) to validate whether 
the prediction skill of DJF precipitation over the west coast is low in general across the models. Then, we 
analyze the west coast precipitation response in individual models to anomalous ENSO SSTs during individual 
El Niño events to investigate to what extent the response during individual events differ from the composite 
response.  Specially, it can be approached in two ways: 1) by analyzing the consistency of precipitation 
responses across El Niño events in a single model, and thereby, examine the influence of ENSO SST flavor and 
possible non-linearity in the response; and 2) by analyzing the consistency of precipitation responses across 
seven models for a specific El Niño event to 
examine if the consistency improves as the 
amplitude of El Niño events gets larger. In the 
final analysis, we also analyze the DJF 
precipitation for the regions of US southeast 
coast with the same ensemble forecasts from the 
same set of models. Over the southeast coast the 
precipitation prediction skill is higher, and 
therefore, provides a contrasting case study to 
the analysis over the west coast of the US.  
2.  Results 

The results show that the simulated north-
south variations in DJF precipitation 
climatology and its interannual variability, 
together with the linear response to ENSO is 
similar in generally to that in observations, but 
there are differences in details, particularly in 
the amplitude (Fig. 1). However, the prediction 
skill across all the models is unanimously low 
and is in close proximity of the skill for the 
CFSv2 (Fig. 2). It is noted that there does not 
seem to be a correspondence between the linear 
ENSO response and skill that be possibly due to 
non-linearity in the precipitation response to 
ENSO, sampling issues, or the model biases. 
Further, the SNR is low for all models, and 
there is a lack of correspondence between SNR 

Fig. 1  The DJF Precipitation climatology (top row), standard 
deviation (middle row), and linear regression to Nino 3.4 
SST (bottom row) for seven models (CFSv2, and models A, 
B, …and F) in the NMME (Kirtman et al. 2004) and 
observations (Chen et al. 2002) over the US west coast 
(wCoast).  The US west coast area is aligned to an 8x21 
degree longitude/latitude rectangle. The unit is mm/day for 
the climatology and standard deviation and is mm/day of 
unit standard deviation of Niño 3.4 SST index for the 
regression. 
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and skill due to the biases in the model, small ensemble size, and the influence of sampling over short 
verification time period (Fig. 2).  

 The analysis comparing individual 
El Niño events and in individual models 
(Fig. 3) highlights the basic features: 1) 
the observed seasonal mean, which is a 
combination of both the response and the 
contribution from the unpredictable 
internal variability, clearly indicates that 
the event-to-event variability is much 
larger than the model ensemble mean 
response; 2) the consistency is better for 
stronger El Niño events, particularly 
over Southern California (SCA) where 
all models have above normal 
precipitation (except for the model A in 
1982); 3) for some models the response 
is very consistent across different El 
Niño events. In contrast, the response for 
some other models shows much stronger 
non-linearity; 4) comparing precipitation 
response across models for the same El 
Niño events does not lead to definitive 
conclusions; 5) the spatial pattern of the 
El Niño composite, in general, has a 
good resemblance with the linear 
regression pattern indicating that non-
linaerity in the response may not be a 
dominant factor; 6) for the strongest El 
Niño event of DJF2015/16, the 
precipitation response in the NMME 
ensemble mean has a good consistency 
with positive anomalies over the SCA, 
where the observed anomalies were 
negative.  

In contrasting to the case over the 
west coast, the precipitation ENSO 
response over the US southeast coast 
(seCoast) shows lower variability and 
similar amplitude of response indicating 
larger SNRs, consequently, the higher 
skills for the precipitation prediction. 
Further, the same models that had 
difficulties in replicating interannual 
precipitation variability along wCoast 
have a better performance in seCoast. 
The possible dynamical basis for 
differences in SNR for the precipitation 
variability along the wCoast and the 
seCoast is that precipitation variations 
over swCoast (seCoast) is less (more) 

Fig. 2  The DJF precipitation correlation skill and SNR for the seven 
models over the wCoast. Correlations (SNR) below 0.1 (0.3) are 
not shown. The area average AC for each model and NMME (going 
from left to right) is 0.24, 0.22, 0.00, 0.26, 0.14, 0.16, -0.02, and, 
0.20 and the area average SNR is 0.46, 0.38, 0.46, 0.47, 0.48, 0.38, 
and 0.52. 

Fig. 3  The DJF precipitation ensemble means during each of 11 El 
Niño events arranged from the weak to strong event (from the left 
to right columns) for each models, multi-model average (labeled 
as NMME), and observation over the US west coast. Unit is 
mm/day. 



CHEN AND KUMAR. 
 

 

71 

constrained by ENSO SSTs and is influenced more (less) by internal variability resulting in lower (higher) SNR. 
A lower (higher) SNR, in turn, will result in smaller (larger) skill in seasonal prediction. 

3.  Concluding remarks 

In summary, various analysis approaches based on the extensive dataset in the NMME from seven seasonal 
forecast models show that low skill in predicting seasonal mean precipitation along the US west coast is due to 
inherent predictability associated with a low signal-to-noise (SNR) regime. In contrast, for the same dataset, 
analysis over the US southeast presents a different paradigm of a higher SNR regime having a higher prediction 
skill. Another side of the analysis is that it did not provide answers to the questions like the sensitivity to 
different SST flavors in the ENSO response (non-linearity) for the precipitation over the US west coast, even 
though the analysis was based on a large multi-model dataset such as NMME. Such difficulty in itself may 
indicate it is in a low SNR regime, and a higher level of effort is required for extracting the signal above the 
noise and drawing robust inferences gets harder, for example, requiring larger ensemble sizes. 
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1.  Introduction 

It has been found with high confidence that human-induced climate warming drove the Arctic sea ice 
decline over recent several decades (IPCC 2013). It is very likely that the summer Arctic will be nearly sea ice 
free around 2040 based on model projections (Overland and Wang 2013). However, climate models are 
significantly underestimate the observed sea ice melting rate (Stroeve et al. 2012). This underestimation largely 
limits the confidence of the future projection of the sea ice change in climate models. 

  Recent studies revealed that both natural variability and anthropogenic warming modulate Arctic sea ice 
decline (Kay et al. 2011; Day et al. 2012; Swart et al. 2015). Especially, the significant contribution of 
atmospheric internal variability has been emphasized (Ogi and Wallace 2012; Ding et al. 2017). It found that 
the variability of minimum Arctic sea ice in September is highly related to JJA surface anticyclonic circulation 
anomalies (Ogi and Wallace 2012), which have vertical coherent structure from the surface to the upper 
troposphere (Ding et al. 2017). This atmospheric internal variability, in consort with warming directly induced 
by the external anthropogenic radiation forcing, contributes to the sea ice decline in recent decades (Ding et al. 
2014). However, it is still unclear that if this internal air-sea ice linkage can be well represented in climate 
models. 

2. Evaluation of model simulation 

In this study we evaluated the role of internal air-sea ice linkage in the simulation of sea ice trend in the 
forced run of 27 Coupled Model Intercomparison Project 5 (CMIP5) models and Large Ensemble (LENS) 
project output using the CAM5-BGC/CESM model (The Community Earth System Model with Community 
Atmosphere Model 5.0 as its atmospheric component uses active biogeochemistry). The results show that the 
observed tropospheric circulation pattern centered over northern Greenland is biased shifted to Chukchi Sea 
and the neighboring Arctic Ocean in climate models, which impact the sea ice export out of Arctic Ocean via 
kinematic effect. Second, the air-sea ice linkage induced by the internal variability can be simulated by CAM5-
BGC/CESM. This internal variability significantly contributes to the large spread of sea ice melting rates in 
forced climate model simulations. Stream function reasonably presents the internal circulation changes in the 
context of anthropogenic warming. Third, the underestimation of sea ice decline in the ensemble mean of model 
simulation is due to the atmospheric internal variability induced sea ice decline is mostly averaged out in the 
mean (see Fig. 1). The model simulations with an observation-like anticyclonic trend and anthropogenic forcing 
could reproduce a realistic sea ice decline. 

3.  Concluding remarks 

Our results suggest that the model performance in Arctic atmospheric circulation needs improvement to 
advance the simulation of the internal air-sea ice linkage. The contribution of internal variability to sea ice 
melting cannot be neglected when we estimate the future amount of Arctic sea ice loss. A model with a well-
represented internal variability, such as CESM-CAM5-BGC, is the precondition to get a reasonable projection 
of Arctic sea ice change. 
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Fig. 1  (a-c) Arctic September sea ice trend (% per decade) in 1979-2016 in observation (a), CMIP5 (b) and LENS-
F (c).  (d-f) Same as the (a-c) but for the 300hPa stream function (units: 106 m2 s-2 per decade.  It is noted that 
the interval for observation is the ten times of that in model ensembles).  (g) box plot of the trend of sea ice area 
(million km2 per decade) in observation (black star), CMIP5 27 models (purple box) and LENS-F 40 runs (green 
box).  The box values from bottom to top are the minimum, first quartile, median, third quartile and maximum 
of the CMIP5 27 model runs and LENS-F 40 runs, respectively. The dots denote the ensemble mean of CMIP5 
and LENS-F, respectively.  (h) Same as (g) but for the 300hPa stream function. The values in (g) were reversed 
to emphasize the sea ice loss. 
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1.  Introduction 

Hydrological cycle plays an important role in the interaction processes among elements of climate systems. 
It also acts as a major source for energy and precipitation in the global climate system, so the hydrological cycle 
can exert great influences on climate system variabilities (Webster 1994). Hence, the hydrological cycle is the 
major concern in various international projects, such as the World Climate Research Program (WCRP), the 
Global Energy and Water Cycle Exchange Project (GEWEX) and the Climate Variability and Predictability 
(CLIVAR). 

Moisture transports influencing China mainly include the following routes: southwesterly transport 
originating from the Somali Jet via the Arabian Sea-Indian Ocean-Bay of Bangle (BOB); southeasterly 
advection from the southern flange of the western Pacific subtropical high; cross-equatorial flow around 105°E 
via the South China Sea (SCS) and regions around; water vapor transport from mid-high latitudes. These 
moisture transports can be traced back to the western Pacific, South China Sea, Arabian Sea, and Indian Ocean 
(Ding 1994; Li  1999). Droughts and/or floods tend to occur in tandem with anomalous moisture transports and 
resultant moisture budgets from diverse sources (Xie et al. 2001; Sun and Ding 2002; Zhou et al. 2005; Liu et 
al. 2009). Under global warming, obvious decadal shifts of summertime precipitation in southern China have 
been reported. Accordingly, some studies investigated the precipitation variabilities in the Yangtze River Valley 
(YRV) (Xie et al. 2002; Zhuo et al. 2006) and 
South China (Lü et al. 1998; Shi and Ding 
2000; Chang et al. 2006) from the 
perspective of moisture transport 
qualitatively via the Eulerian scheme. 
Additionally, many recent studies 
quantitatively analyzed the water source of 
precipitation in Europe and North America 
via the Lagrangian scheme (Stohl and James 
2004; Brimelow and Reuter 2005; Roberge et 
al. 2009; Brubaker et al. 2001; Stohl et al. 
2008).  Such Lagrangian scheme were also 
employed in the investigations on heavy 
rainfall in southern Anhui (Su et al. 2010), 
enhanced precipitation in North China (Ma et 
al. 2008), extreme precipitation in eastern 
China during 2007 (Chen et al. 2011), and 
rainstorms occurring in the Huai-River (Jiang 
et al. 2011) during 2007. Similar studies paid 
particular attention to specific cases or 
precipitation processes of short duration. In a 
comprehensive way, Jiang et al.’s study 
(2013) traced enormous air particles to 

Fig. 1  Summer moisture budget anomalies (106kg/s ) during 
1957-2012 in South China (a) and the Yangtze River 
Valley (b). 
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provide climatological features of moisture transport from various sources to the mid-low reaches of the 
Yangtze River during Mei-Yu period in the past three decades. Pertinent results render a quantitative 
comparison between the water source of the Mei-Yu period in the YRV and precipitation periods in the northern 
part of the Huai-River (Yang et al. 2014).  
2.  Variability of atmospheric hydrological cycle in Asian monsoonal region 

Changes in precipitation are closely associated with the variability of atmospheric hydrological cycle, in 
which the moisture budget change is one of the most direct contributors. Figure 1 displays the moisture budget 
variation derived by the NCEP/NCAR reanalysis in South China (a) and the YRV (b).  Figure 1 shows generally 
in-phase evolution features between the moisture budget and precipitation in both regions, with respective 
correlation coefficients of 0.59 and 0.66 at the 0.01 significance level. On decadal-interdecdal scales, moisture 
budgets in South China experienced a phase transition from positive phase to negative phase in the mid-1970s, 
and a reverse process in the early 1990s.  As indicated in Figure 1b, the moisture balance in the YRV is under 
positive phase during 1980s-1990s, followed by a negative phase after 2000. Such variations in moisture budget 
are in good agreement with the precipitation changes temporally, with the positive balance corresponding to 
above-normal precipitation and the negative value corresponding to below-normal precipitation. So, anomalies 
in precipitation of southern China may be related with the moisture balance shifts.  

 To evaluate the relative contributions of water supply from each side to moisture budget changes, Figure 
2 presents the temporal evolution of meridional and zonal moisture budgets in both regions.  Clearly, no matter 
for South China and the YRV, an anti-phase relationship exists between zonal and meridional moisture budgets, 
i.e. positive moisture residual from zonal sides accompanied by deficient moisture on meridional sides, and 
vice versa.  In Fig. 2, variations of meridional moisture budgets in both regions match reasonably well with the 
total moisture budgets. Of particular note is that the meridional moisture budget turned into a regime with 
significantly positive balance in the early 1990s (Fig. 2b) and the meridional component for the YRV stepped 
into a deficient period (Fig. 2d). These transitions are explicitly consistent with the total moisture budget in 
both regions, indicating that the total moisture budgets in these regions are largely controlled by the meridional 
components. 

Fig. 2  Anomalies of zonal (a) and meridional (b) moisture budgets (106kg/s) in South China during 1957-2012. 
(c) and (d) same as (a) and (b), but for the Yangtze River Valley. 
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In this study, particular attention is paid to 
moisture budget variations from four sides in both 
two regions during the latest precipitation 
transition. As shown in Fig. 3a, after 1990s 
(difference between 1993-2012 and 1981-1992), 
moisture inflows increased by 77.1﹡106kg/s and 
21.3﹡106kg/s via southern side and western side 
respectively. While, losses of moisture increased 
by 38.9 ﹡ 106kg/s and 6.5 ﹡ 106kg/s via the 
northern side and the eastern side respectively. 
Consequently, the positive moisture balance in 
South China after 1990 was mainly contributed by 
the increased meridional inflow from the southern 
side, and secondly contributed by the increased 
zonal inflow from the western side.  For the YRV 
after 2000s (Fig. 3b, difference between 2000-
2012 and 1981-1999), the moisture inflow via 
southern side decreased by 62.4﹡106kg/s, while 
the moisture inflow increased by 3.7﹡106kg/s 
from the western side. The loss of moisture via 
northern side increased by 11.1﹡106kg/s, while 
the outflow via the eastern side decreased by 49.1
﹡106kg/s.  Accordingly, the moisture deficiency 
in the YRV after 2000 mainly resulted from 
sharply decreased inflow via southern side. 
Increased outflow via northern side provide the secondary contribution to the dry condition.  
3.  Quantitative evaluations of relative moisture contributions from different sources 

As displayed in Fig. 4a, during the regime with deficient precipitation in South China (1981-1992), seven 
routes can be detected. If clustered by above-mentioned five sources, two routes are associated with the channel 
from the Arabian Sea-Indian Peninsula-BOB, and their combined contribution reaches 34.7%; another two 
routes are linked with the channel from Indo-China Peninsula-SCS and around, and they contribute 36.8% to 
total moisture transport; three routes originate from the western Pacific with their joint contribution about 28.5%. 
During the regime with abundant precipitation in South China (1993-2012), 5 routes can be identified (Fig. 4b). 

Fig. 4  Moisture transport paths during deficiency regime (left, 1981-1992) and abundance regime (right, 1993-
2012) in South China and their contributions labeled on them. 

Fig. 3 Moisture budget changes from four sides for South 
China around 1992/1993 (top) and the Yangtze River 
Valley around 1999/2000 (bottom). Directions of the 
arrows indicate the inflow and outflow; blue (red) denote 
moisture increase (decrease). 
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Two belong to the channel from the Arabian Sea-Indian Peninsula-BOB, and their total contribution is 27.9; 
another two come across Indo-China towards the SCS and around with their joint contribution about 51.6%; 
the other one originate from the western Pacific, and it provides about 17.4% of total moisture.  

From Fig. 5, the moisture transport 
from Indo-China Peninsula to the SCS 
and around contribute most to 
precipitation in South China. The 
second largest contribution comes from 
the source of Arabian Sea-Indian 
Peninsula-BOB, followed by the 
contribution from source in western 
Pacific.  

By comparing relative 
contributions from diverse sources 
during different regimes, it can be 

found that climatologically, moisture transport from the Indo-China Peninsula to the SCS and around, western 
Pacific, and Arabian Sea-Indian Peninsula-BOB contribute larger to precipitation anomaly in South China. 
After the transition from deficiency (red) to abundance (blue) condition after early 1990s, contribution of 
moisture steered from the Indo-China Peninsula to the SCS and around increased by 14.8%, while the 
contributions from the western Pacific and Arabian Sea- Indian Peninsula-BOB decreased by 11.1% and 6.8% 
respectively.  

As displayed in Figure 6a, during abundant precipitation regime in the YRV (1981-1999), seven routes can 
also be detected. Based on the above classification, one route is associated with the channel from the Arabian 
Sea-Indian Peninsula-BOB with its contribution of 26.5%; two routes linked with the channel from Indo-China 
Peninsula-SCS contribute 32.3% to total moisture transport; three routes originated from western Pacific jointly 
contribute about 27.6%; the contribution from local moisture is 13.6%. During the regime with deficient 
precipitation in the YRV (2000-2012), 7 routes can be identified (Figure 6b). Three originate from Indian 
Ocean-BOB, and their total contribution is 39.6%; another comes across Indo-China towards the SCS and 
around with its contribution about 29.2%; two originate from the western Pacific, and they provides about 22.2% 
of total moisture; the moisture transport from north route account for 7.9%. 

Based on total contributions from diverse sources during different regimes as revealed in Fig. 3, it can be 
concluded that climatologically the largest contribution to precipitation in the YRV is yielded via the transport 
from the Arabian Sea-Indian Peninsula-BOB. The contribution of moisture transport from the SCS and around 

Fig. 6  Moisture transport paths during deficiency regime (left, 1981-1999) and abundance regime (right, 2000-
2012) in the Yangtze River Valley and their contributions labeled on them. 

Fig. 5 Moisture contributions from diverse sources during different 
precipitation regimes in South China. 
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ranks second, followed by source in western Pacific. The moisture from the north contributes least to 
precipitation in the YRV. 

Figure 7 shows relative contributions from diverse sources during deficiency and abundance regimes. 
Larger contributions during abundant precipitation regime are mainly provided by sources in the Arabian Sea-
Indian Peninsula-BOB, local source, and moisture from SCS and western Pacific. During the period with 
deficient precipitation in the YRV after 1990s, the contributions of moisture transport from local sources, 
western Pacific and sources from Indo-China to the SCS and around decreased by 13.6%, 5.4%, and 3.1% 
respectively. Increased contributions of 13.1% and 7.9% arise from the moisture transport from the Indian 
Ocean-BOB and northern China respectively.  

After early 1990s, the anomalous westerly inhibited the eastward moisture transport, while the anomalous 
anticyclone over western Pacific-SCS promoted moisture from the SCS and around to advance towards South 
China. After late 1990s, the westerly moisture transport is conductive to moisture advection towards the YRV, 
while the anomalous cyclonic moisture transport is adverse to the moisture conveyed by cross-equatorial flow 
and from the SCS towards the YRV. 

4.  Conclusions 

 Based on daily rain gauge 
observations and NECP/NCAR 
reanalysis, changes in large-scale 
moisture transport and moisture budget 
in Asian monsoonal region under global 
warming are investigated. The 
influences of these changes on summer 
precipitation in southern China are 
further discussed, followed by 
quantitative estimation of contributions 
from diverse moisture sources to 
summer precipitation in southern China 
during different stages. Main conclusions are summarized as follows:  

(1) The northward moisture transport anomaly from lower-latitudes in Asian monsoonal region is 
responsible for variations of meridional and total moisture budget in South China and the YRV. For 
South China, before and after the regime shift around early 1990s, the anomalous moisture flux 
circulation in the SCS-western Pacific and the BOB remains consistent; while for the YRV, the 
anomalous moisture transport circulation behaves converse patterns after regime shift around late 1990s.  

 (2) By analyzing the model outputs of backward trajectory analyses, it can be found climatologically, the 
largest moisture contrition to precipitation in South China comes from the SCS and around, followed 
by the contribution from the sources in the Arabian Sea-Indian Peninsula-BOB and western Pacific 
consecutively. The largest moisture contribution to precipitation in the YRV is provided by the moisture 
source in the Indian Peninsula-BOB. The secondary and the third large contributions are from the SCS 
and western Pacific. The moisture from the north contributes least to precipitation in the YRV.  

 (3) Compared with deficiency period, the moisture contribution from the SCS and around increased by 
14.8% during abundant regimes of precipitation in South China after early 1990s; respective 
contributions from the western Pacific and Indian Ocean-BOB decreased by 11.1% and 6.8%. After 
late 1990s, the YRV stepped into a deficiency regime. Moisture contributions from local source, 
western Pacific and the SCS to precipitation in the YRV decreased by 13.6%, 5.4%, and 3.1%; while 
increased contributions of 13.1% and 7.9% are detected in the sources of Indian Ocean-BOB and 
northern sources. 

  

Abundant 

Deficient 

Fig. 7  Moisture contributions from diverse sources during different 
precipitation regimes in the Yangtze River. 
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ABSTRACT 
In this study, we evaluated the skills of probabilistic forecast for meteorological drought based on the 

precipitation forecast from Northern American Multi-model Ensemble (NMME).  The total sixty ensemble 
members are selected from six NMME participated forecast models for the meteorological drought forecast.  
The NMME forecasts are downscaled to the 0.5 degree CONUS grid and bias corrected with BCSD method. 
The meteorological drought forecast, based on the standardized precipitation index SPI6 (six months 
accumulation), is computed and converted to the corresponding drought categories. The grand mean (GM) 
index summarize the mean state of drought from the all NMME ensemble members. The probabilistic 
information for each drought category, which is measured by the concurrence at each ensemble member, is 
computed to quantify the uncertainties of the drought forecast.  The total 29 years hindcasts, during 1982-
2010, are evaluated against observed drought categories. The assessments show that the meteorological 
drought forecasts based on the NMME display robust skills, both in grand mean and probabilistic forecast. 
More than half areas of USCONS are still skillful for lead four month forecast.  The skills of probabilistic 
forecast over climatological forecast are obviously and decreasing with leading time. However, they only 
indicate very slight skills over the short-leading random ESP forecast that initial drought information 
dominated. With increasing the lead time, the values of climate forecast begin emerging. 

1.  Objectives 

Drought occurred in the US had the major societal, economical, and environmental impacts. The current 
objective drought forecasts based on dynamical model, such as the forecasts from the NMME (Kirtman et al. 
2014) etc., however, exist large differences in the drought forecast, in particular to classify the drought into the 
drought categroies Dx (x=0-4) (Mo 2008). And also, current forecast has no estimation of the uncertainty and 
doesn’t give risk manager or decision maker the best or worse scenarios. Since the chaotic nature of climate 
system, the demand for probabilistic information of drought forecast is undeniable. 

2.  Data and procedures 

As prescribed by Xu and Mo (2018), we selected six representive models in NMME forecast set, i.e. 
CanCM3 model, CanCM4 model, GFDL_FLOR model, NASA GEOS5 model, NOAA CFSv2 model and 
NCAR CCSM4 model..  Each model was selected only 10 ensemble members which are closest to the common 
forecast initial time (the day 01 at each month).  The hindcasts come back for every month from 1982 to 2010 
(total 29 years), obtained from the NMME historical archives. The real-time forecast start from 2011 up to 
recently, issued the precipitation and temperature at the first of each month. 

The precipitation (P) forecast for lead 1-6 months from NMME are firstly downscaled to 0.5 degree 
CONUS grid, by bilateral interpolation. The downscaled P forecasts are then bias corrected by the bias 
correction and spatial downscaling (BCSD) method (Yoon et al. 2012) with leave-one-out cross-validation, 
which guarantee the target year is removed from the training pool to avoid the overfitting problem. This step is 
critical for the drought forecast since any forecast bias will cause SPI error in the next computation with 
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observed P data. The corrected P forecast, combined with the CPC unified P observations back to 50 years 
historical record, are utilized to calculate six month accumulated standardized precipitation index (SPI6), as the 
predictant for meteorological drought. The SPI6 could well capture the short-term drought signal and also 
balance the persisted long-term drought. The SPI6 forecasts from 60 ensemble members in the leading time 1-
6 months, are then transferred to the uniform distribution (percentile) from the original normal distribution.  

The sixty ensemble member for drought forecasts in percentile (uniform distribution) are mathematically 
averaged to the grand mean (GM) for the drought category Dx forecast. This percentile-mean method will 
reduce the “ensemble mean error” due to uneven distribution of SPI at “the long tail of normal distribution”, in 
particular for the extreme events such as droughts.  However, due to the offset effect (cancel out) of the 
arithmetic mean, the GM index will serious underestimated the drought intensity (Mo and Lettenmaier 2014). 
We remapped the grand mean index again to the uniform distribution based on the 29 year historical values. 
The probabilistic information for each drought category Dx, i.e. D0-D4, is measured by counting the 
concurrence of all sixty ensemble 
member in each drought category.   

This objective probabilistic 
forecast is computed at the 10th 
day of each month, after collect all 
the six NMME forecasts 
initialized at the beginning of that 
month. The objective forecast 
could be delivered to drought 
forecasters, before the drought 
briefing, the seasonal drought 
overlook at the middle of the 
month and monthly drought 
overlook at the end of the month.  
Figure 1 shows an example of the 
probabilistic drought forecast for 
January 2019 based on the NMME 
forecast initialized at Dec 1, 2018. 
The top panel is the Grand Mean 
(GM) drought index that gives the 
mean state of drought by 
averaging all sixty ensemble 
member. The bottom four panel 
display the detail of probabilistic 
information for the Dx category or 
worse drought event (Dx and 
above). For instance, the “D0 and 
above” show the probabilistic for 
the “abnormally dry” or worse 
drought event (percentile < 30%). 
Similarly, the “D3 and D4” 
indicate the “extreme drought” 
(percentile <5%) and “exceptional 
drought” (percentile <2%).   This 
objective forecast will help the 
forecaster to prepare the first guess 
map of the monthly drought 
overlook. Similarly, Fig. 2 shows 
the probabilistic drought forecast 

Fig. 1 The probabilistic drought forecast for January 2019 based on the 
NMME forecast initialized at Dec 01 2018. 
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for March 2018 based on the NMME forecast initialized at Dec 1, 2018. This map could help the operational 
seasonal drought overlook issued at the middle of each month.  

3.  Evaluations 

Observed drought events are 
defined by the same SPI6 indices 
based on the observed rainfall 
analysis from CPC unified 
precipitation data.  The rank 
correlation (Spearman Rho) is 
used to assess the GM index and 
Rank Probability Skill Score 
(RPSS) is used for the 
probabilistic forecast.  

For skill assessment, the 
reference forecasts are defined to 
isolate the forecast skill origin 
from initial condition or climate 
forecast information.   The 
persistent forecast is defined as the 
forecast map that prescribes the 
last month precipitation 
anomalous for the next six months.  
The climatological forecast are 
defined based on the drought 
categories definition, the 30% 
probability for “D0 and above” 
droughts, the 20% probability for 
“D1 and above” droughts, the 10% 
probability for “D2 and above” 
droughts, the 5% probability for 
“D3 and above” droughts and then 
2% probability for D4 droughts.  
The random forecast, similar to the 
hydrological “ESP” type forecast, 
are calculated according to the 
random retrieved historical 
precipitation observation time 
series to computer the SPI 
forecast.   
3.1 Grand mean forecast  

The grand mean forecast are the summary the mean drought state over the total 60 ensemble member. The 
rank correlation (Spearman Rho) is used to evaluate the GM forecast against the observed SPI indices based on 
the CPC unified precipitation. Figure 3 shows the Spearman Rho for January 01, April 01, July 01 and October 
01 initialized forecast (from top to bottom), during 1982-2010 hindcast period.  

As Fig. 3 shows, in the lead one month forecast (left column), the rank correlations are very high over the 
most area of USCONS.  Except limited area in the Great Plain at April initialized forecast and some southwest 
area at July and October initialized forecast, Spearman Rho over the most area of USCONS are over 0.8. This 
indicates the GM forecast could well catch the drought situation at a short leading time, due to the strong 
persistence in the nature of the drought. For the lead-3 month forecast, the spearman Rho decrease with the lead 

Fig. 2  The same as Fig. 1, but for March 2019. 
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time. But, more than half area of 
USCONS, the Rhos are still over 0.5 
implying the useful of forecast. Except 
some scatter regions in the central plain 
for April initialized forecast, and part of 
southwest region for July and October 
initialized forecast, most area of Rho are 
still significant at 95% in student t testing. 
However, for the lead-5 month forecast, 
the forecast signals are serious weakened 
at most area (the Rho less than 0.5) and the 
area with significant correlation has 
greatly decreased.   

Figure 4 shows the ratio of grid-points 
where are 95% significance in the 
Spearman rank correlation (rho) for 
January 01, April 01, July 01 and October 

Fig. 3  The Spearman rank correlation (rho) for the Grand mean (GM) forecast  with observed indices, for the January 
01, April 01, July 01 and October 01 initialized forecast (from top to bottom) during 1982-2010. The left, central 
and right columns are the lead one, three and five months forecast respectively. Only the area where the 
correlation is 95% significance for student-t testing during 1982-2010 is colored. 

Fig. 4  The area ratio of the grid-points over USCONS with 95% 
significance in the Spearman rank correlation (rho) during 1982-
2010 (larger than 0.381) , for the GM forecast initialized at 
January 01, April 01, July 01 and October 01. 
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01 initialized forecast, based on the 29 years hindcast during 1982-2010. This ratio indicates the area with useful 
forecast. The forecasts initialized at the January are the best. More than half of areas are still useful at lead-5 
month forecast. The forecasts initialized in the April are the worst; the forecast signal will reduce less than the 
half of USCONS in the lead-4 month. The forecasts initialized at the July and October are in the middle, still 
more than half area are useful at the lead-5 month forecast.  

3.2  Probabilistic forecast 

For Rank Probability Score (RPS) evaluation, the probabilistic forecast are equally divided by 10% 
probability as a bin, such as 90%, 80%, 70%....20%, 10%, where total bin n=10,  

𝑅𝑅𝑅𝑅𝑅𝑅 = � (𝑌𝑌𝑚𝑚 − 𝑂𝑂𝑚𝑚)2,𝑛𝑛
𝑚𝑚=1     𝑌𝑌𝑚𝑚 =  ∑ 𝑦𝑦𝑗𝑗𝑚𝑚

𝑗𝑗=1 ,    𝑂𝑂𝑚𝑚 =  ∑ 𝑜𝑜𝑗𝑗𝑚𝑚
𝑗𝑗=1 . 

The RPS is the sum of the square of probabilistic differences at the each bin between forecast (Ym) and 
observed (Om) drought events. The skill score of RPS (RPSS) is the forecast skill with respect to the referrence 
climatological forecast or random “ESP” type forecast. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1 −  <𝑅𝑅𝑅𝑅𝑅𝑅>
<𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶>

  

Figure 5 shows the RPSS for the probabilistic drought forecast over the climatological forecast.  With a 
short lead time (left column), the probabilistic forecast dominantly beat the climatological forecast, with large 

Fig. 5  The same as Fig. 3 but for the RPSS over the climatological forecast. 
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positive RPSS score. Except limited region at AZ and NM at July and October initialized forecast, most area of 
USCONS indicated positive skills of probabilistic forecast. With increasing with lead time, the skills over 
climatological forecast are weakened as expected. However, at lead-5 month forecast, over the majority of 
USCONS, the skills are still positive. These positive skills indicate the forecasts are better than climatological 
forecast.  

Similarly, Fig. 6 shows skill score RPSS for the probabilistic forecast over the “ESP” forecast, which 
combined the random retrieved precipitation time series with current drought condition. In the short leading, 
the probabilistic forecast show very weak skill over the random forecast. This implies the most forecast signal 
of probabilistic forecast come from the initial condition. With increasing the lead time, the probabilistic forecast 
show increasing skills over the random forecast, indicating the contribution of initial conditions are reducing 
and the contributions of forecast information are increasing. With the decreasing the impact of initial condition, 
the probabilistic forecast gradually display the value from the climate forecast 

4.  Conclusions 

In this study, we evaluated the usefulness of probabilistic forecast for meteorological drought based on the 
precipitation forecast from Northern American Multi-model Ensemble (NMME).  The total 29 years hindcasts, 
during 1982-2010, are evaluated against observed drought categories based on the CPC unified precipitation. 
The assessments show the meteorological drought forecasts based on the NMME display strong skills, both at 

Fig. 6  The same as Fig. 3 but for the RPSS over the random (ESP) forecast. 
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Grand Mean forecast and probabilistic forecast. The GM forecast show robust rank correlation at the different 
lead time over the most area of USCONS. The ratio with useful forecast signal (95% significant at student t 
testing) is more than the half area of USCONS, even at the lead four month forecast. The probabilistic forecast 
display strong skills over the climatological forecast at lead one to five months. This implies the objective 
forecast well beat the climatological drought forecast based on the historical occurrence.   The probabilistic 
forecasts also indicate very litter skills over the short leading random ESP forecast that initial information 
dominated. With increasing lead time, however, the values of climate forecast begin to override the impacts of 
initial condition. 
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1.  Introduction 

The NCEP North American Land Data Assimilation System 
(NLDAS, Ek et al., 2011) Drought Monitor is a multi-model ensemble 
drought monitor and analysis system that provides land surface 
hydrological conditions across the contiguous United States (CONUS) 
domain in near real time.  NLDAS runs four uncoupled land surface 
model simulations using a common meteorological forcing from the CPC 
North American Regional Reanalysis and the CPC daily global gauge 
precipitation analysis (Xie et al., 2010).  Daily, weekly, and monthly 
anomalies and percentiles of land surface water cycle variables including 
precipitation, soil moisture, snowpack, streamflow, and 
evapotranspiration, are calculated at 1/8th degree grids and provided to 
users including CPC and NIDIS (National Integrated Drought 
Information System, https://www.drought.gov/drought) for drought 
monitor and outlook.  The NOAA National Water Model (NWM, 
Cosgrove, 2018) is a hydrologic model that simulates observed and 
forecast land surface water cycle over CONUS.  NWM runs an hourly 
uncoupled analysis, and forecasts on short-range (18 hours), medium-
range (10 days), and long-range (30 days) time scales on 1km and 250m 
grids.  The simulations are forced with meteorological data from the 
NCEP forecast models (HRRR, RAP, GFS, and CFS) along with the 
MRMS radar and gauge-adjusted observed precipitation products.  The 
Noah-MP land surface model is implemented in NWM to simulate land 
surface processes.  The objective of this study is to make a comparison 
between the NLDAS and NWM products and to evaluate the potential 
application of NWM in monitoring and forecasting the drought 
conditions across the U.S., and to integrate NWM with NLDAS to 
support the CPC and NIDIS Drought Monitor and Outlook operations.  

2.  Results 

Drought can be described conceptually as a deficiency in water 
supply over a temporal and spatial extent.  Soil moisture content relative 
to climatology has been commonly used for drought assessment over 
regional to continental scales.  The NLDAS and NWM monthly mean top 
2-meter column volumetric soil moisture percentiles relative to their 
corresponding multi-decades retrospective simulations are analyzed and 
compared.  Figure 1 presents a selected set of sample maps of monthly 
mean soil moisture percentiles of NLDAS and NWM, represented for 
August 2011 during the historical event of Texas drought.  The official 

Fig. 1  Monthly 2-meter column 
soil moisture percentiles of 
August 2011 from NLDAS 
(top), NWM (middle), and US 
Drought Monitor guidance 
(bottom). 
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US Drought Monitor guidance upon the same time is included as a reference.  Both NLDAS and NWM 
successfully depict the soil moisture deficit in the broad extent of Texas, Oklahoma, and Louisiana that is 
consistent with the US Drought Monitor. 

3.  Remarks 

 The NLDAS Drought Monitor uses a 31-year (1979-2009) retrospective simulation to generate the soil 
moisture climatology and percentiles.  On the other hand, the NWM V1.2 retrospective runs for a 25-year 
(1993-2017) period that the climatology is generated from.  The impact of such a mismatch on the drought 
condition assessment is under investigation. 
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1.  Background 

Extreme winter weather events in North America have become more frequent and increasingly destructive. 
According to the National Centers for Environmental Information report (NOAA 2019), during 1985-2005, 
Florida was the only state suffering billion-dollar losses related to freeze events in the eastern U.S. After 2006, 
the number of eastern states affected by these costly freeze-related disasters has doubled, along with a marked 
increase in the number of billion-dollar disasters caused by drought in western states. Past studies focusing on 
the 2013-2014 winter anomaly showed that the striking division of western U.S. drought and eastern U.S. cold-
snaps have resulted from an atmospheric pattern referred to as the “North American Winter Temperature Dipole” 
(Singh et. al. 2016) or the “North American Winter Dipole” (Wang et. al. 2015), hereafter Dipole. 

The polarity and location of this Dipole coincide with the wintertime stationary waves over North America, 
which feature a high-pressure ridge in the west and a low-pressure trough in the east.  Oscillating in sync with 
the stationary waves, the positive-phase Dipole is associated with an anomalous ridge over the Gulf of Alaska 
and a deepened trough near the Great Lakes, thereby enhancing the east-west temperature contrast in North 
America (Voelker et al. 2019).  While past studies suggested that the ridge in western U.S. (Swain et al. 2014) 
and the Dipole itself have amplified (Singh et. al. 2016), the trend suggests a one-sided response (i.e. only the 
positive phase inducive to drought in western U.S.) to internal and external variabilities, such as tropical Pacific 
heating (Hartmann 2015; Schulte and Lee 2017) and Arctic warming (Francis and Varus 2012; Overland et al. 
2016).  The intense Dipole reversal seen in 2016-17 winter suggests that the variation amplitude also increases 
leading to extreme conditions such as wet winters in California (Wang et al. 2017; Swain et al. 2018).  These 
observations imply a change in the atmospheric circulation regime over North America, which is examined 
herein.  
2.  Analyses 

Empirical orthogonal function (EOF) is the main analysis technique for this study. We subjected the 
monthly anomalies of geopotential height (Z) at 250 hPa from November through February, with the zonal 
mean removed to depict the stationary eddies (herein ΔZE250). For a running 30-year period, each EOF analysis 
contains 120 realizations (30 years x 4 months). The month-by-month arrangement of ΔZE250 reflects the 
strong sub-seasonal variability of winter climate over North America (Higgins et al. 2000). For the initial 
analysis of the atmospheric circulation, we use NCEP–NCAR reanalysis (Kalnay et al. 1996).  

2.1 Change in leading patterns 

 The first mode of ΔZE250 during the earlier period of 1948-1979 is shown in Figure 1a. Explaining 18.6% 
of the variance, this leading EOF features a wave train emanating from the central Pacific to the U.S., coincident 
with the well-known Pacific North American (PNA) pattern. By superimposing the PNA contours, which was 
produced by correlating ΔZE250 with the PNA index from the NOAA Climate Prediction Center, the two 
patterns of EOF1 and PNA are in-phase.  By comparison, the post-1980 EOF1 (Fig. 1b) shows a similar wave 
train but the wave centers are shifted from the PNA pattern by about a quarter phase.  It appears that the post-
1980 EOF1 becomes phase coincident with the Dipole centers (marked with X and + in North America).  This 
result suggests that the leading mode of ΔZE250 variability has changed from a PNA-like pattern to one that 
resembles the Dipole.  We should note that, by repeating the EOF analysis with seasonal mean instead of 
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monthly interval, the leading pattern of 
the latter period would still be PNA, 
whereas the Dipole remains secondary 
(not shown).  

By correlating the first principal 
component (PC1) time series with the 
monthly SST anomalies (Nov-Feb; 
using Extended Reconstructed SSTv4), 
the pre-1980 EOF1 corresponds to a La 
Niña-like pattern resembling the cold-
phase Pacific Decadal Oscillation 
(PDO) (Fig. 1c), which supports the 
associated PNA atmospheric wave train 
(Fig. 1a).  After 1980, the SST 
correlation map with respect to EOF1 
changed dramatically and is absent of 
the PDO alongside most tropical 
signatures (Fig. 1d).  This post-1980 
SST pattern corresponding to EOF1 
reveals the oceanic “Blob” along the 
West coast (Kintisch 2015), as well as 
robust negative anomalies in the 
Western North Pacific and the Bay of 
Bengal. This latter SST feature 
coincides with an ENSO precursor, 
called the Western North Pacific pattern 
(WNP), that saw amplification in recent 
decades (Wang et al. 2013).  The marked 
difference between these SST patterns 
accompanying EOF1(ΔZE250) of two 
eras implicates two very different modes 
of sub-seasonal variability influencing 
North American winter. 

2.2 Evolution of the change 

To examine the evolution in which the leading mode of ΔZE250 started to change, we adopted the running-
EOF method, following Zhang et al. (2008).  A series of EOF analysis was conducted in the 30-year window 
and repeated every five years.  The leading EOFs are then subject to a spatial correlation analysis with the PNA 
pattern and the Dipole, forming a series of correlation coefficients with each 30-year period.  This analysis was 
performed on newer reanalysis data: the ECMWF 20-Century Reanalysis (ERA20C) and the ERA-Interim.  As 
shown in Fig. 2a, the running-EOF computed with all reanalysis data shows a decreasing trend in the 
correlations between EOF1 and PNA from 1970 to 2000.  Meanwhile, the correlations increase between EOF1 
and the Dipole, computed from the ΔZE250 of the 2013-2014 winter (Wang et al. 2014). Correspondingly, 
sliding correlations of the second running-EOF (EOF2) with the PNA show an opposite trend (Fig. 2b), 
suggesting that the Dipole used to be the second mode but has intensified, overtaking EOF1 during the 1990s. 

 The mechanism behind this decadal shift in the prevailing modes of variation is manifold.  Previous studies 
proposed that the ENSO-forced PNA would move eastward in response to the spatial shift of the mean SST 
warming (Zhou et al. 2014).  Interdecadal variability of the North Pacific sea level pressure can induce a shift 
in the PNA (Johnson and Feldstein 2010).  Moreover, one could relate the Dipole to the maintenance of 
wintertime stationary waves (e.g., Chang 2009).  The western ridge of the North American stationary waves is 
primarily linked to the orographic forcing of the Tibetan Plateau, while the Rocky Mountains amplify the 

Fig. 1  First EOF mode of monthly ΔZE250  during  (a)1948-1979 and 
(b) 1980-2017 winters (EOF1 shading), superimposed with with the 
PNA pattern (contour) and the Dipole centers (marked with X and 
+) in North America. The correlation maps between monthly SST 
anomalies and the first principle component (PC1) are shown for 
the (c) 1948-1979 and (d) 1980-2017 periods.  Hatched areas 
indicate significant values (p<0.01). 
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eastern/downwind trough.  Diabatic 
heating from the Western Pacific and 
North Pacific further enhances and 
shapes this ridge-trough pattern.  
Therefore, the observed Dipole 
amplification could be related to 
such forcings combined, i.e. jet 
stream-terrain interactions and 
diabatic heating.  
2.3 Past and future of Dipole 

The transition between the 
leading and secondary modes of 
atmospheric circulation suggests 
that the Dipole variance has 
increased (Singh et. al, 2016; Wang 
et al. 2015).  To put the Dipole 
variances into historical and 
projected perspectives, we further 
examined the NOAA 20-Century 
Reanalysis data and the Community 
Earth System Model (CESM) Large-
Ensemble Project with 40 members 
(Kay et al. 2015).  By calculating the 
30-year running variance of the 
Dipole index derived from Wang et 
al. (2014), we found that the Dipole 
variance has undergone a 
pronounced low-frequency 
fluctuation.  As shown in Fig. 3, an 
inter-decadal variation on the order 
of 60 years is observed, evidenced in 
the longer-term reanalysis data.  
Both the NCEP-NCAR and ERA-
Interim reanalyses indicate that the 
Dipole variance was largest in the 
early 21st century.  Similar analysis 
of the CESM ensemble means reveal 
an increase in Dipole variance 
during the historical period (up to 
2005 with increasing greenhouse 
gas) that is projected to continue 
under the high-emission (RCP 8.5) 
scenario.  However, the projected 
ensemble-mean variance starts to 
decline after 2050, despite an 
increase in the ensemble spread; this 
suggests a rather uncertain future 
concerning the Dipole fluctuation.  
At this point, we can only attribute 
this late-21st century decline to 
natural variability as observed.  

Fig. 2  Spatial correlation coefficients between the PNA/Dipole pattern 
and (a) EOF1 (b) EOF2 of ΔZE250 as in Fig. 1. This analysis is 
repeated throughout a 30-year Running-EOF window done every 5 
years using three different reanalysis data sets as indicated on top of 
(b). 

Fig. 3  The 30-years running variance of the Dipole index derived from 
Wang et al. (2014) using multiple reanalysis data sets as indicated at 
upper left. Gray shaded represents the spread of CESM 40-member 
ensemble calculated from two standard deviations above and below 
the ensemble mean. 
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3.  Summary 

The diagnostics undertaken here suggest that the leading mode of Northern Hemispheric atmospheric 
stationary waves underwent a notable change.  Since the 1980s, the first mode of winter stationary eddies has 
changed from the PNA to the Dipole.  Given that the EOF describes the variance of individual patterns, this 
finding also echoes the increased amplitude of the Dipole as observed. The CESM large-ensemble simulations 
forced with increasing greenhouse gas indicate that the Dipole variance will generally amplify alongside its 
low-frequency natural variability.  This result implies that the variation of the atmospheric circulations over 
North America, especially in the subseasonal timescale, could continue to be dominated by the Dipole with the 
potential to sharpen the east-west temperature division across North America.  Future examination of the 
dynamic processes leading to the Dipole amplification should consider jet-terrain interactions, tropical and 
extratropical diabatic heating, and the effect of Arctic amplification.  
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1.  ENSO evolution and forecasts during 2017-18 

A second-year, weak-to-moderate La Niña developed in the fall of 2017 and lasted through early spring of 
2018.  This La Niña followed a period of ENSO-neutral conditions during the first half of 2017.  From January 
to May 2017, many model forecasts of the Niño-3.4 region of sea surface temperatures were predicting El Niño 
to occur during the latter part of 2017.   While not alone in these predictions, the 100-member spread of the 
American Multi-Model Ensemble (NMME) lay outside of the observed evolution, in which instead of a 
developing El Niño, the tropical Pacific instead went into a La Niña in September-November of 2017 (as 
indicated by the Oceanic Niño Index value of -0.7°C).  The ensemble mean predictions of the Niño-3.4 index 
from the NMME are indicated by the grey lines in Fig. 1.  However, because these forecasts for El Niño during 
late 2017 were initialized early in the year and through the spring prediction barrier, a time of lower model skill, 
the CPC/IRI ENSO team never issued an El Niño Watch despite probabilities for El Niño that were elevated 
(well in excess of 50% chance in the models). 

Because nearly all members from 
NMME were too warm for targets in mid-
to-late 2017, verification using Ranked 
Probability Skill Scores (RPSS) were 
strongly negative for almost all forecast 
leads (orange lines in Fig. 2).  The CPC 
official forecast assigned probabilities for 
El Nino that were greater than climatology, 
but they were much less bullish than the 
objective model guidance, so RPSS scores 
were not as negative as for NMME (green 
lines in Fig. 2).   

Many dynamical and statistical models 
did not catch onto the possible La Niña of 
2017-18 until the observed Niño-3.4 index 
values dropped to thresholds consistent with 
La Niña (-0.5°C in ERSSTv5 data (Huang 
et al. 2017) in September 2017).  It wasn’t 
until early September initializations of the 
NMME that the ensemble mean forecasted 
La Niña to occur and persist through the 
2017-18 winter.  At this point, both CPC 
official forecasts and model predictions 
consistently favored La Niña, and RPSS 
became positive for very short lead times 
(Fig. 2, top row).   A La Niña Watch was issued for the first time in early September 2017 and a La Niña 
Advisory was issued in early November 2017 as the onset of La Niña became apparent in both oceanic and 
atmospheric anomalies across the tropical Pacific Ocean.   

Fig. 1  Observed monthly Niño-3.4 index values (black line) 
from daily OISST (Reynolds et al. 2007) and once monthly 
forecasts of Niño-3.4 from the North American Multi-Model 
(NMME) from January 2017 through October 2018 (grey 
lines showing ensemble means).  Departures are formed by 
removing monthly means during 1982-2010. 
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Based on three-month, 
overlapping average values 
in the Niño-3.4 region, the 
La Niña was strongest 
during November 2017-
January 2018 at -1.0°C 
relative to the 1986-2015 
base period.  By early May 
2018, the La Niña 
Advisory was discontinued 
as the tropical Pacific 
Ocean returned to an 
ENSO-neutral state.  Even 
while La Niña was ongoing 
in early 2018, many model 
predictions again predicted 
El Niño to develop during 
2018.  Because of the 
consistency of these model 
forecasts, even through the 
spring, the IRI/CPC 
eventually issued an El 
Niño Watch in early June 
2018.  The expectation was 
that El Niño would develop 
during the fall of 2018 and 
then persist into the winter 
2018-19 (the NMME 
forecast initialized in early 
October 2018 is shown by 
the pink/purple lines in Fig. 1).  However, prior to then, it was clear that the ensemble means from many 
dynamical models were over-predicting the level of warmth in the Niño-3.4 region for targets in the 
spring/summer of 2018.  Instead Niño-3.4 index values were slightly positive, but shy of the +0.5°C threshold, 
even as the fall approached.  The verification with RPSS reflects this over-prediction with a spike of negative 
skill in summer 2018  (Fig. 2).  
2.  Global temperature, precipitation, and circulation anomalies during DJF 2017-18 and their relation 
with ENSO 

The second winter of consecutive La Niña events was accompanied by a more stereotypical La Niña pattern 
than the winter of 2016-17.  In Fig. 4, the first La Niña is marked by the blue dot, while the second La Niña is 
noted with the red dot, so these two consecutive events can be directly compared.  One prominent difference is 
that the 2017-18 winter La Niña was more strongly negative (based on Niño-3.4 index values) than the first 
winter, which may partially account for the more robust global footprint in the circulation and temperature (Figs. 
3 and 4).  In contrast to 2016-18, it is more common that the second year of La Niña is less intense than the first 
year, but some studies show that despite the weaker second year conditions, certain impacts can be greater 
(Okumura et al. 2017). 

The left column of Fig. 3 shows observed climate anomalies during DJF 2017-18 and the right column 
shows the regression of these climate anomalies onto the Niño-3.4 index, which helps to diagnose the anomalies 
linearly associated with ENSO (note: there are also non-linear anomalies, but these are not presented herein).  
The regression presented in the right column are multiplied by a factor and multiplied by minus one, so that the 
La Niña anomalies can be seen more clearly and compared with the observations.  In the top right corner of 
each row, the spatial correlation (with the spatial mean removed) between the observations and the ENSO 

Fig. 2  The Ranked Probability Skill Score (RPSS) of the Niño-3.4 index for target 
seasons between November-January 2012 and July-September 2018 out to 7-
months lead from the NMME (orange line) and CPC Official forecasts (green 
line). 
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regression is displayed for 
500-hPa geopotential height 
and winds (top row), surface 
temperature (middle row), 
and precipitation (bottom 
row).  

Both the circulation (top 
row) and precipitation 
(bottom) row patterns had 
large spatial correlations 
between the observations 
and expected linear ENSO 
patter (Fig. 3).  The 
Southern Hemisphere 
extratropical circulation 
featured a positive Southern 
Annular Mode (or Antarctic 
Oscillation) pattern of 
above-average heights in the 
middle latitudes and below-
average heights surrounding 
the South Pole. This is 
consistent with the expected 
linear relationship between 
ENSO and the SAM 
(L’Heureux and Thompson 
2006).  In the Northern 
Hemisphere, strong 
anomalous ridging was 
evident over the North 
Pacific Ocean, with an 
extension into the southern 
tier of the United States.  
Completing the expected La Niña wave train, below-average heights were observed over Canada.  Also mostly 
consistent with La Niña, DJF 2017-18 precipitation was enhanced over the Maritime Continent, northwestern 
Australia, parts of southeastern Africa (excluding the southern tip), Central America, and much of Peru/Bolivia.  
Reduced precipitation occurred over northern Argentina and parts of the southern tier of the United States.  For 
temperature, the observed DJF 2017-18 anomalies were considerably warmer than the expected below-average 
temperatures over much of the globe (Fig. 3- middle row) and, as such, the spatial correlation was reduced 
relative to other climate anomalies.      

Figure 4 shows scatterplots between the Niño-3.4 index values and the DJF 2017-18 spatial correlations 
(red dot) relative to other DJF seasons between 1982 and 2018 (black dots) for 500-hPa geopotential height 
(left panel), surface temperature (middle panel), and precipitation (right panel).  At the top of each panel in Fig. 
4, the temporal correlation is provided between the Niño-3.4 index value and the spatial correlations (between 
the observed maps and the ENSO regression).  From this analysis, it is clear that precipitation and 500-hPa 
heights have the strongest linkage with Niño-3.4 (r is ~0.9), meaning that larger values of Niño-3.4 are generally 
associated with larger spatial correlations.  Phrased another way, the similarity between the observed global 
anomalies and the “expected” ENSO pattern is higher with stronger ENSO events.  Given that DJF 2017-18 
was near minus one standard deviation in Niño-3.4 index, the spatial correlations were on the stronger side.  
Thus, the relatively stronger event appears to have accounted for the significant La Niña features across the 
globe, especially in the circulation fields and precipitation patterns.  In contrast, the La Niña in 2016-17 (blue 

(Obs) 

Fig. 3  December 2017-February 2018 (DJF) anomalies of 500-hPa geopotential 
height and winds (top row), surface temperature (middle row), and precipitation 
(bottom row). The left column shows the observational data, while the right 
column shows the reconstruction for 2017-18 (weighted regression map of the 
Niño-3.4 index).  The reconstruction is multiplied by a factor of five to aid 
comparison. The r-values show the spatial correlation coefficient between the 
observational and the reconstructed anomalies (cosine weighted by latitude). 
Geopotential height and wind data is from the NCEP/NCAR Reanalysis, the 
temperature is from the gridded GHCN+CAMS dataset (Fan and van den Dool 
2008), and precipitation data is from the gridded Precipitation Reconstruction 
Dataset (PREC) dataset (Chen et al. 2002). Departures are formed by removing 
monthly means during 1981-2010. 
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dot) was only marginally so by DJF and did not have notable spatial correlations.  However, both events were 
within the historical spread of correlations shown in these scatter plots. 

Acknowledgements.  The ENSO forecast team: Anthony Barnston, Emily Becker, Gerry Bell, Tom Di 
Liberto, Jon Gottschalck, Mike Halpert, Zeng-Zhen Hu, Nathaniel Johnson, Wanqiu Wang, Yan Xue. 
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Fig. 4  Scatterplots of the spatial correlation between the ENSO regression maps of 500mb geopoential height (left 
panel), temperature (middle panel) and precipitation (right panel) and the observed anomalies.  The spatial 
correlation coefficient is on the y-axis and the seasonal average Nino-3.4 index value is on the x-axis.  Each dot 
represents a single year between 1982 and 2018. The red dot indicates the 2017-18 La Niña (the spatial 
correlations are also presented in Figure 3) and the blue dot indicates the 2016-17 La Niña.   At the top of each 
panel are the temporal correlations between the Niño-3.4 values (x-axis) and the spatial correlations (y-axis).  
The spatial mean is removed. 
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1.  Introduction 

We provide a new frame work to forecast drought. At this moment, the CPC/NWS provides users the 
monthly and seasonal Drought Outlook. There is no estimate of forecast uncertainties. We will use the 
meteorological drought as an example. We plan to provide users the mean state of meteorological drought based 
on the Standardized Precipitation Index (SPI) and the probability for drought to occur in the Dx (x=1-4) 
categories. Users can assess the severity of drought and the likelihood for drought to occur in each category.  

2.  Data and procedures 

The SPI measures the precipitation anomalies. We 
obtained Precipitation (P) forecasts from lead time one to 
six months from the North American Multi model 
ensemble (NMME) in real time. There are total 6 models: 
NCEP CFSv2, CMC1_CanCM3, CMC2_CanCM4, GFDL 
Flor , NASA GEOS 5 and NCAR CCSM4. Each model has 
10 members so there are 60 members in total.  

From P forecasts, we computed SPI6 and expressed 
SPI6 forecasts in percentiles. The grand mean is the mean 
of 60 members. We then mapped the mean to a uniform 
distribution function so forecasts will be between zero to 
one. The grand mean was verified against the SPI6 
computed from the P analysis.  

3.  Real time probabilistic drought forecasts 

The operational probabilistic forecasts have been in 
operation since June 2018 and continue until present. 
Figure 1 shows the grand mean and probability for drought 
to occur in D0 to D4 above categories for December 2018 
based on forecasts initialized on 1 December 2018.  Figure 
1 indicates that drought remained in the Pacific Northwest 
and the severity was in D0-D1 category. The December 
2018 was an El-Nino winter so it was expected to have 
dryness over the Pacific Northwest and wetness in the 
southern United States. Individual model also indicates 
dryness over the PNW and wetness over the Southeast.  

We have provided forecasters and users probabilistic 
forecasts since March 2018 and have improved the 
operation based on comments from forecasters. These 
forecasts are posted at the CPC web site each month after the forecasts from the NMME are available. 

Fig. 1  (a) Probabilistic drought forecasts for lead 1 
month for the initial conditions from December 
2018. : Grand mean and probability for drought 
in Dx (x=1 to 4) above categories Contours are 
given by the color bar. 
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4.  Evaluation of drought occurrence based on SPI6 hindcasts from the NMME 

In this section, we used the January SPI6 hindcasts as an example.  We obtained P hindcasts from the 
NMME archive for January from 1982-2010.  We computed the SPI6 hindcasts the same way as the real time 
forecasts. There are total 60 members.  The grand mean is the mean of 60 members and then is mapped onto a 
uniform distribution function. The grand mean was evaluated against the SPI6 computed from the P analysis 
based on the gridded P data.  We used the Spearman’s rank correlation for evaluation. The probability for 
drought occurrence was evaluated using the ranked probability skill score (RPSS) with climatology as the 
reference state. 

Figure 2 shows the Spearman’s rank 
correlation coefficient for January initial 
conditions from lead one to 4 months. The 
skill is higher in the central United States for 
both grand mean and RPSS because winter is 
their dry season. The skill decreases as the 
lead time increases. For most places, the 
forecasts are skillful up to lead 3 months. The 
skill of the SPI forecasts comes from initial 
conditions because the P forecasts from the 
NMME are unskillful after one month. After 
3 months, the impact of initial conditions 
diminishes and forecasts are no longer 
skillful. Because the CPC issues monthly and 
seasonal forecasts, the SPI6 forecasts can 
still provide useful guidance to forecasters.  

The forecasts for July have similar level 
of skill except the Southwest. Because the 
NMME is not able to forecast the intensity 
and evolution of the North American 
Monsoon rainfall, the SPI6 forecast skill 
over the Southwest is overall low.  

5.  Future research plan 

a) In order to provide forecasters the 
probabilistic drought forecast 
information quickly, we focused on 
the real time forecasts first. We will 
continue to provide forecasters 
probabilistic drought forecasts from 
lead one to 3 months and put 
forecasts on the web site. 

b) We will continue to assess skill of 
SPI6 forecasts for other months. We will obtain the P  hindcasts from the NMME archive from lead 
one to six months for forecasts initialized from all other months from 1982-2010. We will compute the 
grand mean and probabilistic drought categories and evaluate them against the SPI from the P analysis. 
We will evaluate hindcasts using the Spearmen’s rank correlation and the RPSS. 

c) Indication of forecast skill 

We noticed that skillful set of forecasts has smaller spread among members. We will quantify the 
relationship between skill and spread. We will examine  the relationship between spread and the 
reliability of forecasts.   

Fig. 2  Spearman’s rank correlation for January initial conditions 
from (a) lead one month, (b) lead two months, (c) lead 3 months 
and (d) lead 4 months. Shading values are given by the color 
bar.  White areas indicate that the forecast is un-skillful with 
the correlation less than 0.37, (e)-(h) same as (a)-(d) but for 
RPSS. 
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1.  Introduction 

Within a Northern Great Plains region, defined herein as South Dakota, North Dakota, and Montana east 
of 109˚W longitude (Figs. 1a, b), resides a complex reservoir system and agriculture industry upon which the 
local and national economies rely. The reservoir system captures water for consumption, generates 
hydroelectric power, sustains ecosystems, and supports navigation to promote commerce (Bureau of 
Reclamation 2011). Agriculture is prolific throughout the Northern Great Plains, as staple crops such as spring 
wheat, winter wheat, corn, and barley are grown in abundance (U.S. Department of Agriculture 2019). Droughts 
are not uncommon stressors of the region’s agricultural productivity. Though being irregular, infrequent and of 
various severity and duration, droughts share the attribute of deficient precipitation.  

The 2017 spring and summer drought over Montana, North Dakota and South Dakota has been judged to 
be the most devastating in recent memory in this region (Fortin 2017). Economic losses resulting from the 2017 
Northern Great Plains drought exceeded one billion dollars (NOAA/National Centers for Environmental 
Information 2018). The drought sparked wildfires and compromised water resources, which led to reduced 
agricultural production, the destruction of property, and livestock selloffs (U.S. Department of Agriculture 
2017). 

 The 2017 drought arrived suddenly during the rainy season (Otkin et al. 2018, Hoell et al. 2019, Wang et 
al. 2019), which on average begins in spring, peaks during May-July (Figs. 2b), and ends during autumn. May-
July precipitation ranked among the lowest on record over eastern Montana and portions of North Dakota and 
South Dakota dating back to at least 1895 (Fig. 2c).  

Neither the drought’s onset nor its severity was forecasted. Even as drought conditions emerged during 
mid-to-late May 2017 over Montana, North Dakota, and South Dakota (U.S. Drought Monitor 2017), further 
drought development was not anticipated within the following three months in NOAA’s Seasonal Drought 
Outlook issued on May 18, 2017 (NOAA/Climate Prediction Center 2017a). Drought development was not 
anticipated because a failed rainy season was not expected. Instead, the NOAA forecast for May-July and June-

Fig. 1  (a) Location of the three states that constitute a Northern Great Plains region. (b) May-July contribution to 
the annual precipitation in percent. (c) May-July 2017 precipitation rank relative to 1895-2016. The 109˚W 
meridian is denoted by the dashed line in (b) and (c). 
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August 2017 called for above-average 
precipitation over the Northern Great 
Plains (NOAA/Climate Prediction Center 
2017b). 

The lead times at which initialized 
prediction systems forecast the record 
low May-July precipitation that 
principally caused the 2017 Northern 
Great Plains drought are examined. The 
purposes of this examination are 
threefold: 1) to understand why drought 
was not forecast in advance of the season, 
2) to identify at what lead times the 
cumulative precipitation deficits could be 
forecast with skill and 3) to provide 
insights into the prospects of early 
warning of future droughts. 

2.  Tools 

a) Observed estimates 

May-July 2017 precipitation ranks 
and the areally averaged May-July 
Northern Great Plains precipitation 
anomaly time series are based on the 
gridded National Centers for 
Environmental Information Precipitation 
Dataset version 1 (Vose et al. 2014). The 
Northern Great Plains is defined as 
Montana, North Dakota and South Dakota 
east of the 109˚W meridian. Anomalies 
are calculated relative to the 1982-2017 
mean to align with the seasonal forecasts 
described in the following. 

Eastern Montana precipitation is 
derived from the average of 16 stations 
(Table 1) drawn from the Global 
Historical Climatology Network (Menne 
et al. 2012). These 16 stations have 
reported almost continuously - at greater 
than 90% of days during each year since 
1950 - and therefore provide a robust 
estimate of daily precipitation over the 
region. Anomalies for a given day are 
calculated relative to the 1950-2017 mean.  

b) Seasonal forecasts 

 The ability of forecast models to predict areally averaged May-July Northern Great Plains precipitation in 
advance of the season is evaluated using April forecasts from the North American Multimodel Ensemble 
(NMME; Kirtman et al. 2014) and the European Centre for Medium-Range Weather Forecasts (ECMWF) 
SEAS5. In this analysis, NMME is a collection of 99 forecasts from eight different models listed in Table 2 that 

Map 
Identifier 

GHCN Station 
Identifier 

Station  
Name 

Latitude 
(°N) 

Longitude 
(°W) 

1 USC00241088 Bredette 48.15 105.30 

2 USC00241231 Brusett 3N 47.46 107.31 

3 USC00243013 Flatwillow 4 ENE 47.10 108.37 

4 USC00243581 Glendive 47.10 104.72 

5 USC00243727 Grass Range 47.02 108.80 

6 USC00244358 Hysham 46.29 107.22 

7 USC00245303 Mackenzie 46.14 104.72 

8 USC00245596 Melstone 46.60 107.90 

9 USC00245754 Mizpah 4 NNW 46.28 105.29 

10 USC00246601 Plevna 46.42 104.52 

11 USC00247214 Roundup 46.44 108.54 

12 USC00247560 Sidney 47.72 104.13 

13 USC00248165 Terry 46.79 105.30 

14 USC00248957 Wilbaux 2E 46.99 104.16 

15 USW00024037 Miles City 46.43 105.88 

16 USW00094008 Glasgow Intl AP 48.21 106.62 

Model Ensemble Size Reference 

EMC: CFSv2 24 Saha et al. (2014) 

CanCM4 10 Merryfield et al. (2013) 

CanCM3 10 Merryfield et al. (2013) 

GFDL: FLORa06 12 Vecchi et al. (2012) 

GFDL: FLORb01 12 Vecchi et al. (2012) 

GFDL: CM2.1 10 Zhang et al. (2007) 

NASA: GEOS5 11 Vernieres et al. (2012) 

RSMAS: CCSM4 10 Gent et al. (2011) 

Table 1  GHCN stations that make up the observed eastern Montana 
precipitation time series. 

Table 2  Models that make up the NMME ensemble. 
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span 1982-2017. ECMWF SEAS5 is a collection of 50 forecasts from a single model that span 1993-2017 
(Stockdale 2018). Anomalies are calculated relative to the period mean of each model. 

c) Sub-seasonal forecasts 

The ability of forecast models to predict the temporal evolution of eastern Montana areally averaged 
precipitation anomalies is evaluated using forecasts from daily initializations of the Global Ensemble Forecast 
System (GEFS; Hamill et al. 2013), daily initializations of the Climate Forecast System Version 2 (CFSv2, 
Saha et al. 2013) and twice weekly initializations of the ECMWF model. Eastern Montana is defined as the 
area east of the 109˚W meridian. Anomalies are calculated relative to the period of mean of each model. 

3.  Results 

a) Seasonal forecasts 

NMME and ECMWF forecast an increase in the likelihood of above average Northern Great Plains 
precipitation during May-July 2017, as evidenced by a slight shift in the distributions of forecast precipitation 
to anomalously wet conditions (Fig. 2). These predictions help to explain the lack of drought development 
forecast by NOAA’s Seasonal Drought Outlook issued in May 2017 and the above-average May-July 2017 
precipitation forecast also made by NOAA. While the prediction systems forecast an increased likelihood of 
above average precipitation, each system still forecast non-zero odds of dry conditions during May-July 2017, 
as the interquartile range of May-July forecast precipitation in both prediction systems was below average. 

Given the poor precipitation forecast skill during 2017 over the Northern Great Plains, it is natural to probe 
the overall predictability in NMME and ECMWF during May-July over the region. This examination is 
performed by noting the magnitude of the shift in the distributions of forecast precipitation anomalies from zero 
relative to the magnitude of the spread of the forecast precipitation distributions. Larger shifts in the distribution 
of forecast precipitation anomalies from zero suggest greater levels of potential predictability.  

The magnitude of the shifts in 
Northern Great Plains forecast 
precipitation anomaly distributions 
to wet or dry conditions are small 
relative to their spread (Fig. 2), 
suggesting low predictability of 
May-July precipitation in NMME 
and ECMWF. Note that the 
magnitude of ensemble mean 
anomalies are always smaller than 
observed anomalies for the more 
extreme summers. The spread, as 
estimated by the interquartile 
range, of the individual forecasts 
during a given year are consistently 
large and helps to explain why 
precipitation over the region is 
difficult to predict with skill. The 
mean forecast, as estimated by the 
median, hardly deviates from 0 in 
NMME and only begins to 
approach the magnitude of the 
spread in ECMWF during a 
handful of years since 1993. Slight 
differences between NMME and 
ECMWF forecasts, likely rooted in 
the way each ensemble is constructed, do not alter the interpretation of the results.  

Fig. 2  For May-July averaged over the Northern Great Plains, 
precipitation anomaly (dot) and forecast precipitation anomaly in (a) 
NMME and (b) ECMWF made the preceding April (box and 
whisker). Boxes denote the interquartile range and whiskers the 
maximum and minimum. 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

106 

b) Sub-seasonal forecasts 

Given that low May-July 2017 precipitation over the Northern Great Plains was not well forecast in advance 
of the season, the time scales at which precipitation deficits could be forecast over eastern Montana are probed. 
Eastern Montana is chosen because of record low May-July 2017 precipitation (Fig. 1a) and that its size is 
appropriate to analyze in the context of weather forecasts.  

Anomalously wet and dry periods during May-July 2017 were foreseeable in GEFS approximately six to 
12 days in advance of many events (Fig. 3a). Examples include the anomalously dry conditions during late May 
and early June and the anomalous wet conditions during mid-May. There was one notable period during which 
GEFS consistently called for above average precipitation up to two weeks in advance. This period, which 
occurred during the second week of June, did see precipitation over eastern Montana, but not the very heavy 
precipitation that was forecasted. The ECMWF and CFSv2 forecasts during May-July 2017 are similar to the 
GEFS forecasts (Fig. 4).  

The GEFS prediction system captured the observed May-July 2017 cumulative precipitation deficits 
through sequences of up to three day forecasts (Fig. 3). By contrast, sequences of longer than five day GEFS 

Fig. 3  (a) Observed daily precipitation (mm) and ensemble mean forecast daily precipitation anomaly (mm) as 
a function of lead time in GEFS averaged over eastern Montana. (b) Ensemble mean lead time dependent 
forecast of cumulative precipitation anomaly in GEFS averaged over eastern Montana. 

Fig. 4  Observed daily precipitation (mm) and ensemble mean forecast daily precipitation anomaly (mm) as a 
function of lead time in (a) ECMWF and (b) CFSv2 averaged over eastern Montana. 
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forecasts (7, 10, 14 days are highlighted in Fig. 3b) provided no indication that the seasonal evolution of 
precipitation would be different from average, despite the fact that some precipitation events were foreseeable 
at 6-12 days lead time. These analyses help to explain the lack of drought development being forecast by 
NOAA’s Seasonal Drought Outlook in mid-May 2017. In so far as weather variability was fundamentally its 
cause, the indications for which could not be skillfully foreseen beyond a week in advance. 

4. Summary 

The predictability of the May-July 2017 drought over the Northern Great Plains was limited. The NMME 
and ECMWF prediction systems did not forecast below average May-July 2017 precipitation in advance of the 
season. Rather, both systems forecast an elevated probability of above average precipitation, which help to 
explain the lack of drought development forecast by NOAA in May 2017 during the three subsequent months. 
A sequence of shorter range weather forecasts from the GEFS indicate that cumulative precipitation deficits 
during May-July 2017 were only predictable through sequences of up to three day forecasts. Further, select 
anomalously wet and dry periods during May-July 2017 were foreseeable in GEFS, ECMWF and CFSv2 
approximately six to 12 days in advance of the event. 

Acknowledgements.  This work is based on an assessment of the causes, predictability and historical context 
of the 2017 Northern Great Plains drought funded by the National Integrated Drought Information System. 
LINK TO ASSESSMENT HERE WHEN NIDIS POSTS IT TO THE WEB. THIS SHOULD HAPPEN BY 
THE END OF APRIL. 
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1.  Introduction and background 

Drought is a natural disaster occurring over land as a consequence of below normal rainfall over a period 
of time, affecting water supply, agriculture, livestock, and thus lives and economy. It may last from months to 
years. Last year, in 2017, over the United States, a drought emerged quickly in early May over the Northern 
Great Plains states of Montana, North and South Dakota. The losses are estimated to be in the few billion US 
dollars.  This study is a follow up to the study/talk given at last year’s Climate Diagnostics and Prediction 
Workshop meeting in Oklahoma entitled, “The sudden Onset of the current 2017 Northern High Plains 
Drought”, plus now the added discussion on the status of, even a bigger, ongoing Drought in the Southern and 
Western United States. 

As regards to the 2017 Northern Plains Drought, on what happened and lessons learned, the following 
summary points from last year’s study/talk were noted:    

• Could the onset of the Drought have been addressed/caught by the Drought Monitor (DM) a bit early?  
-  Yes! 

• Was the accruing precipitation deficit in the Dakotas/Montana recognized a bit late? – Yes! 
• Did we put too much trust on the model’s/official rainfall forecast? – Yes! 
• So, unlike flash floods, which can happen in a matte belowr of several hours or days, and can be forecast 

ahead of time to a certain extent, all droughts have to develop from week after week, month after month,  
precipitation deficit, accrued deficit of rainfall/ soil moisture conditions!   

• That too depends on where? & when?   Does the region have a limited-months-only rainfall season? 
Such as California/WA/OR/Northern Plains/Florida?  Then the accrued rainfall deficit is critical, and 
must be watched carefully!  

                                                 
1 as of this conference time, October 2018 

Fig. 1  The most recent DM at this time is on the left, 
and on the right is shown the DM when the 
Northern Plains Drought was near its maximum 
on 12th September 2017. 
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So,  until such time our (models’/official) rainfall forecasts improve to be more reliable and useful,  
existing/accrued P/SM deficits combined with realistic/cautious evaluation of whatever precipitation 
probability outlook, taking into account the rainfall seasonality in the region,  may give us the best possible 
guidance of drought outlooks; will we have to develop/issue drought development probability based on existing 
dryness (drought monitor) and future precipitation forecast probability!! The three main take-away points in 
being able to assign/declare drought in a region and be able to forecast are: 

• Keep watching regularly (every week!) the accrued/Accumulated Precipitation deficit in a  given region 
over a continuous period ranging from weeks/month/seasons. 

• Put this deficit in the context of what the climatological rainfall season is, for that region!! Is it a limited 
few months of the year, or is it more or less spread through out the year?  When Is the rainfall deficit 
occurring?  

• Future Rainfall/Temperature/Soil moisture forecast and its skill!  
2.  The rainfall conditions preceding and the current status of the two droughts 

To better understand the evolution of the conditions preceding the above two droughts, let us first look at 
the climatological annual march of the precipitation over the United States, shown as the monthly median 
percent of annual precipitation in Fig. 2 below. It is clear that the MJJA is the main rainfall season over the 
Northern Plains states which experienced drought in 2017. 

 Early in 2017 (Jan/Feb, see above in Fig. 3), the focus was still on the major drought that was coming to 
an end in California, and on the drought in the southeast. Little attention was paid to the Northern Plains and 

Fig. 2  Annual March of the climatological monthly median % of Annual Precipitation over the United States. 



CHELLIAH 
 

 

111 

there were no signs of emerging drought there. Early signs  of developing dryness/drought in the Northern 
Plains were beginning to emerge at the end of March (first in South Dakota), definitely in April, and firmly/fully 
established in May, after missing the expected rainfall in May, the first full month of the three month rainy 
season MJJ !  

For regions with only a few months of main rainy season, say summer time in regions such as the Northern 
Plains, it is important to pay attention to the accruing rainfall deficits (from whatever little precipitation) in the 
months preceding the main rainy season. If rainfall deficits already exist in place in a region such as 
Montana/North and South Dakotas, leading up to the first month of the main rainy season, then to add to this 

Fig. 3 Annual march of the previous 1-mon, 2-mon, 3- months actual accumulation of actual precipitation 
deficit/excess anomaly at month’s end in January through May of 2017. 
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deficit, if the first month of the rainy season (say April/May) does not get the normal rainfall, then the drought 
is most likely to emerge there. That’s exactly what happened in 2017 here in this region.  

Figure 4 shows US drought monitor sampled every month from January 2017 through October 2018.  The 
reason for the gradual increase in the drought area and intensity in the US south and west is the two back to 
back La Niñas (see Table 1) , which are generally associated with lack of precipitation and dryness in the South 
and Southwest (Fig. 5).  

Fig. 4  US Drought Monitor 
every month from 
January 2017 (top left) 
until October 2018 
(bottom right). 

Table 1  2010-2018 cold and warm episodes by season.  
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See also Fig. 5, which shows the time sequence of ENSO events vs. the percentage of area covered by 
drought under various categories (in the US Drought Monitor), following the various El Niño and La Niña 
events. The general El Niño/La Niña composites of US precipitation produced and shown in CPC web site (for 
example, not shown) also illustrates  the general moistening (above normal precipitation) of US following an 
El Niño and the relative drying (below normal precipitation) of the country following a La Niña. 

3. Summary 

 So, what is the status of the two droughts, the Northern High Plains Drought and the Southwest Drought?  
The 2017 Northern Plains Drought got a considerable reprieve from the 2018 rainfall season, is all but gone,  
and only very small parts of it still exist in a muted form in far northern North Dakota and vicinity.  The drought 
in the southern or southwestern US, which also reflects the rainfall deficit from the two recent back to back La 
Niñas primarily in the four corners area states of AZ/NM/UT/CO, while it may likely improve with the 
upcoming El Nino rains, it is not clear if those rains will be sufficient to make up for these large earlier deficits. 

It is very important to monitor the rainfall shortfalls on many time scales, ranging from weeks to at least a 
few years, and it is hard to represent these rainfall deficits at various time scales with just the S (short term) and 
L (long term) representation in the simple drought monitor, without precisely attributing what the S/L time 
scales correspond to. 

 
 

Fig. 5  Time sequence of 
ENSO events (upper) 
vs. the percentage of 
area covered by drought 
(middle) under various 
categories of US DM. 
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1.  Introduction 

Moisture originating from the ocean surface is an ultimate source for precipitation on land. Over the global 
oceans, the largest moisture source regions are located over the subtropics where the excessive evaporation over 
precipitation has to be balanced by a net export of moisture (Schmitt 1995; Trenberth et al. 2011; Durack 2015). 
About a third of the subtropical moisture is transported and converged over the land area to sustain the terrestrial 
precipitation.  

This ocean-to-land moisture transport leaves an imprint on sea surface salinity (SSS). Without an internal 
source of salt, surface freshwater flux associated with the oceanic water cycle is the only forcing mechanisms 
on SSS variation. Thus, the changes in SSS, interpreted as “Nature’s rain gauge”, reflect the variation of the 
oceanic water cycle (Curry et al. 2003; Durack and Wijffel 2010; Durack et al. 2012; Schmitt 2015).   

The close relationship between the SSS and oceanic water cycle and the reliance of terrestrial precipitation 
on water input from the oceans indicate that SSS variation over moisture source regions can be potentially 
utilized as a predictor of precipitation on land. This study presents evidence that the springtime SSS over the 
subtropical North Atlantic can be indicative of summer precipitation over the US Midwest. We further show 
that the linkage between the preseason SSS and Midwest summer precipitation is through the memory of the 
soil moisture and a combination of thermodynamic 
and dynamic effects of soil moisture on the 
regional moisture balance.   

The prediction of US Midwest summer 
precipitation based on Random Forest algorithm 
suggests that preseason SSS outperforms SST-
based predictors, in which a model incorporating 
SSS increases the explained variance by two folds. 
The SSS-based prediction is especially skillful in 
capturing the extremely wet summers in the US 
Midwest, such as the 1993 and 2008 cases. Thus, 
the newly identified salinity-based predictor can 
significantly improve the seasonal forecast of 
precipitation in the US Midwest, especially the 
extremes.  
2.  Data and methodology 

The precipitation data are from the NOAA 
CPC US precipitation at 0.25° spatial resolution 
and daily temporal resolution (Higgins et al. 2000). 
Summer season is defined as the June-July-August 
(JJA).  

Fig. 1. MAM climatology (1950–2009) of SSS (shaded; 
PSU), moisture flux divergence (thick contours; mm  
day-1) and the divergent component of moisture flux 
(vectors; kg m-1s-1) over the North Atlantic. The solid 
thick contour is the moisture flux divergence = 0 mm 
day-1 isoline, which defines the subtropical North 
Atlantic in this study. The domains used to calculate SSS 
indices in the four quadrants are stippled or hatched. 
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We construct a set of subtropical sea surface salinity (SSS) indices using the data archived by the EN4.2.1 
(Good et al. 2013). We first define the subtropical ocean as an area of net divergence of atmospheric moisture 
(Fig. 1). Next, the subtropical ocean is further divided into four areas according to the direction of the divergent 
component of moisture flux. For example, the northwest (NW) is where the divergent component of moisture 
flux is directed northwest toward the North America (Fig. 1). The SSS within the northwest subdomain is 
averaged and the domain average defines the NW SSS index. The same definition applies to the NE, SW, and 
SE SSS indices (Fig. 1, and Li et al. 2016). 

We applied Random Forest (RF), a machine-learning algorithm (Breiman 2001), to predict precipitation on 
land based on preseason salinity over the subtropical North Atlantic. In this study, we train the RF algorithm 
with 11 predictors, including SSS, the persistence of regional precipitation, and nine climate indices 
representing the oceanic and atmospheric modes of variability. All climate variables are averaged over MAM 
to match the SSS predictor. The performance of the RF prediction is evaluated based on the coefficients of 
determination: 𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡⁄  (i.e., the portion of variance explained by the prediction model); 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 =
∑ (𝑃𝑃𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑃𝑃���)2𝑁𝑁
𝑖𝑖=1  is the total variance of observed precipitation; and 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 = ∑ [𝑓𝑓(𝑋𝑋)𝑖𝑖 − 𝑃𝑃𝑃𝑃𝑖𝑖]2𝑁𝑁

𝑖𝑖=1  quantifies the 
sum of precipitation variance unexplained by the RF prediction [𝑓𝑓(𝑋𝑋)].  

3.  Results 

3.1  Relationships between pre-season salinity and US Midwest precipitation 

Since the divergent component of moisture flux indicates where subtropical moisture will converge, the 
above defined SSS indices reflect not only the changes in surface freshwater flux but also potential geographical 
areas that will be influenced by the subtropical moisture flux. We focus on rainfall evolution over the US 
following the springtime NW SSS in that the moisture flux from this portion of the subtropical oceans tends to 
converge over the US (Fig. 1). 

Fig. 2  US precipitation anomalies (shaded; mm day-1) as (a), (c) composite and (b), (d) regressed upon MAM NW 
SSS index: (top) MAM and (bottom) JJA precipitation. The composite maps show precipitation difference 
between the top and bottom 10% SSS cases. The regions with composite/regression precipitation anomalies 
significant at the 0.05 level are hatched. 

 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

116 

Both composite and linear regression 
analysis are applied to US precipitation. For the 
spring, the most significant precipitation 
anomalies associated with high NW SSS are 
located over the southern US (eastward of 
100°W), where the positive precipitation 
anomalies exceed 1 mm day-1 (Fig. 2a-b). The 
positive precipitation anomalies appear to 
propagate northward to the Midwest in the 
summer (see mechanistic discussion below), 
leading to 1.5 – 2 mm day-1 above normal 
precipitation there (Fig. 2c-d). The composite 
and linear regression results are qualitatively 
similar, suggesting that the relationship between 
SSS and precipitation is generally linear and 
symmetric (Fig. 2)  

The processes linking the springtime SSS 
and precipitation in the southern United States and how they finally affect summer precipitation in the Midwest 
is evaluated and summarized in Fig. 3 (see details in Li et al. 2016, 2018). Initially, the increased moisture 
transport from ocean to land elevated soil moisture content in the Southern and Central US during the spring 
season. In the subsequent seasons, the high soil moisture content is preserved due to the 3-6-month land surface 
memory. The high soil moisture content serves as a moisture source to the local atmospheric column by 
increasing boundary layer humidity in the Southern and Central US. With the prevailing southerly wind in the 
summer, more moisture will be converged into the US Midwest, which is thermodynamically favorable for 
heavier precipitation (Meehl and Washington 1988; Delworth and Manabe 1989; Ek and Holtslag 2004). In 
addition, the spatial distribution of soil moisture influences precipitation through atmospheric dynamics, i.e. the 
intensity of the Great Plains Low-level jet (GPLLJ). Specifically, the increased soil moisture in the Central US 
enhances the west-to-east soil moisture gradient along the slope of the Rocky Mountains. The soil moisture 
content gradient increases the zonal pressure gradient and forces the GPLLJ to intensify to balance the enhanced 
pressure gradient (Fast and McCorcle 1990, 1991). The intensified GPLLJ brings more Gulf of Mexico moisture 
northward, favors moisture flux convergence in the Midwest, and thus contributes to high precipitation 
dynamically. 

3.2  Improved rainfall prediction for the US Midwest 

The physical linkage between springtime NW SSS and summer precipitation in the US Midwest suggests 
that pre-season SSS can be a physically meaningful predictor for Midwest precipitation (Fig. 3). We thus 
implemented the springtime NW SSS into the RF algorithm to predict summer precipitation over the US 
Midwest. According to the RF algorithm, the NW SSS is ranked as the most important rainfall predictor 
compared to the other 10 predictors: the importance factor of NW SSS is 0.98, but it drops to 0.53 for Niño 3.4, 
the second most important predictor (Fig. 4a). Using the top four predictors shown in Fig. 4a, we constructed 
an RF prediction model for Midwest summer precipitation. Fig. 4b shows that the four predictors together 
explain 41% of the observed precipitation variance, and the observed precipitation is within the 95% confidence 
interval (CI) of the predictions. The prediction without the NW SSS, however, largely underestimates the 
variability of Midwest precipitation, especially the extremely wet summer in 1993 and 2008 (Weaver et al. 
2009). At the same time, the R2 between the observation and prediction decreases to 0.16 (Fig. 4c). 

3.3 Implications for extreme precipitation  

The RF algorithm suggests that salty subtropical North Atlantic in the spring can be an indicator of extreme 
summer precipitation in the Midwest (Fig. 4). Assuming a linear relationship between SSS and precipitation, 
the positive SSS anomaly in 1993 will be followed by a 0.7 mm day−1 increase in Midwest summer precipitation, 
which alone explains 37% of the observed precipitation anomalies. In contrast, the previously identified ENSO 
predictor (Mei and Wang 2011) can only explain 8%, insufficient to account for the observed 1993 extreme 

Fig. 3 Schematic figure showing the way soil moisture bridges 
the 3-mon time lag between spring SSS and Midwest 
summer precipitation (see Li et al. 2018 for detail).   
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precipitation (Patricola et al. 2015). Further, the 
SSS-based prediction forecasts 0.47 mm day−1 
precipitation anomalies in the summer of 2008. 
The predicted precipitation equates to 78% of the 
observed precipitation anomaly. Over the 1950-
2015 period analyzed in this study, a higher-than-
normal springtime subtropical North Atlantic 
SSS occurs in five out of six historical extreme 
precipitation events in the Midwest. Meanwhile, 
in all of the 6 years with the saltiest subtropical 
ocean, a wet summer ensued in the Midwest.  

In conclusion, the results demonstrate 
improvements in predicting Midwest summer 
precipitation with the knowledge of springtime 
NW SSS, especially the extreme precipitation 
events. In addition to the previously identified 
ENSO link (Trenberth and Guillemot 1996; 
Barlow et al. 2001; Hoerling and Kumar 2003), 
incorporating preseason SSS into prediction 
models can thus benefit seasonal forecasting of 
Midwest summer precipitation. 

4.  Conclusions 

From the perspective of moisture exchange 
between ocean and land, this study explores the 
feasibility of terrestrial rainfall prediction using 
SSS over the subtropical North Atlantic. 
According to the direction of the divergent 
component of moisture flux, we defined a set of 
SSS indices (Fig. 1). We found that springtime 
SSS over the NW part of the subtropical North 
Atlantic is significantly correlated with summer 
precipitation over the US Midwest (Fig. 2). The 
linkage between springtime SSS and Midwest summer precipitation is established through the ocean–land 
moisture transport, land surface–atmospheric coupling, and its impact on atmospheric dynamics and 
thermodynamics (Fig. 3). 

The close relationship between springtime SSS and US Midwest summer precipitation indicates that salinity 
variations can provide predictive values for the US Midwest. By applying the RF algorithm to Midwest summer 
rainfall predictions, we show that NWSSS in the subtropical North Atlantic can generate higher prediction skill 
than previously identified for ENSO variability (Fig. 4). Thus, a knowledge of springtime SSS in the subtropical 
North Atlantic will be valuable for predicting summer precipitation over the US Midwest, an agricultural region 
vulnerable to floods and droughts. 
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ABSTRACT 

 The floods that occurred in equatorial East Africa (EEAF) during the spring of 2018 resulted in a major 
humanitarian crisis with an estimated 800,000 people affected, including injuries, disease outbreaks, and 
fatalities.  The magnitude of the floods was only comparable to that of Oct – Dec 1997 and 1961.  The heavy 
rains occurred in the background of a weak La Nina episode.  EEAF is referred to as the region between 5°N 
and 5°S; 30°E – 40°E.  The objective of this paper is to understand the mechanisms associated with these 
extremely heavy rainfall events.   

The rainfall in MAM 2018 
was marked with a strong 
intraseasonal variability 
surpassing the 90th climatological 
percentile over several days 
during the season.  Prominent 
MJO events with varying 
magnitudes straddled the globe 
between December 2017 and June 
2018.  The MJO was significantly 
weak in March before regaining 
strength and eastward propagation 
in much of April.  In early May, 
another moderate MJO event 
reemerged in Africa, and lasted 
through mid-June 2018.  MJO 
modulates EEAF rainfall such 
that convection is enhanced 
(suppressed) during phases 2 and 
3 (6 and 7) of the MJO activity.  
Analysis shows that rainfall 
upticks in MAM 2018 occurred 
during the phases 2 to 3 of the 
MJO.  However, there are secondary peaks that occurred in periods when the MJO was inactive.  

To determine the contributions of modes of variability on the intraseasonal timescale, we apply a space-
time bandpass filter at each grid point in the OLR anomaly field to isolate propagating signals of 
Convectively Coupled Equatorial Waves (CCEWs).  The heavy rains in Kenya in late March – early April 
were modulated by the MJO, with some evidence of Kelvin wave activity during this period (Fig. 1).  
However, during the first half of March, it seems the rains were mostly associated with propagation in the E. 
Rossby (ER) wave frequency, with some modulation from Kelvin waves and possibly other local factors as 
well.  Tropical Cyclone Sagar played a significant role in the heavy rains in May 2018.   

Fig. 1  (a) Evolution of daily rainfall in EEAF, and (b) OLR anomalies and 
contributions from CCEWs. 
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1.  Introduction 

Wildfires in California have been especially destructive in recent years (e.g., Keeley et al. 2009; Guzman-
Morales et al. 2016; Mass and Owens 2019).  Many of the most destructive fires have occurred in association 
with strong low-level, offshore, downslope synoptic wind events that occur during or soon after the end of the 
dry season (September-December).  In southern California, especially coastal southern California, these 
offshore wind events are commonly referred to as Santa Ana events (e.g., Raphael 2003; Rolinski et al. 2019).  
In other parts of California and western North America, dynamically similar offshore downslope wind events 
may be given different names (e.g., Diablo winds in and near the San Francisco region; cf. Blier 1998).  These 
wind events are forced by pressure gradient forces directed away from a low-level region of high pressure over 
or near the Great Basin and are most common in October-March (e.g., Raphael 2003; Rolinski et al. 2019).   

Santa Ana (SA) events typically last one to five days, but can last ten days or more (e.g., Raphael 2003; 
Rolinski et al. 2019).  SA winds increase the risk of serious wildfires, especially if they occur during or soon 
after the end of the summer dry season in the western US.  The wildfires can, in turn lead to major societal 
disruptions (e.g., loss or lives and property, evacuations, closings of schools and businesses, electric power 
outages; e.g., Westerling et al. 2004; Keeley et al. 2009; Mass and Owens 2019). 

We have conducted a preliminary investigation of how SA events are related to global scale, subseasonal 
to seasonal (S2S) processes.  Our initial focus has been on characterizing and analyzing the global scale S2S 
anomalies associated with the development of SA events, as opposed to the synoptic to mesoscale focus of 
many prior studies of SA events (e.g., Raphael 2003; Mass and Owens 2019).  Our initial results indicate that: 
(a) global scale S2S processes are important in initiating SA events; and (b) variables associated with these 
processes may be useful predictors of SA favorable conditions at S2S lead times.  The ability to skillfully predict 
these conditions could potentially improve the preparation for, and responses to, SA events.  Jones et al. (2010) 
and Rolinski et al. (2019) discussed approaches to forecasting of SA events, but found low skill at S2S lead 
times (greater than about a week).   

Our primary research questions were:  
1. How are SA conditions over southern California (and dynamically related events over western North 

America) related to global scale climate variations? 
2. What processes set up these conditions over southern California and western North America? 
3. Can climate variation information be used to improve the understanding and prediction of these events? 
4. What is the potential for skillful S2S prediction of these events? 
5. What can we learn from these events about related S2S variations in western North America (e.g., 

dynamically related temperature and precipitation anomalies in Alaska and the Great Plains)? 

2.  Data and methods 

Our study region was global, especially the global tropics and extratropical northern hemisphere, but with 
a focus on western North America and especially southern California.  Our study period was October-March 
1974-2019, with a focus on November 1974-2018.  We chose November as a focus month because: (a) 
November occurs after the dry season and, typically, before the start of substantial wet season precipitation in 
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the western US; and (b) a number of major wildfires associated with SA events have occurred in November 
(e.g., the Camp Fire and Woolsey Fire in November 2018; e.g., Cappucci 2018).  

Our main variables and data sets were:  

1. Daily and monthly mean atmospheric circulation variables and SST from the R1 and CFSR reanalysis 
data sets (Kalnay et al. 1996; Saha et al. 2010) 

2. Bimonthly El Niño, La Nina, and neutral (non-El Niño and non-La Niña) information from the 
Multivariate El Niño Index (MEI) data set interpolated to monthly means (Wolter and Timlin 2011) 

3. Daily mean Madden-Julian Oscillation (MJO) information obtained from the Bureau of Meteorology 
(Wheeler and Hendon 2004) 

 From the R1 and CFSR data, we created an index of SA events based on the area-averaged 850 hPa zonal 
wind (u850) over coastal southern California.  This region extends from Santa Barbara to San Diego and 
includes both ocean and land.  We used u850 for our SA index based on prior studies that indicate that the zonal 
wind is a good indicator of the occurrence of SA conditions (e.g., Guzman-Morales 2016), and because the 
winds at 850 hPa facilitate the identification of periods of offshore flow in both low lying terrain (e.g., over the 
ocean) and elevated terrain (e.g., the coastal mountains of southern California).  We identified SA events as 
periods in which the area-averaged, three-day running mean value of u850 in the southern California region 
was negative.  The dates, numbers, and durations of the SA events that we identified using this method are very 
similar to those found in other studies using different methods for identifying SA events (e.g., Raphael 2003; 
Jones et al. 2010; Guzman-Morales 2016).  

We analyzed the anomalies for several variables for the SA dates that we identified, and 45 days before and 
after those dates.  Our focus was on tropical and extratropical anomalous 850 and 200 hPa geopotential heights 
(ZA850 and ZA200) and tropical outgoing longwave radiation (OLRA).  In particular, we analyzed the five-
day mean anomalies for: (a) individual SA events in November 1974-2018; and (b) composites of multiple SA 
events in November 1974-2018.  The composites represented different numbers of events, depending on the 
conditions we applied in the selection of the events.  These conditions represented, for example the: (a) intensity 
and duration of the SA events; and (b) occurrence, phase, and intensity of climate variations (e.g., El Niño-La 
Niña, MJO).  

We used the resulting anomaly patterns to identify: (a) the temporal evolution of global scale anomalies 
associated with SA events; (b) teleconnections associated with SA events; and (c) precursors and potential 
predictors of SA events.   

In this article, we focus on our results for SA events 
occurring in November.  But these results are representative of 
our results for SA events in other months and for dynamically 
similar events in other parts of western North America. 

3.  Results 

Figure 1 shows ZA850 for a major SA event in late 
October 2003 that contributed to several very destructive 
wildfires in southern California (e.g., Westerling et al. 2004).  
The schematic black arrows in Figure 1 represent the 
corresponding wind anomalies.  The positive ZA850 over 
western North America and offshore wind anomalies over 
southern California and much of the western US are typical of 
SA events, as are onshore wind anomalies over coastal British 
Columbia and southern Alaska. 

Figure 2 shows ZA200 for the late October 2003 SA event, 
and for two other SA events in mid-November 2008 and early 
December 2017 that were also associated with major wildfires 
in southern California (e.g., Keeley et al. 2009; Guzman-

Fig. 1  Geopotential height anomalies at 850 hPa 
(ZA850) for 23-27 October 2003, a period in 
which  during a major Santa Ana event and 
multiple wildfires occurred in southern 
California.  The black arrows schematically 
indicate the associated wind anomalies at 
850 hPa. 
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Morales 2016).  Figure 3 shows ZA200 for a 
composite of the upper tercile of November SA 
events during the study period based on the 
magnitude of the u850 winds in coastal southern 
California (i.e., the tercile with most offshore u850 
winds).  In all of the cases shown in Figures 2-3, 
there is: (a) a positive anomaly over western North 
America centered between 45-55 north latitude; and 
(b) an approximately zonal pattern of alternating 
positive and negative anomalies extending around 
the northern hemisphere extratropics (at about 20-
70 north latitude).  This zonal pattern of alternating 
positive and negative anomalies shown in Figures 
2-3 indicates an anomalous planetary wave train 
with a zonal wave number 4-5 structure, with the 
strongest anomalies in the East Asia - North Pacific 
- North America region.  

Figure 4 shows ZA200 for all days of the six 
Novembers with the greatest SA activity (the 
largest number of SA days), which were November 
1976, 1980, 1989, 1992, and 2007.   Note that the 
anomaly patterns are similar to those in Figures 2-
3, although the anomalies are less pronounced over 
South Asia and there is more arcing in the wave 
train over the North Pacific and North America. 

Animations of the ZA200 anomalies 45 days 
before and after individual and composite SA 
events in southern California (not shown) reveal 
that the anomalous wave trains shown in Figures 2-
4 tend to: (a) develop as quasi-stationary wave 
trains that are first evident over South and East Asia 
two to four weeks prior to the SA events; and (b) 
then become more evident successively further to 
the east via eastward energy propagation into the 
North Pacific, North America, and North Atlantic. 

These results indicate that SA events tend to be 
part of a global scale pattern of S2S anomalies that 
originates in the South Asia - East Asia sector 
several weeks prior to the SA events.  These 
anomalies suggest that SA events are generated, at 
least in part, by anomalous wave train activity that 
teleconnects Asia to western North America.  The 
MJO, and associated wave trains and 
teleconnections, have been identified as important 
factors in generating other types of anomalous 
conditions in western North America (e.g., 
temperature and precipitation anomalies), with the western North American anomalies lagging the initiating 
MJO conditions by two or more weeks (e.g., Higgins et al. 2000; Mundhenk et al. 2018).   

This led us to investigate the MJO activity occurring several weeks prior to SA events.  Figure 5 shows the 
November composite ZA200 for 20 days after MJO phase 2.  In this phase, the convective component of the 

Fig. 2  Geopotential height anomalies at 200 hPa (ZA200) 
for 23-27 October 2003, 15-19 November 2008, and 04-
11 December 2017.  In each period, a major Santa Ana 
event and multiple wildfires occurred in southern 
California. 

 

Fig. 3  Geopotential height anomalies at 200 hPa (ZA200) 
composited for the strongest Santa Ana events in 
southern California in November (the uppermost tercile 
of Santa Ana events). 
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MJO occurs in the central tropical Indian Ocean and 
the convective component occurs in the tropical 
western Pacific (e.g., Madden and Julian 1994).  
Note in Figure 5 the zonally oriented anomalous 
wave train with zonal wave number 4-5 structure in 
the northern midlatitudes, with a positive anomaly 
over western North America, similar to the 
composite ZA200 patterns based on SA events (see 
Figures 2-4 and the corresponding text).  

Animations (not shown) of ZA200 based on 
phase 2 based composites (such as the composite in 
Figure 5) reveal an evolution of the extratropical 
anomalous wave train that is similar to that for the 
ZA200 composite based on SA events (such as that 
shown in Figure 3).  These results indicate that MJO 
phase 2 may be an important factor in initiating SA 
events.  Other results (not shown) indicate that 
phases 8, 1, and 3 (phases with anomalies that are 
similar to phase 2) may also contribute to the 
initiation of SA events.   

Prior studies (e.g., Raphael and Finley 2007; 
Guzman-Morales 2016; Rolinksi et al. 2019) have 
investigated the associations between El Niño, La 
Niña, and SA events.  We found that El Niño and 
La Niña can alter the global scale anomaly patterns 
associated with SA events and with MJO phases 8-
1-2-3.  As an example, Figure 6a (6b) shows the 
November composite ZA200 for 20 days after MJO 
phase 2, similar to Figure 5, but with only neutral 
and El Niño (La Niña) days included in the 
composite.  That is, La Niña (El Niño) days were 
excluded from the compositing for Figure 6a (6b).  
A comparison of Figures 5 and 6 indicates that El 
Niño and La Niña events can alter how MJO sets up 
SA conditions over western North America.  In 
particular, these events can alter the overall 
extratropical anomalous wave train associated with 
MJO phase 2, including the location and orientation 
of the positive anomaly over western North 
America and, thereby alter the corresponding wind 
anomalies over southern California.  
4.  Conclusions 

Our results indicate that SA favorable 
conditions in southern California (and related 
events elsewhere in the western US) are part of 
anomalous global S2S processes.  The MJO, 
especially phase 1, 2, and 3, appears to be important 
in initiating these processes at lead times of several 
weeks.  El Niño and La Niña may be important in 
modifying how MJO initiates SA favorable 

Fig. 4.  Geopotential height anomalies at 200 hPa (ZA200) 
composited for the six Novembers with the most Santa 
Ana activity in southern California. 

 

Fig. 5.  Geopotential height anomalies at 200 hPa (ZA200) 
composited for all November days occurring 20 days 
after MJO phase 2. 

Fig. 6.  Geopotential height anomalies at 200 hPa (ZA200) 
composited for November days occurring 20 days after 
MJO phase 2 but with: (a) only neutral and El Nino 
days included (upper panel); (b) only neutral and La 
Nina days included (lower panel). 
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conditions.  The lead times associated with the process that create SA favorable conditions suggest that skillful 
S2S forecasting of these conditions may be possible.  However, such forecasting would likely be complicated 
by the multiple processes that affect the setup of the extratropical anomalies associated with SA favorable 
conditions (e.g., other climate variations, such as the Indian Ocean Dipole and the Arctic Oscillation; the 
extratropical background flow and other extratropical dynamic factors that help determine the wave train 
response to climate variations; e.g., Sardeshmukh and Hoskins 1988).    

The global scale pattern of anomalies that are favorable for SA conditions in southern California are also 
favorable for substantial anomalies in other variables and/or other locations.  These include, for example, 
offshore wind anomalies over much of California and Oregon, and onshore wind anomalies and positive low-
level temperature anomalies over southern Alaska.  More generally, our initial results show that SA favorable 
anomalies tend to be part of a pattern of anomalous tropospheric ridging occurring over much of western North 
America.  These larger scale anomalies support a wide range of anomalies that tend to extend from Alaska to 
northern Mexico and from the eastern North Pacific to central North America (cf. Swain et al. 2017).  These 
preliminary findings suggest that improved understanding of the processes that generate anomalous ridging 
over western North America may contribute to a better understanding and prediction of SA events plus a wide 
range of related anomalies. 
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1.  Introduction 

Drought can develop and intensify in a short amount of time and result in major agricultural losses if they 
are not predicted and detected in a timely manner.  Understanding the characteristics of flash drought events, 
when and where these events occur, their causes, and the prediction of the onset of such events on subseasonal 
timescales is of critical importance for impact assessment, disaster mitigation, and loss prevention.  In this study, 
we define a flash drought event as a drought event with greater than or equal to two categories degradation in 
a 4-week period based on the U.S. Drought Monitor (USDM; Svoboda et al. 2002).  We examine the 
characteristics of flash drought events, their temporal and spatial distributions, and distinctions from 
conventional, slowly-evolving drought based on rasterized USDM data from 2000 to 2017.  We also identify a 
list of major flash drought events and investigate the causes leading to the rapid development using concurrent 
Phase 2 of the North American Land Data Assimilation System (NLDAS-2) data (Xia et al. 2012a and b).  
Unlike conventional drought, which is mainly driven by precipitation deficits, anomalously high 
evapotranspiration (ET) rates, caused by anomalously high temperatures (e.g., during heatwaves) and/or 
anomalously high incoming radiation, are usually present before the onset of flash drought.  As a result, 
monitoring rapid changes in ET, along with precipitation (P) and soil moisture (SM), can provide early warnings 
of flash drought development.  An experimental tool was created at NOAA’s Climate Prediction Center (CPC) 
to predict the areas vulnerable for flash drought development using near real-time NLDAS-2 monitoring data, 
and has been used to support the operational production of CPC’s Monthly Drought Outlook (MDO) since April 
2018.  We briefly introduce the tool in this paper and evaluate its performance during the 2018 warm season.  
2.  Flash drought characteristics 

To analyze flash drought characteristics, we utilize historical USDM maps from 2000 to 2017.  USDM 
maps are produced weekly in ArcGIS shapefile format through expert synthesis of various data sources, 
including precipitation, soil moisture, streamflow, snow water equivalent and snowpack, crop and vegetation 
conditions, and reservoir and groundwater levels (Svoboda et al. 2002).  These data sources are coupled with 
inputs from local, state, regional, and federal levels (e.g., local impact reports) to depict short- and long-term 
drought conditions.  USDM maps contain valuable information of drought occurrence and severity, and are 
used by U.S. government agencies for official drought declarations.  In order to use USDM as a data source for 
numerical analysis, we rasterized USDM maps into gridded outputs with 1/8 degree resolution covering the 
contiguous United States (CONUS). 

Figure 1 shows the maps of drought occurrence percentage based on the rasterized 2000-2017 USDM data 
(the sample size is 939) for all 12 months.  Drought can occur year-round and everywhere in the United States.  
However, some regions, such as Nevada, Arizona, and southern California, are more prone to drought than 
others, and drought occurrence is largely dependent on geographical location.  In the maps, an east-west contrast 
is observed for all months, indicating that the western United States are more vulnerable to drought.  Due to the 
slowly-evolving nature of drought, there are small variations among seasons.  Yet, a slight increase in drought 
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occurrence appears over the central and southern United States during the warm season, implying that 
temperature (T) or its related quantities (e.g., ET) may play a role in drought manifestation in summertime. 

Figure 2 presents the maps of flash drought occurrence percentage (the sample size is 935) for all 12 months.  
In this analysis, a flash drought event is defined as a drought event with greater than or equal to two categories 
degradation in a 4-week period based on USDM, and this figure shows when and where these events occurred.  
Clearly, flash drought has preferred seasons and regions to occur.  Unlike conventional, slowly-evolving 
drought that can occur year-round, most events occurred in the warm season and over the central United States.  
This characteristic is very different from conventional drought driven mainly by precipitation deficits, 
suggesting that different approaches may be needed to predict flash drought.  By cross-examining the spatial 
and temporal patterns of flash drought occurrence with T and ET climatological maps derived from 1981-2010 
NLDAS-2 data (figures not shown), there is strong coherence between the flash drought occurrence maps and 
ET climatological maps.  This result further suggests that flash drought development is more related to ET 
processes than T effects.  

To illustrate how flash drought occurred over time, Figure 3 shows the time series of the fraction of area 
within the CONUS that experienced flash drought development from 2000 to 2017.  It is seen that flash drought 
occurred frequently throughout the 18 years, although some years only have a small fraction of the CONUS 
experiencing flash drought development.  During these 18 years, five years (i.e., 2000, 2003, 2006, 2007, and 
2012) had widespread fast development of drought, and four out of the five years (except 2003) occurred after 
or during an La Nina episode, indicating that the Southern Oscillation plays an important role in widespread 
flash drought development over the United States.  The 2012 flash drought over the central Great Plains 
(Hoerling et al. 2014) is historic, with about 18% of the CONUS experiencing sudden deterioration of 
conditions at the peak of drought development.  The significance of this drought (and the damages it caused) 
has led to the awareness of flash drought and motivated the inauguration of the MDO at CPC in 2013. 

In order to investigate the antecedent conditions prior to the rapid development of drought, NLDAS-2 data 
of the five years with widespread flash drought development were gathered and analyzed.  We looked at the 

Fig. 1  Maps of drought occurrence percentage based on rasterized 2000-2017 USDM data for (a) January, (b) 
February, (c) March, (d) April, (e) May, (f) June, (g) July, (h) August, (i) September, (j) October, (k) November, 
and (l) December. 
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time series of P, T, SM, ET, and runoff, their anomalies and standardized drought indices, as well as the 
evolution of these five droughts.  The goal is to look for common features during the drought development 
phase.  We found that all five droughts had sudden decreases in ET anomaly over the drought regions before 
onset.  We also noticed sharp declines in SM anomaly associated with the sudden decreases in ET anomaly.  
Temperatures during the development periods were warmer than normal, due to heatwaves in the regions, and 
the 3-month standardized precipitation indexes were negative for all five droughts.  These results, consistent 
with the findings by others (e.g., Otkin et al. 2015 and Otkin et al. 2018), suggest that closely monitoring rapid 
changes in ET (a responding variable to T), along with P and SM conditions, can provide early warnings of 
flash drought development.  
3.  Flash drought prediction 

Based on the findings above, we developed an experimental tool to predict areas vulnerable for flash 
drought development using near real-time NLDAS-2 monitoring data.  The tool calculates the Rapid Change 
Index (RCI) proposed by Otkin et al. (2015) using 7-day mean ET anomalies.  RCI is the accumulated 
magnitude of moisture stress changes (standardized differences) occurring over multiple weeks.  Drought is 
likely to develop when RCI is negative.  Because RCI changes with time, like all drought variables, it is difficult 
to capture drought developing signals by monitoring RCI maps.  In order to create an intuitive drought 
prediction map that directly depicts drought tendency as the MDO, we count the number of occurrences that 
RCI is less than -0.5 over the last 30 days and plot the count maps with selected thresholds specifying P and 
SM conditions.  The new tool started running on April 1, 2018 and has been providing real-time predictions 
(updated daily) to support MDO’s production since then. 

The top row of Figure 4 displays the new tool’s predictions from April to September 2018.  In these maps, 
yellow-to-red colors indicate areas with potential drought development or intensification.  The higher the count, 
the more likely for drought to develop.  In the end of April 2018, the new tool indicated that areas over eastern 
ND, northwestern MN, southern IA, and northern MO were vulnerable to flash drought development and 
verified well with USDM issued on 29 May 2018 (bottom row).  The tool also suggested that drought may 

Fig. 2  Maps of flash drought occurrence percentage based on rasterized 2000-2017 USDM data for (a) January, (b) 
February, (c) March, (d) April, (e) May, (f) June, (g) July, (h) August, (i) September, (j) October, (k) November, 
and (l) December. 
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intensify over KS, parts of OK, and northern TX; however, rainfall in May over this region (as forecasted) 
brought relief and improved drought conditions.  Drought was not developed until June and July when 
heatwaves moved into the region.  At the end of May 2018, the new tool indicated that flash drought may 
develop over western TX and LA, consistent with the MDO (third row).  This prediction was verified by USDM 
on 26 June 2018 (bottom row).  The new tool did not capture the drought development in New England and 
Pacific Northwest, as these two regions are not prone to flash drought.  At the end of June 2018, the new tool 
again suggested widespread drought development over MO, AR, and eastern KS, as well as CO and UT.  Aided 
by the heatwaves in this region, this prediction was successfully verified by USDM on 31 July 2018 (bottom 
row).  However, the area over northeastern SD, in opposition to the development, was improved by rainfall that 
occurred in July.  In August and September, wet conditions emerged over the MO/KS region and a series of 
rainstorms gradually erased the summer flash drought.  

The interplay between precipitation and high temperature appears to be a challenge for flash drought 
prediction.  The first stage of the tool is solely based on NLDAS-2 monitoring data and does not take into 
account forecast information.  Therefore, it highlights areas with potential flash drought development if the 
current conditions persist into the next month.  Predictions that meet this requirement (e.g., areas over CO and 
UT for July prediction) are usually verified well.  In the next stage, we will add CFSv2 forecast information 
into the tool to help restrain the development areas and provide potential drought improvement information. 

4.  Summary and Conclusions 

We have examined flash drought characteristics using historical USDM and NLDAS-2 data.  Unlike 
conventional drought that can occur year-round and everywhere in the United States, flash drought occurs 
mostly in the warm season and central United States.  Instead of being driven by precipitation deficits, flash 
drought development is mainly driven by ET processes.  By closely monitoring rapid changes in ET, along with 
P and SM conditions, we are able to predict areas vulnerable for flash drought development.  An experimental 
flash drought prediction tool was created using the Rapid Change Index (Otkin et al. 2015) calculated from 
weekly changes of 7-day mean ET anomaly.  The new tool started running on April 1, 2018 and has been used 
to support the operational production of CPC’s Monthly Drought Outlook.  Preliminary assessment of the tool 
shows promising results in predicting flash drought development, and the interplay between precipitation and 
high temperature appears to be a challenge for flash drought prediction.  To improve the performance of the 
tool, we will add CFSv2 forecast information to help restrain the development areas and provide potential 
drought improvement information.  A full-length technical paper (Chen et al. 2019) is in preparation to 
document details of the study of flash drought characteristics.  Another paper will be written to document the 
methodology and assessment of the flash drought prediction tool once it is finalized. 
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Fig. 3  Time series of the fraction of area within the contiguous United States experiencing flash drought 
development from 2000 to 2017. 
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ABSTRACT 

 Using Historical simulations of the Coupled Model Intercomparison Project-5 (CMIP5) models and 
multiple observationally-based datasets, we employ skill metrics to analyze the fidelity of the simulated 
Northern Annular Mode (NAM), the North Atlantic Oscillation (NAO), the Pacific North America pattern 
(PNA), the Southern Annular Mode (SAM), the Pacific Decadal Oscillation (PDO), the North Pacific 
Oscillation (NPO), and the North Pacific Gyre Oscillation (NPGO). We assess the benefits of a unified approach 
to evaluate these modes of variability, which we call the common basis function (CBF) approach, based on 
projecting model anomalies onto the observed empirical orthogonal function (EOF). The CBF approach 
circumvents issues with conventional EOF analysis, including the need to correct for arbitrary signs of EOF’s, 
and the need to test if higher-order model modes better compare with the observed modes. Compared to 
conventional EOF analysis of models, the CBF approach indicates that models compare significantly better 
with observations in terms of pattern correlation and root-mean-squared-error (RMSE) than heretofore 
suggested. In many cases, models are doing a credible job at capturing the observationally-based estimates of 
patterns; however, errors in simulated amplitudes can be large and more egregious than pattern errors. 

Fig. 1  Portrait plot of (a) the relative RMSE with respect to the median RMSE in each row.  For sea-level pressure 
based modes (PNA, NPO, NAO, NAM, and SAM) in the upper-left hand triangle the model results are shown 
relative to 20CR whereas in the lower-right triangle the model results are shown relative to the ERA-20C.  For 
SST based modes (PDO and NPGO), results are shown relative to HadISSTv1.1 (upper-left triangle) and 
HadISSTv2.1 (lower-right triangle).  (b) The ratio of simulated to observed temporal variability as estimated by 
the standard deviations of the PC time series.  Missing data is shown in white.  The ratios are unitless.   (From 
Lee et al. 2018) 

(a) (b) 



LEE ET AL. 
 

 

133 

Sensitivity tests demonstrate that the results from our objective tests are relatively insensitive to methodological 
considerations (CBF vs. conventional approach), observational uncertainties in pattern (as determined by using 
multiple datasets), and internal variability (when multiple realizations from the same model are compared). The 
skill metrics proposed in this study can provide a useful summary of the ability of models to reproduce the 
observed EOF patterns and amplitudes (Fig. 1).  Additionally, the skill metrics can be used as a tool to 
objectively highlight where potential model improvements might be made. We advocate more systematic and 
objective testing of simulated extratropical variability, especially during the non-dominant seasons of each 
mode, when many models are performing relatively poorly. 

This work has been published in the Climate Dynamics in July 2018. 
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1.  Introduction 

The Indian Ocean Dipole (IOD) is one of the main patterns of the sea surface temperature (SST) anomaly 
over the Indian Ocean among those patterns whose zonal contrast is in the equatorial region (e.g., Saji et al. 
1999; Saji and Yamagata 2003). IOD events generally begin in late spring, peak in autumn, and end in winter, 
and they exert a large influence on the climate not only in the countries around the Indian Ocean but also 
globally (Guan and Yamagata 2003; Saji and Yamagata 2003). Previous studies indicated the statistical 
relationship between positive IOD (P-IOD) events and equivalent barotropic positive height anomalies in the 
Northern Hemisphere mid-latitudes associated partly with an enhancement of the Tibetan High. However, the 
related mechanism for the equivalent barotropic height anomaly remains unclear. The results of the 
aforementioned studies motivate us to focus on P-IOD events preferentially given their stronger influence on 
the East Asian climate. 

In the present study, we examine (i) the statistical characteristics of past P-IOD events since 1958 and (ii) 
how P-IOD events affect the enhancement of the Tibetan High. This line of attack is important for improving 
our knowledge about the IOD influence on the Japanese climate and how to monitor and predict that influence.  
2.  Data and methodology 

We used three-month means from July to September (JAS) of JRA-55 (Kobayashi et al. 2015) and COBE-
SST (Ishii et al. 2005) to diagnose the atmosphere circulation and the oceanographic conditions. Those three 
months correspond to the period from boreal summer to early autumn in the Northern Hemisphere. Normal 
circulation is defined as the 55-year average from 1958 to 2012 and anomaly is defined as any deviation from 
that.  

 We conducted a composite analysis to determine the statistical characteristics of the pure P-IOD events 
that occurred in eight of the years between 1958 and 2012, namely 1961, 1967, 1994, 2006, 2007, 2008, 2011, 

Fig. 1  Composite anomaly maps of JAS mean of (a) sea surface temperature (SST) and (b) 500-hPa vertical p-
velocity in pure positive Indian Ocean Dipole (P-IOD) events from July to September. The contour lines 
denote the composite anomalies at intervals of (a) 0.2°C and (b) 1×10−2 Pa/s. The shading indicates the 
statistical confidence levels. 

(a) (b) 
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and 2012. To extract those IOD events, we define the dipole mode index (DMI) after Saji et al. (1999) as the 
difference between the SST deviation averaged over the western part (10°S–10°N, 50–70°E) of the equatorial 
Indian Ocean and that averaged over the eastern part (10°S–Eq., 90–110°E). The SST deviation is defined as 
the deviation from the latest sliding 30-year mean. A P-IOD event is recognized if the three-month running 
mean DMI exceeds +0.4°C for at least three consecutive months. To assess the impacts of IOD events alone, 
we extracted the pure P-IOD events from the P-IOD+ENSO events by removing those years in which ENSO 
events occurred simultaneously. 

To examine the atmospheric responses to the diabatic heating anomalies associated with enhanced 
convective activities, we used a linear baroclinic model (LBM; Watanabe and Kimoto 2000, 2001) comprising 
primitive equations linearized exactly about a basic state defined as the 30-year average from 1981 to 2010. 
The model was expanded horizontally by spherical harmonics having an equation with the resolution of T42 
and discretized vertically by a finite difference to 40-sigma levels.  

3.  Results 

Figure 1 shows the composite SST and 500-hPa vertical p-velocity anomaly during the pure P-IOD events.  
The SST anomaly over the Indian Ocean is positive over the western to central parts and negative over the 
eastern part (Fig. 1a), exhibiting the typical P-IOD pattern. Corresponding to the SST anomaly over the Indian 
Ocean, the 500-hPa vertical velocity anomalies indicate that convective activity is enhanced over the western 
part of the ocean and suppressed over the eastern part (Fig. 1b). The 850-hPa streamfunction anomaly shown 
in Fig. 2a exhibits a clear anticyclonic circulation anomaly over the area from the seas south of India to the 
Maritime Continent, implying that the Rossby-wave response to the suppressed convective activity is seen (Fig. 
1b). The anticyclonic circulation anomaly brings a stronger-than-normal lower-tropospheric westerly wind over 
the area from the Arabian Sea to the seas east of the Philippines (Fig. 2b), corresponding to an enhanced Asian 

Fig. 2  As Fig. 1 but for composite anomaly maps of (a) 850-hPa streamfunction, (b) 850-hPa horizontal wind 
(vectors), (c) 200-hPa streamfunction, and (d) 200-hPa velocity potential and divergent wind (vectors). The 
contour intervals are (a) 0.5×106 m2/s, (c) 1×106 m2/s, and (d) 0.2×106 m2/s. 

(a) 
(b) 

(c) 
(d) 
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summer-monsoon circulation. The westerly-wind anomaly arrives at the seas east of the Philippines and exhibits 
stronger-than-normal convergence with the trade winds (Fig. 2b), contributing to the enhanced monsoon trough 
over the area. These stronger-than-normal monsoon circulation and monsoon trough are associated with 
enhanced convective activities in the latitudinal band from 10°N to 20°N such as western India, the Bay of 
Bengal, and the wind area of the western North Pacific (Fig. 1b). The relationship between the P-IOD events 
and the stronger-than-normal Asian summer-monsoon circulation is also suggested by some previous studies 
such as Ashok et al. (2004) and Yang et al. (2010), and the enhanced convective activity over the western North 
Pacific can be explained by the stronger-than-normal monsoon circulation and corresponds partly to the positive 
SST anomaly to the east of the Philippines (Fig. 1a).  

In the upper troposphere, a significant divergence anomaly is seen over a wide area of the western North 
Pacific (Fig. 2d) associated with the enhanced convective activity over and around the area (Fig. 1b). This 
causes northward divergent wind anomalies over the area from the seas east of the Philippines to East Asia 
across the strong meridional gradient of potential vorticity associated with the Asian jet stream. Over East Asia, 
the Asian jet stream shifts northward from its normal position (Fig. 3a) and the 200-hPa height shows a zonally 
elongated positive anomaly over the latitudinal band of 40°N (Fig. 3b), indicating a northeastward extension of 
the Tibetan High. To identify the origin of the height anomaly, the composite absolute-vorticity advection term 
in the Rossby-wave source is calculated with reference to Sardeshmukh and Hoskins (1988). The advection 
term shown in Fig. 3c indicates negative-vorticity forcing over the northern part of East Asia, contributing to 
the northward shift of the Asian jet stream (Fig. 3a) and the northeastward extension of the Tibetan High (Fig. 

(a) (b) 

(c) (d) 

Fig. 3  As Fig. 1 but for composite anomaly maps of (a) 200-hPa zonal wind, (b) 200-hPa geopotential height, 
(c) 200-hPa absolute-vorticity advection by divergent wind, and (d) 2-m temperature. The contour intervals 
are (a) 1 m/s, (b) 5 m, (c) 0.05×10−5 s−1d−1, and (d) 0.2°C. 
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3b).  The 2-m temperature shown in Fig. 3d exhibits significant positive anomalies over a wide area of East 
Asia, contributing to the significantly hot conditions in boreal summer and the late-summer heat over the area.  

Deterministic numerical experiments are performed using the LBM. The LBM is solved with two types of 
hypothetical elliptical heat source centered at the points 5°S, 100°E (Experiment 1, Fig. 4a) and 5°N, 150°E 
(Experiment 2, Fig. 4c) with reference to the composite 500-hPa vertical p-velocity (Fig. 1b) and 200-hPa 
velocity potential (Fig. 2d). These two experiments are implemented to assess the impact of suppressed 
convective activity over the eastern equatorial Indian Ocean associated with the P-IOD events for Experiment 
1 and the stronger-than-normal lower (resp. upper) tropospheric convergence (resp. divergence) over the 
western North Pacific for Experiment 2. The vertical integrated heating anomaly shown as the colored shading 
in Figs. 4a and 4b indicates cool and warm sources over the eastern Indian Ocean and the western North Pacific, 
respectively. The LBM responses of the 850-hPa streamfunction and horizontal wind (Fig. 4b) to the P-IOD-
associated cool source (Fig. 4a) show anticyclonic circulation anomalies over the North Indian Ocean and the 
associated lower-tropospheric westerly-wind anomalies over the area from the Arabian Sea to the seas east of 
the Philippines, corresponding to the composite lower-tropospheric circulation anomaly shown in Figs. 2a and 
2b. These responses indicate that the P-IOD-associated suppressed convective activity over the eastern 
equatorial Indian Ocean helps to enhance the Asian summer-monsoon westerly wind. Furthermore, the LBM 
responses of the 200-hPa velocity potential and divergent wind (Fig. 4d) to the warm source to the east of the 
Philippines (Fig. 4c) show a divergence anomaly and the associated northwestward divergent flow toward the 
northeastern part of East Asia (Fig. 4b), also corresponding well to the composite anomaly characteristics (Fig. 
2d). These two LBM experiments suggest that the P-IOD events have an indirect impact on the northeastward 
extension of the Tibetan High through the enhanced Asian summer-monsoon circulation.  

(a) (b) 

(c) (d) 

Fig. 4  Steady linear responses of (b) 850-hPa streamfunction anomaly (contours and shading) and horizontal 
wind anomaly (vectors) to (a) a cool source at 5°S, 100°E, and (d) 200-hPa velocity potential anomaly 
(contours and shading) and divergent wind anomaly (vectors) to (c) a warm source at 10°N, 140°E in the 
linear baroclinic model (LBM). The anomalies represent deviation from the basic states defined as normal 
during the period from July to September. (a) and (c) show vertically integrated heat forcing with a maximum 
amplitude of 8 K/d, a longitudinal width of 20°, a latitudinal width of (a) 8° and (c) 15°, and a gamma vertical 
distribution around the 400-hPa level. The contour intervals are (b) 2×105 m2/s and (d) 1×106 m2/s. 
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4.  Conclusions 

This study investigated the dynamic relationship and processes between P-IOD events and the 
northeastward extension of the Tibetan High, and its impact on the East Asian climate from boreal summer to 
early autumn based on a statistical analysis and LBM experiments. The composite analysis of P-IOD events 
with ENSO events removed shows a zonal contrast of the anomalous convective activities in the equatorial 
Indian Ocean associated with the P-IOD-related SST anomaly. The lower-tropospheric anticyclonic circulation 
anomaly in response to the suppressed convective activity over the eastern Indian Ocean contributes to enhance 
(i) the lower-tropospheric westerly wind of the Asian summer-monsoon circulation and the associated monsoon 
trough and (ii) the convective activity over the western North Pacific. The positive SST anomalies to the east 
of the Philippines may also contribute partly to the enhanced convective activity over that region. The resultant 
significant divergent wind over the western North Pacific in the upper troposphere crosses the Asian jet stream 
and provides strong negative-vorticity forcing over the northern part of East Asia, contributing to the 
northeastward extension of the Tibetan High. This circulation anomaly is presumed to contribute to the 
significantly hot conditions in boreal summer and the late-summer heat over East Asia. The responses of (i) the 
anticyclonic circulation anomaly over the North Indian Ocean and the Asian summer-monsoon westerly in the 
lower troposphere to the P-IOD-associated suppressed convective activity and (ii) the upper-tropospheric 
divergence to the enhanced convective activity over the western North Pacific are expressed well by the LBM 
numerical experiments. These impacts on the East Asian summer climate can be understood as remote and 
indirect influences of pure P-IOD events via the enhanced Asian summer-monsoon circulation. 

Clarification of the relationship between IOD events and the East Asian summer climate is also important 
for assessing the predictability and progress of operational seasonal forecasting. For future perspectives on 
operational seasonal forecasting, using the predicted indices representing the IOD condition gives us a potential 
way to predict the climate from late summer to autumn in and around East Asia as suggested in previous studies. 
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1.  Tools at the CPC 

What is called the “Subseasonal Excessive Heat Outlook System”, or SEHOS, was constructed in 2016 at 
the Climate Prediction Center (CPC) in conjunction with University of Maryland Cooperative Institute for 
Research in Environmental Sciences (UM CIRES). It provides a real-time probabilistic forecast of the 
occurrence of heat waves (or “excessive heat events”) with lead times of 8 to 14 days. It is a direct and simple 
interpretation of any given forecast models’ output in terms of the chances of a heat wave. A heat wave here 
consists of consecutive dates over either the 90th or 95th historical percentile values for the time of year and at 
this location. In addition to producing the probability of a heat wave occurring, also estimated are the heat wave 
start date and duration length, the forecast period’s single-day and/or running average (2 or 3 days) maximum 
temperature and standardized anomalies, the historical 90th and 95th percentile values for the period, and the 
probabilities of exceedance of three absolute thresholds.  All products come in both heat index and dry air 
temperature varieties, but they also come in a “hybrid” variety.  These hybrid probabilities are the maximum 
probability/value between the heat index and temperature at any given location or in any of the various daily 
products. 

 The SEHOS uses forecasts of 
daily maximum temperature and 
heat index from two operational 
ensemble forecast systems/models: 
the ECMWF Ensemble Prediction 
System (ECENS) and the Global 
Ensemble Forecast System (GEFS).  
In addition, a third model-output is 
also utilized: an equal weighted 
blend of the two sets of SEHOS 
outputs (denoted “ECENS-
GEFS”). The historical reforecasts 
of these models during the 
summertime from 1996-2014 are 
used, in conjunction with the NCEP 
R1 reanalysis, to calibrate the raw 
probabilistic forecasts.  This is done 
using reliability mapping with the 
locally (both spatially and calendar-wise) sampled paired reforecasts and observations.  

All three models are calibrated separately. Skill score metrics used to quantify the accuracy of the models 
include the area under the receiving operating curve (AUC-ROC) and the maximum symmetric external 
dependence index value (maximum over the range of thresholds by which one can diagnose “heat wave” or “no 
heat wave”, but herein denoted as the “Max. SEDI”; Ferro and Stephenson, 2011). Generally speaking the 
models have accuracy/skill about a third of the way from “random guess” to “perfect predictor”. The ECENS-

WK 2a National AUC-ROC National SEDI 

GEFS 0.61, 0.64 0.24, 0.30 

ECENS 0.63, 0.67 0.28, 0.34 

BLEND 0.63, 0.68 0.28, 0.36 

WK 34b   

CFS 0.58 0.21 

ECMWF 0.59 0.23 

a  For WK2, the first value corresponds to skill forecasting the 2018 heat 
season events, and the second value to historical period (~1999-2014). 
Both values correspond to the 90th percentile based events.   

b  For WK34, all values correspond to probabilities of 3-dates (not 6). 

Table 1 The forecasts’ skill historically, and during summer 2018. 
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GEFS model performs the best and the 
ECENS model the second best. Interestingly, 
the heat waves based on heat index-based 
heat waves saw more accuracy (on average, 
28% vs. 34%) than the dry air heat waves did. 
Spatially, the models have the greatest skill 
in the Southern Plains.  

An important tool called the 
“Probabilistic Extremes Tool” has been used 
by CPC forecasters since 2014. This tool 
produces daily maximum and minimum 
temperature forecasts during the week 2 
period (days 8-14). These forecasts are 
formatted as the probability of exceeding a 
range of absolute (e.g. over 100F) and 
relative thresholds (e.g. below the 5th 
percentile, over the 90th percentile). Daily 
resolution probabilistic forecasts are helpful 
to CPC forecasters when they need support 
forecasting start and stop dates of heat waves, 
albeit potentially at the expense of skill (i.e. 
temporal averages are easier to forecast 
beyond week 1). This tool also provides the 
climatological values and percentiles 
associated with the various thresholds, at the 
forecasted time of year. With respect to air 
temperatures, while daily maximums and 
minimums are both considered, heat index is 
not forecasted within this tool. A limited 
form of this tool is also available to the public 
via the CPC webpage. In addition to air 
temperatures, this tool is also available for 
precipitation and 10m wind speed. The only 
dynamical model that currently drives the 
temperature forecasts from this tool is the 
GEFS, but forecasts from the ECENS and 
Canadian Ensemble Forecasts (CAN) are 
said to be forthcoming. Calibration of the probabilistic forecasts was accomplished via ensemble regression 
(Unger et al. 2009) and an in-house observational 2-meter above ground level (AGL) temperature dataset over 
the 1986-2010 period. Skill scores of the real-time forecasts were calculated using the ranked probability skill 
metric from 2014-2017. Skill scores vary depending on the lead time and percentile values, but generally range 
from about 4-16% of the way to “perfect” from “random guess”. 

Forecasting at for the week 3-4 timescale, while still currently experimental in nature at the CPC, is 
currently supported by a different suite of dynamical based tools. It doesn’t have a snazzy name – perhaps 
indicative that it is still very new (developed in 2018). This tool leverages the ECENS (Mondays and Thursdays) 
and the CFS model (daily) model forecast outputs in order to forecast the presence of multiple extremely high 
daily mean temperatures in week 3-4. Forecast guidance for this tool is less weather-based than the two 
previously mentioned tools: focusing on daily mean temperatures rather than daily maximum, and only 
requiring a number of (3 or 6) hot (over the 92.5th percentile) dates and thus dropping the consecutiveness aspect 
of the requirement. There is also provided (uncalibrated) guidance for the timing within the period for the 
dominant signal (i.e. spatial location). The CFS model is taken as a 3-day super-ensemble consisting of a meager 

Fig. 1  (Top) National Weather Service Watches, Warnings and 
Advisories map the morning of June 17, 2018.  Orange 
represents heat advisories for the afternoon, and the 
embedded magenta colors are excessive heat warnings. 
(Bottom) Probabilistic forecasts of a heat wave during the 
week ending on June 21st, as issued on June 7th by the 
ECENS powered version of the week 2 tool. 
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12 ensemble members, while the ECENS is 
not a super-ensemble but has over 4x (51) the 
number of ensemble members. Probability is 
taken as the percent of the ensemble members 
that have or exceed the number of required 
hot dates during the 2-week forecast period. 
The raw probability is then calibrated using 
the historical relationship (i.e. reliability 
mapping) between forecast probabilities and 
observed frequency over all locations and 
dates (i.e. its’ not dynamic in space and 
calendar date).  

The week 3-4 tool suite skill was 
measured using the AUC-ROC and SEDI 
metrics.  Nationally, the ECENS had a 0.59 
AUC-ROC and the CFS had a 0.58 when 
forecasting 3-or-more hot dates during the 2-
week period; so about 16-17% of the way to 
“perfect” from “random guess”. The same 
metric, but for 6-or-more days, was either the 
same or a very similar value. In regards to the 
nation-wide SEDI metric the ECMWF had a 
0.23 and the CFS had a 0.21 when forecasting 
3 or more hot dates.  Therefore, the skill of 
this tool is roughly 22% of the way to 
“perfect” from “random guess”. 

2. Overview of the 2018 season 

The summer of 2018 was very hot 
compared to historical norms, especially in 
the Southwestern, Southern Plains and 
Northeastern regions. Nationally, it 
compared well with other recent warm 
summers such as 2011, 2012, and 2016. 
Examination of nation-wide “google search 
frequency” for terms such as “heat wave” and “hot weather” illustrated 5-6 prominent spikes throughout the 
summer with one such extremely large episode in early July.  While it is subjective, our analysis delineated 
about 15 warm-season heat waves in the US in 2018.  At the end of this article we will discuss in detail a handful 
of the more prominent episodes. 

The skill of the forecasts in the 2018 heat season was comparable to forecasts from the model over the 
recent historical period. Skill metrics (Table 1) were calculated for all the models against historical observations 
(NCEP/NCAR R1 dataset) over the 1999-2014 period, at a minimum, and with sample sizes ranging from 400-
4,400. The week 2 models (GEFS, ECENS, GEFS-ECENS) demonstrate more skill than the Week 34 models 
(CFS, ECENS).  The former are just under a third of the way towards “perfect predictor” from “random guess”, 
while the latter are just under a fifth of the way towards “perfect predictor”. However, for the 2018 period, we 
saw a modest decrease in that skill (in regards to week 2 forecasting) to just over a quarter of the way towards 
perfect prediction.  
3.  Case studies of 2018 

An extremely hot period in the central of the US on Father’s day marked the first extensive event of the 
heat season, which (depending on location) spanned June 14/16-18/20.  It covered several states (e.g. from the 

Fig. 2  (Top) Same as Figure 1 but for the morning of July 2nd, 
2018.  (Bottom) Probabilistic forecasts of a heat wave 
during the week ending on July 4th, as issued on June 20th 
by the GEFS-ECENS equal-weighted blend forecast 
powered version of the week 2 tool. 

 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

142 

Central Plains through to the Great Lakes; 
Fig. 1, top) and several population centers, 
lasted 4-5 dates, and bore extremely hot 
temperatures in both daytime and nighttime 
temperatures. For instance, in Lincoln, 
Nebraska, there were 5 consecutive dates 
breaking the daily record.  Additionally, high 
dewpoint temperatures drove the heat index 
values into the low 100’s.  For this event, 
drought was not present in the region. Air 
quality ranged from good to unsafe-for-
sensitive-groups, with worse air quality in the 
eastern part of the region.  

Analysis of the news headlines 
throughout the summer suggested the social 
disruption of this event was moderate 
compared to the other events in 2018. Since 
many schools were just wrapping up the 
school year, school closings comprised the 
bulk of the headlines. This region has a large 
number of residents and therefore any heat 
wave can make headlines, somewhat 
heedlessly. However relatively speaking, this 
region in mid-to-late June is not especially 
vulnerable to episodes of mid-90s 
temperature and high (upper 60s) humidity 
(modest hospital admission increases, no 
infrastructure damage, etc.).  

For consistency from event-to-event and 
across models, all forecasts are evaluated 
from the perspective of a 9-day lead to the 
beginning of the event. Additionally, we will 
focus on the Week 2 tools (SEHOS). Overall 
the forecast accuracy was mediocre when the 
16th was 9 days the lead of the forecasts, and 
the skill varied with model. On one hand the GEFS-based forecasts completely failed to indicate a threat in the 
region with probabilities almost all sub-20%.  The spatial pattern suggested an event in the Southern Plains.  
Conversely the ECMWF had probabilities of mostly 20-30% (30-40% maximum) and a spatial pattern with 
some resemblance of the observed event (Fig. 1, bottom). The resulting blended forecast had an even-handed 
mix of both sub-20% and 20-30% probabilities in the impacted region, but the spatial pattern still suggested a 
greater chance of a heat wave in the Southern Plains rather than the impacted region.  

Some heat waves have a migratory nature to them, traveling slowly from one part of the country to another.  
The subject of the second case study was one of these, and it was actually broken into 4 “chapters” in our 
internal analysis: June 22-25 in the Texas-Southern Plains, June 24/26-June 27/July 2 in the Deep South, June 
27-June 30/July 1 in the Middle Mississippi-Great Lakes, and finally June 29-July 5 in the Northeast-Mid-
Atlantic. The beginning of the event brought 100°F degree weather to parts of Texas for the first time in the 
summer.  Air quality was not an issue, and the duration was not overly long. However, the temperatures were 
very high and the region was predominantly in moderate drought. After Texas, the event baked the Lower 
Mississippi Valley in the Deep South for 3.5-7.5 dates – depending on location.  High dewpoints contributed 
to heat index values over 105°F. Air quality was not an issue during this part of the event. Then this large, 
migrating heat wave moved into the center of the US for a few days.  Dewpoints were high (low 70s) and 

Fig. 3  (Top) Same as Fig. 1 but for the morning of July 5th, 2018.  
(Bottom) Probabilistic forecasts of a heat wave during the 
week ending on July 13th, as issued on June 29th by the GEFS-
ECENS equal-weighted blend forecast powered version of the 
week 2 tool. 

 



OSWALD 
 

 

143 

pushed heat index values over 105°F in many 
locations.  Overnight lows were high-to-
extreme, depending on location, including 
into the low 80’s on some evenings in some 
locations (e.g. Kansas City). Strong small-
scale variability in the strength of the 
anomalies seemed to reflect the soil moisture 
patterns; this region ranged from extreme 
drought to normal soil moisture.  After 
baking the central US, the heat wave settled 
into the Great Lakes region and then the 
densely-populated Northeastern US (Fig. 2, 
top).  The degree of temperature extremes 
(e.g. anomalies) in the Northeastern US were 
the greatest this migrating heat wave 
recorded.  The Great Lakes region had typical 
soil moisture content, but much of the 
Northeast was dry or in (low-level) drought.  
Mild air quality issues accompanied the 
event, except for dramatic air pollution in the 
NYC-Philly-NJ area for a single afternoon.  

Albeit with its fair share of stories 
regarding children being trapped in hot cars, 
heat exhaustion of athletes, stressed 
agriculture, opening of cooling centers; the 
level of societal impacts during the first half 
of the episode was fairly typical for mid-
summer heat waves. However the latter half 
had notably large societal impacts, the most 
conspicuous being 70-plus deaths in Quebec 
as well as in the Great Lakes an alarming 
number (over 12) of road (highway) closures 
due to cement buckling. Mild air quality 
issues accompanied the event, except for 
dramatic air pollution in the NYC-Philly-NJ area on one afternoon. A rash of daily historical records were also 
broken during the last leg of the heat wave from Vermont to New York City. 

The beginning of the episode, in Texas-Southern Plains, was not well forecasted by either dynamical model. 
Albeit the quality of the forecasts improved as the episode progressed and therefore the forecasts were generally 
OK for the Middle Mississippi-Great Lakes of the US.  For example, the blended forecast has 20-30% coverage 
in most of the impact region, with some 30-40% and some sub 20%. By the end of the event, when the heat was 
in the Northeast, forecasts from the ECMWF for most of the impacted region showed 20-30% probabilities and 
the spatial pattern resembles the observed region impacted (Fig. 2, bottom).  

A four-day episode of record breaking heat hit Southern California and parts of the Desert Southwest the 
weekend following the 4th of July (July 5-8; Fig. 3, top).  For example, San Diego and Las Angeles both saw 
multiple/consecutive single-day records fall.  Several single-day records fell in the desert, too.  At the desert 
southwest locations absolute thresholds of 110-115 were met, in lieu of relative thresholds.  Air quality was an 
issue, usually only moderately but very elevated risk existed in the Los Angeles area.  Drought was an issue, 
ranging from moderate (Southern California (SoCal)) to extreme (Desert Southwest).  Societal impacts were 
modestly larger than usual and included a postal worker dying in their mail-truck, and over 20,000 customers 
going without power. 

Fig. 4  (Top) Same as Figure 1 but for the morning of August 29th, 
2018.  (Bottom) Probabilistic forecasts of a heat wave during 
the week ending on September 1st, as issued on August 18th by 
the GEFS forecast powered version of the week 2 tool. 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

144 

The forecasts were relatively good for this event. The GEFS- and ECMWF-based forecasts predominantly 
had probabilities of 20-30% of a heat event in SoCal, and chances of 110°F exceedance over 50% in the desert 
southwest locations.  The blended forecast (Fig. 3, bottom) was slightly superior to either individual model-
based forecast, and for both SoCal locations (relative thresholds) and the Desert Southwest locations (absolute 
thresholds).  

The weekend before Labor Day displayed a substantial 3.5-day heat wave that impacted an estimated 68 
million Americans from Chicago to New York City. The western portion of the episode hit the Midwest and 
Great Lakes for 4 dates (August 25-28). It was accompanied by very high dewpoints (>=74°F average in 
Indianapolis) that drove extremely high nighttime temperatures and heat index values. Daily high heat index 
values ran in the upper 90’s to mid-100’s, which is very hot for this time of year and part of the country. It had 
moderate air quality levels, any issues due exclusively to PM2.5. The only drought in the region impacted a 
substantial portion of Michigan, with moderate-to-severe drought. The eastern portion of the heat wave hit New 
England and the Mid-Atlantic states for a couple dates (August 27/28-29/30; Fig. 4, top). Again very high 
dewpoints across the region drove heat index values over 100-105°F and several single-day-record nightly low 
temperatures to be broken. The eastern chapter of this event also saw locations (VT, PA, RI, NY) with extreme 
daily high air temperatures. Drought did impact some of the northern areas (upstate NY, VT, NH, ME). 

While certainly some daily records that fell, the numbers of societal impacts were minimal.  Perhaps many 
residents still had the knowledge and resources to beat the heat.  Some headlines included school closings and 
the US Open needing to be shut down for a day. 

The western portion of the episode was not as well forecasted as the eastern portion, as this was primarily 
due to the ECENS’s ability to forecast the episode. The GEFS had good skill with the western portion of the 
impacted region showing half 20-30% and half 30-40%, and in the eastern portion they were predominantly 
30-40% (Fig. 4, bottom). The ECMWF did much better for the eastern portion of the event. 
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1.  Introduction 

In regions across the world, from the Americas to Australia, there is evidence of an increasing number of 
compound climate extremes (Gallant and Karoly 2010; Mazdiyasni and AghaKouchak 2015; Armal et al. 2016; 
Armal et al. 2018a; Armal et al. 2018b;  Najafi and Khanbilvardi 2018a; Najafi et al. 2018b; Lima et al. 2018; 
Armal and Al-Suhili 2019). Co-occurring conditions such as high temperatures and dry spells or high 
temperatures and excess precipitation are considerably more intense and destructive than any one condition 
individually (Zscheischler et al. 2017). In food growing regions, these co-occurring extremes can have negative 
impacts such as declined yield—a risky consequence in a global society that is fast approaching a population 
of eight billion people to feed (Najafi et al. 2016;  Najafi et al. 2017; Matiu et al. 2017; Zampieri et al. 2017; 
Najafi et al. 2018c). 

Studies focusing on co-occurring climate extremes in food growing regions have indicated that hot and dry 
extremes leave more negative impacts than other co-occurring extremes (Troy et al. 2015; Lesk et al. 2016). 
Focusing on wheat, the threshold at which wheat begins to be negatively affected by temperature is 30 degrees 
Celsius (Zampieri et al. 2017). With the combination of extreme heat indicated by the number of days that 
exceed this threshold during the growing season and dry conditions based on the minimum monthly value of 
the Standardized Precipitation Evapotranspiration Index (SPEI) during the growing season, we characterize the 
variability and trends of concurrent hot and dry extreme events in every growing region of both spring and 
winter wheat. By uniquely focusing on global wheat croplands and the risk of these concurrent climate extremes, 
we draw conclusions about how climate is changing with respect to this crucial crop.  
2.  Data and methodology 

Global wheat croplands were defined based on NASA’s MIRCA2000 dataset 
(https://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10015) that displays the locations of irrigated and 
rainfed wheat lands as well as the number of hectares being grown at each location.  This dataset has been 
widely used in the literature on crop modeling and climate science (Deryng et al. 2014; Zampieri et al. 2017; 
Heino et al. 2018; Najafi et al. 2018c,  Najafi et al. 2018d,  Najafi et al. 2019a,  Najafi et al. 2019b). Only 
locations that used at least 1% of the land within a grid cell, or at least 67 acres, for crop growth were considered. 
The irrigated and rainfed lands were combined for analysis in this study; regard for management measures in 
place such as irrigation were not crucial given our interest in exploring concurrent hot and dry extremes in all 
significant wheat growing regions.  

 To make the distinction between spring and winter varieties of wheat, we first used the extrapolated SAGE 
Crop Calendar Dataset to define the growing season for winter and spring wheat yielding locations 
(https://nelson.wisc.edu/sage/data-and-models/crop-calendar-dataset/netCDF0-5degree.php) and then 
narrowed and restricted the areas in consideration by applying Iizumi’s Global sowing and harvesting windows 
of major crops dataset for winter and spring wheat varieties 
(http://search.diasjp.net/en/dataset/global_crop_calendar_2000). We overlaid the map of global wheat 
croplands based on the MIRCA2000 dataset onto the medium season, rainfed spring and winter maps based on 
Iizumi’s data set. Cropping all areas that were not common between the data sets, we produced three mappings: 
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(1) Locations where only spring wheat is grown, (2) Locations where only winter wheat is grown, and (3) 
Locations where both spring and winter wheat are suitable for growing. 

We defined extreme hot events by the total number of days during a growing season that exceeded 30-
degrees Celsius and extreme dry spell events by the minimum monthly SPEI magnitudes during the same 
growing season (Wang et al. 2018). To understand extreme hot and dry events relative to location, we 
considered the 75th percentile thresholds for each location. We described each location that exceeded the 75th 
percentile threshold for both temperature (T30) and minimum SPEI during a growing season as having 
experienced a concurrent extreme event (CEE). The following analyses are focused on the top ten wheat 
producing countries based on Food and Agriculture Organization of the United Nations (FAO) average 
production from 2001-2013: China, India, USA, Russia, France, Canada, Germany, Pakistan, Australia, and 
Turkey. 

3.  Results 

To understand how CEEs have changed over time, we sought to look broadly at the differences in impacts 
experienced between the IPCC’s baseline period from 1961-1990 and the most current decades since 1990 
(1991-2013) for spring and winter varieties of wheat. Despite the shorter period after 1990 (only 23 years as 
opposed to 29), we still observe a surge of concurrent extreme events across the growing areas. We have 
separated the spring (winter) wheat growing locations into locations that grow only the spring (winter) variety 
and locations that are suitable for growing both varieties. The respective growing seasons were used for the 
locations that are suitable for growing both varieties. Thus, “spring (only)” and “winter (only)” will refer to 
locations that do not include the areas suitable for both varieties and “spring (total)” and “winter (total)” will 
refer to locations that include the areas suitable for both varieties. 

Beginning with the spring wheat variety, a significant difference in the means was found in the frequency 
of CEEs for spring (only) growing areas. However, more “extreme” CEEs, based on the number of days 
exceeding 30 degrees Celsius in dry growing areas, were found in the baseline period.  Looking at the major 
producing regions of wheat globally, India experienced more events along its western coast line and less events 
in the eastern region of the country in the period after 1990. Furthermore, Australia experienced more CEEs in 
the eastern part of the country in the period after 1990. Transitioning to the spring (total) growing areas, we 
found the difference in the frequency of CEEs was insignificant.  However, the additional affected major 
producers were China and the United States.  After 1990, China observed an increase in the number of seasons 
impacted by CEEs, most notably post-2000.  In the United States we observed a spatial shift in the concentration 
of impacted locations before and after 1990.  During the baseline period, the events are generally concentrated 
in the north, and in the period after 1990, there is a greater number of CEEs in the southern United States. 

In general, the winter wheat growing season was found to experience less hot and dry extreme conditions 
as compared to the spring wheat growing season.  Overall, though, we found a significant increase in the 
frequency of CEEs across winter (total) growing areas in the period after 1990 compared to the baseline period. 
Focusing on the major wheat producing countries, we observed a spatial shift in the United States with the 
dispersion of extreme events after 1990. We also observed a spatial decrease in the number of impacts in 
southern Australia after 1990.  Finally, the location of impacts in Turkey remained essentially the same in the 
decades before and after 1990.  It is important to note that these observations were made for locations considered 
suitable for both spring and winter wheat, and not croplands exclusive to winter wheat. The winter (only) 
growing areas also experienced a significant increase in the frequency of CEEs in the period after 1990 
compared to the baseline period and the observations made are the same as those for the winter (total) growing 
areas but on a smaller scale.  In particular, the expansion of CEEs to the northwest region of the United States 
and southern Canada in the last decade is a common feature of both growing area maps. 

Looking into the individual extremes over the entire time period considered, 1961-2013, we note that there 
is lack of significant trends in T30 or SPEI, leading us to conclude that these extremes are not necessarily driven 
more by temperature or dryness in any one area but are unique events. 

CEEs are unique occurrences that affect spring and winter wheat croplands in different places at different 
times. With a focus on the major producers of wheat worldwide, Asian countries (China, India, and Pakistan) 
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experienced CEEs only during the spring growing season while the United States and Australia experienced 
CEEs in both the spring and winter growing seasons.  This study confirms that as climate changes, the co-
occurrence of hot and dry extreme events will increase.  Furthermore as observed, they will increase in 
croplands that grow essential grains for food security. The croplands affected by these CEEs are different for 
spring and winter varieties of wheat, and from these results, agricultural scientists in industry can recommend 
improvements for management practices based on expected conditions. Our focus on the major producers of 
wheat can be studied further by analyzing the potential economic effects these climate extremes have had on 
global grain prices. Alternatively, similar work can be done focusing on food-insecure nations and the spatio-
temporal effects of CEEs there. Considering CEEs during different stages of crop growth rather than just the 
full growing season is another way the data can be transformed to tell another story about how compound hot 
and dry extremes are affecting croplands and global food security. 
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1.  Introduction 

The CanSIPS-CFSv2 seasonal forecast, or “The White Space Project,” is a joint effort by Environment and 
Climate Change Canada (ECCC) and National Oceanic and Atmospheric Administration (NOAA) to deliver a 
geographically contineous seasonal forecast over the North American continent. At present, both ECCC and 
the Climate Prediction Center (CPC) of NOAA, perform their respective seasonal forecasts independently on a 
monthly basis. By doing this, each country applies a geographical mask over their counterpart leaving a “white 
space” to dominate for the seasonal forecast map of North America (see Fig. 1). 

The principal goal of this project is to use the combined CanSIPS (Merryfield et al. 2013) and CFSv2 (Saha 
et al., 2014) forecasts for the benefit of having a continuous forecast across the United States and Canada 
borders. One example of such a project is hydrological monitoring over the Great Lakes managed by the 
International Joint Commission, where the two countries have an agreement on the water quality 
(https://www.ijc.org/en/watersheds/great-lakes, accessed 27/12/2018). 

Another significant goal of this project is an overall improvement of the seasonal forecasts stemming from 
the multi-model approach. Both countries will benefit from this approach with more skillful seasonal forecasts 
over the North American continent. Multi-model seasonal forecasting has been recognized to have better results 
than the single-model forecasting technique.  

2.  Motivation for the zero-lead forecast 

Motivation for this project comes from the fact that both ECCC and the CPC are the operational forecasting 
centres with an operational production cycle for dynamical seasonal forecasts on a particular day of the month. 

Fig. 1  On the left: Seasonal January-February-March 2018 lead 0 seasonal forecast, issued by the Climate 
Prediction Center. On the right: as on the left, but issued by Environment and Climate Change Canada. 
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This is very important for the production of the “zero-lead month” (i.e. difference between the forecast target 
season and the forecast release is zero) seasonal forecasts, which are known to have better skill scores compared 
to the forecasts with longer leads (Wang et al., 2010).  

The North American Multi-Model Ensemble (NMME) is an example of a project that combines seasonal 
forecasts stemming from several North American climate models (Kirtman et al. 2014). Once per month, the 
NMME issues seasonal forecasts for North America targeting seasons having lead times of one to five months. 
The fact that the combined NMME forecast encompasses real-time seasonal forecasts from a number of 
production centres makes it very challenging to provide the zero-lead seasonal forecast. Therefore, the 
combined CanSIPS-CFSv2 real-time seasonal forecasts can be a complementary product to the North American 
Ensemble, filling the zero-lead gap. Figure 2 shows a comparison between the March-April-May (MAM) 
historical (1982-2010) percent correct skill scores of zero-lead and one-month lead time seasonal forecasts for 
near-surface temperature over Canada. Zero-lead forecast skill, calculated for only one model (i.e. CFSv2, Fig. 
2a), is substantially higher than one-month lead time forecast skill from the Multi-Model Ensemble mean (Fig. 
2b, six models in total), highlighting the importance of the shorter lead time forecasts over the longer lead multi-
model ensemble forecasting approach. Globally performed analysis (not shown) of the percent correct score 
confirms the results over Canada in MAM and all other seasons. 

3.  Experimental setup of the joined CanSIPS-CFSv2 real-time forecasts 

Since the CanSIPS and CFSv2 models use different methods to initialize their respective real-time seasonal 
forecasts, we used the following configuration, which has been found to be the most suitable for this type of 
product. To construct the combined seasonal forecast, we have used 20 ensemble members of the CanSIPS 
system having the “burst initialization” (i.e. all ensemble members are launched at the same time) executed on 
the last day of each calendar month and the 20 ensemble members of the CFSv2 model that have lagged initial 
conditions. As the combined CanSIPS-CFSv2 real-time forecast is constructed on the first day of each calendar 
month, we have used the 20 CFSv2 ensemble members executed with lags closest to the end of the month. This 
configuration enables the combined system to be as close as possible to zero-lag. The combined forecast is an 
ensemble prediction using 40 ensemble members that are given equal weight. The ensemble members for the 
historical CanSIPS and CFSv2 ensembles, needed for the estimation of the system’s climatology and historical 
forecast skill, are selected using a similar approach as for the real-time forecast ensembles. 

Once operational then at the end of each calendar month, we will be issuing a joined CanSIPS-CFSv2 
ensemble seasonal forecast for zero and one-month lead times. 

4.  Products of the joined system 

The CanSIPS and CFSv2 models are combined to form a multi-model ensemble mean where each ensemble 
member is equally weighted. The flagship product of the joined CanSIPS-CFSv2 forecasting system is the 
probabilistic forecast for near-surface temperature (Fig.3 on the top left), precipitation and sea-surface 

a) b) 

Fig. 2  Historical (1982-2010) percent correct score for MAM season for a) CFSv2 ensemble mean lead 0, and 
b) North American Multi-Model Ensemble mean, lead 1. 
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temperature. In addition to the probabilistic forecast, we also provide an anomaly forecast (Fig. 3 in the top 
right for temperature) and a deterministic seasonal forecast (Fig. 3 on the bottom left for temperature). The 
anomaly forecast is an important complement to the probabilistic seasonal forecasting approach, which makes 
it possible to associate the probability value with the magnitude of an anomaly. The deterministic approach is 
useful for seasonal forecast evaluation using simple and understandable skill score measures, such as the 
correlation coefficient or the percent correct skill score. The joined system seasonal forecasts may be accessed 
at the following web page: 

http://collaboration.cmc.ec.gc.ca/cmc/saison/Joined_CanSIPS_CFSv2/site_web/#t/11/2018/m123/on 
(username and password available upon request to marko.markovic@canada.ca). 

This project highlights the importance of the 
shorter lead time seasonal forecasts in comparison to 
longer lead multi-model methodology. The 
International Alaska-Northwestern Canada Joined 
Bulletin is the first user of the joined CanSIPS-CFSv2 
seasonal forecast (https://www.canada.ca/en/ 
environment-climate-change/services/climate-change  
/science-research-data/climate-trends-variability/ 
quarterly-bulletins/alaska-northwest-june-2018.html,  
accessed 28.12.2018).  This quarterly publication 
studies the seasonal climate and the impact of 
temperature, precipitation and sea ice on the region. 

In order to finalize the joined CanSIPS-CFSv2 
seasonal forecast project, we need to perform the forecast calibration. This technique is known to improve 
seasonal forecasts by mitigating forecast biases, such as overall overconfidence, that most of the forecasting 
systems possess, especially for the higher observational frequencies (Kharin and Zwiers, 2003). Seasonal 
climate assessments in the northern regions of North America (e.g. Alaska, Yukon) would greatly benefit from 

Fig. 3 Zero-lead seasonal forecast for October-
November-December 2018 from joined CanSIPS-
CFSv2 seasonal forecasting system. Top Left: 
probabilistic approach; Top Right: anomaly 
forecast; Bottom Left: deterministic approach. 
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seasonal forecasts of sea ice. Therefore, our next step will be the inclusion of the real-time sea-ice forecasts in 
our forecasting system. Verification of the previous CanSIPS-CFSv2 seasonal forecast should also be included 
as an important component of the forecasting system. This step would shed light on the system’s overall 
performance and would also build the “forecasting confidence” of the new forecasting system. 
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1.  Introduction 

In recent years, the requirements for seamless forecast information have increased significantly for users 
that provide valuable guidance for public safety, quality of life, and business decisions that drive economic 
growth. A better understanding of predictability and numerical model prediction skills are greatly enhancing 
our capabilities for prediction and guidance for time scales ranging from weather, week-2, subseasonal to 
seasonal. 

The predictability was originally introduced theoretically as a scientific question (Lorenz 1969); then it was 
investigated numerically and empirically based on the hypotheses (Lorenz 1982; 1996) for weather forecast. 
Following up the pioneer works, Shukla (1998) and many others also revealed predictability for seasonal and/or 
climate prediction. Until most recently, study of intrinsic predictability of state-of-art numerical modeling 
system has been used to further investigate potential predictability (Ying and Zhang 2017).  

Considering both initial and model 
uncertainties, a state-of-art ensemble 
forecast system could be an optimum 
numerical system to quantitatively present 
the predictability across timescales which 
include weather and beyond. When 
assuming a perfect dynamical and physical 
model and a perfect ensemble system, 
forecast accuracy of each perturbed (and 
unperturbed or control) member should be 
“bias free”, and have equal forecast skill 
statistically. Any individual forecast could 
be a “proxy truth” as well. Meanwhile, 
ensemble mean from this optimum system 
should present best prediction statistically, 
in the results, the average skill of ensemble 
mean forecast against individual perturbed 
(and control) forecast should represent 
potential forecast skill (or predictability).   
2.  Ensemble system 

The NCEP Global Ensemble Forecast System (GEFS), by using a set of initial perturbations generated from 
EnKF analysis (Fig. 1; Zhou et al. 2016; Zhou et al. 2017), has been in daily operation since 1992. It has been 
providing reliable weather and week-2 probabilistic forecast guidance that has translated into valuable 
information for the general public.  With many science enhancements in past years, current GEFS, especially 
SubX version, has reached super performance across the scales from weather to subseason (Zhu et al. 2017; 

Fig. 1  Schematic diagram of an ensemble forecast starting from 
initial analysis/perturbations at t=0, growing with time evolution. 
Solid green is for unperturbed (ensemble control) forecast; solid 
blue represents ensemble mean; and dash blacks are perturbed 
ensemble forecasts. The shaded areas represent uncertainties of 
initial and forecasts. 
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2018). The two latest versions of NCEP GEFS have been used in this study, one of them is GEFS SubX version 
(Zhu et al. 2018; Li et al. 2019; Zhu et al. 2019; Guan et al. 2019) and another one is FV3-GEFS version (Zhou 
et al. 2019), that used Finite Volume dynamical core, higher (and uniform) resolution and GFDL Micro Physics 
(replace Zhao-Carr Micro Physics). The FV3-GEFS version has higher and uniform horizontal resolution (about 
25 km) when compares to GEFS SubX version (33 km for 0-8 days; 55 km for 8-35 days). All ensembles are 
running 20 perturbed forecasts and one control forecast.  

3.  Evaluation methodology 

The GEFS model performance has been presented in many studies (Zhou et al. 2017; Zhu et al. 2018), but 
the GEFS extended forecast to cover subseasonal timescales has only recently been evaluated (Zhu et al. 2018; 
Li et al. 2019; Guan et al. 2019) as part of the NOAA SubX (Subseasonal multi-model Experiments) project 
through an 18-year reforecast. The study proposed here involves a comparison of GEFS SubX results with those 
from the newly developed FV3-based GEFS, which includes a different dynamical core, horizontal resolution, 
microphysics, etc.  

Various metrics could be used to assess the prediction skill and predictability of the forecast system, with 
dependencies on forecast elements, different spatial/temporal scales, and different forecast regions. In this 
investigation, anomaly correlation (AC) has been used to assess forecast skill and potential skill for weather. 
Meanwhile, the bivariate anomaly correlation (RMM1 and RMM2), a traditional real-time multivariate (RMM) 
MJO index (WH index; Wheeler and Hendon 2004; Lin et al. 2008; Gottschalack et al. 2010), has been used 
to evaluate tropical forecast skill and potential forecast skill. 

In order to present an upper limit of 
prediction skill, the following principal 
assumptions (hypotheses) are applied to 
this evaluation: 1) Initial perturbations 
represent true observed uncertainty; 2) 
Numerical model is perfect and “bias-
free”; 3) Ensemble system is perfect; 4) 
Ensemble forecast spread really represents 
true forecast uncertainty; 5) All individual 
perturbed forecasts could be proxy truth 
(and equal); 6) Ensemble mean will be best 
forecast solution for large scale forecast.  
Figure 2 demonstrates the root mean 
square (RMS) error of the ensemble mean 
and ensemble spread for Northern 
Hemisphere 500 hPa height of one-year 
statistics. The FV3-GEFS has less RMS 
error and a better ratio of RMS error and 
spread than GEFS SubX forecast. The 
RMS errors of both experiments have cross 
over climatological error around day 17, 
which means day-to-day forecast has lost 
skill beyond day 17.  Meanwhile, ensemble 
spread has reached saturation level 
approximately at a similar range as the RMS difference between analysis and climatology (heavy dash green 
line), which indicates a good ensemble system has been used.  
4.  Results 

One year experiments (April 2017 - April 2018) have been carried out for weather forecast and MJO 
evaluation. The NCEP Global Data Assimilation System (GDAS) analyses and NCEP/NCAR 40 years 
reanalysis climatology have been used to calculate forecast skills. 

Fig. 2  Northern Hemisphere (NH) 500 hPa geopotential height RMS 
error (solid) and ensemble spread (dash) of 35 days forecasts 
from one year experiments based on two ensemble systems 
(SubX version - black and FV3 version - red). The RMS 
difference between analysis and climatological mean shows in 
green dash line (90 meters). The climatological variance around 
mean has been drawn on the right. 
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4.1 Overall NH extratropical weather 
forecast 

Anomaly correlation is used to 
measure the real forecast skill and potential 
forecast skill (or predictability) of the 500 
hPa geopotential height (Fig. 3). 
Apparently, FV3 GEFS (heavy-black) has 
slightly better skill than SubX GEFS 
(heavy-red) for all lead times (Fig. 3). Both 
of FV3 GEFS and SubX GEFS show  
similar potential forecast skills (thin lines) 
which indicate that a current forecast skill 
could be extended for an additional two 
days (from 12 days to 14 days) by using 
50% AC as a skillful forecast. A potential 
forecast of SubX GEFS is also slightly 
better than FV3 GEFS for longer lead-time, 
which may be due to 1). SubX GEFS has 
less spread than FV3 GEFS for longer lead-
time (see Fig. 2 dash lines); 2). Current 
FV3 GEFS has a disadvantage for longer 
range forecast; further improvement may 
be required.  

4.2 NH extratropical weather forecast of 
different spatial/temporal scales 

The 500 hPa geopotential height has 
been decomposed to planetary scale (zonal 
wave 1-3); long wave (zonal wave 4-9); 
and synoptic weather pattern (zonal wave 
10-20). The AC scores of these three 
groups have been presented in Fig. 4.  
Since the performance of FV3 GEFS is 
similar to SubX GEFS forecast for weather 
(Fig. 3), Fig. 4 only presents the AC scores 
for SubX GEFS version only in order to 
express three group scores clearly. The 
results demonstrate 1). The skills are 
different between these groups; 2). The 
planetary wave has more skill (12.5 days) 
than long wave (10.5 days) and synoptic 
weather forecast (7 days); 3). All three 
scale groups have potential forecast skills 
than current forecast skills about 1-2.5 
days, planetary wave could have 15 days (> 2 weeks) potential forecast skill. Therefore, the forecast skill highly 
depends on a system or forecast task. 

4.3 MJO evaluations 

The evaluation of the bivariate anomaly correlation of RMMs has focused on the period of one year (May 
1st, 2017 - April 6, 2018) for FV3 GEFS only. Figure 5 has demonstrated the current forecast skill (20 days - 
50% of AC) and potential prediction skill (32 days - 50% of AC). The result may indicate that 1) There is a 

Fig. 3  Northern Hemisphere (NH) 500 hPa geopotential heights 
Pattern Anomaly Correlation (PAC) of the ensemble mean for 
35 days forecast from one year experiments (April 2017 - April 
2018). There are two experiments which are SubX version (red) 
and FV3 version (black). The real forecast skills (thick) and 
potential prediction skills (thin) are presented, and marked as 12 
days (real) and 14 days (potential). 

Fig. 4 Northern Hemisphere (NH) 500 hPa geopotential height 
Pattern Anomaly Correlation (PAC) of regrouped ensemble 
mean (zonal wave 1-3 (Length scale > 10000 km); 4-9 (10000 
km < length scale > 3000 km); and 10-20 (3000 km >length 
scale > 1500 km) for SubX GEFS 35 days forecast from one year 
experiments (April 2017 - April 2018). The real forecast skills 
(thick) and potential prediction skills (thin) are presented for 
each group (zonal wave 1-3s are black; 4-9s are red; and 10-20s 
are blue). 
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good predictability of MJO event; 2) There 
is a large room to improve our model 
system includes dynamical, physical 
schemes, ensemble perturbations and many 
others (such as coupling atmosphere-
ocean). 

5.  Summary 

This is preliminary practice by using 
NCEP GEFS to assess potential forecast 
skills or predictability for NH mid-latitude 
weather forecast and tropical prediction. 
The AC scores of NH 500 hPa geopotential 
height indicate both of FV3 GEFS and 
SubX GEFS have similar real forecast 
skills with slightly advantage from FV3 
GEFS. In contrast to real forecast skill, a 
potential forecast skill or predictability 
shows a similar conclusion for short lead-
time forecast, but SubX GEFS has more 
potential forecast skills (or higher predictability) for longer lead-time (Fig. 3), which could indicate that either 
SubX GEFS may be a little under dispersive (spread is less than error; imperfect system) or FV3 GEFS may 
need more improvement to enhance its predictability.  

For tropical prediction of FV3 GEFS, a difference of real forecast skill and potential forecast skill (or 
predictability) of MJO demonstrates a large potential capability (from 20 days to 32 days) of our system. A 
potential improvement could come from good forecast uncertainty representation; atmospheric circulation 
anomaly; enhanced MJO related tropical convection; interaction with ocean (coupling) and others. 
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1.  Introduction 

The current operational Global Ensemble Forecast System (GEFS v11) was implemented at Dec. 2015 
(Zhou et al., 2017). It uses a semi-Lagrangian global spectrum model (NCEP GFS/GSM version 12.0.0) with 
the horizontal resolutions TL574 (34 km) for the first 8 days and TL384 (52 km) for the second 8 days. There 
are 64 vertical levels on sigma pressure hybrid layers. The initial conditions for 20 ensemble members are 
generated from GSI/EnKF hybrid analysis by adding the 6-h EnKF forecast ensemble perturbations (Zhou et 
al., 2016). The stochastic total tendency perturbation (STTP) scheme is used to represent model uncertainties 
by perturbing the total tendency of the model prognostic variables (surface pressure, temperature, wind, and 
humidity) with an empirical formula (Hou et al. 2006, 2008).  

GEFS version 12 (FV3-
GEFS) is still under development 
and will be implemented at 
Q3FY2020. FV3-GEFS uses the 
NOAA new generation global 
forecast model with the GFDL 
Finite-Volume Cubed-Sphere 
(FV3) dynamical core (Lin and 
Rood, 1997; Lin 2004). The 
physics package remains similar 
with the one used in the current 
operational GFS except some 
updates. In this new system, the 
GFS convection scheme is 
updated with a scale-aware 
parameterization (Han et al. 
2017). The convection scheme is 
also modified to reduce excessive 
cloud top cooling for the model 
stabilization. The GFDL cloud 
microphysics scheme with five 
predicted cloud species (cloud 
water, cloud ice, rain, snow and 
graupel) will replace the Zhao-
Carr microphysics scheme with 
only total cloud water. Other 
updates also include a revised 
bare-soil evaporation to reduce 
dry and warm bias, an updated 
parameterization of ozone 
photochemistry with additional 

(c) (a) 

(b) (d) 

Fig. 1 (a) PAC and (b) CRPSS for the 500-hPa geopotential height over the NH 
for the warm season (2017060100-2017080600). (c) and (d) are as same as 
(a) and (b) except for the cold season (2017120100-20170130). The black 
curves represent the operational GEFS and the red ones represent the 
FV3GEFS. The lower graphs show the difference and bootstrap 
significance test (blue bars). The difference is significant at the 95% 
confidence level when the value is outside the bars. 
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production and loss terms 
(McCormack et al. 2006) and a 
new parameterization of middle 
atmospheric water vapor 
photochemistry (McCormack et 
al. 2008).  

 In contrast to the current 
operational GEFS v11, FV3-
GEFS will extend the forecast 
from 16 to 35 days with increased 
and uniform horizontal resolution 
through model integration (about 
25 km). A Near-Surface Sea 
Temperature (NSST) model is 
used to predict the vertical profile 
of sea temperature between the 
surface and a reference level 
(about 5m) by only considering 
two physical process: diurnal 
thermocline layer warming and 
thermal skin layer (also known as 
sub-layer) cooling (Li 2015). 
This scheme could resolve SST 
diurnal variabilities and provide a 
more realistic thermal boundary 
condition for the atmosphere.  A 
2-tiered representation of the 
foundation temperature (sea 
temperature at the NSST 
reference level) is used to better 
represent the variation of ocean 
temperature forcing with the 
forecast time (Zhu et al. 2018; 
Wei et al. 2018). The STTP 
scheme used in the operational 
GEFS is replaced by a stochastic 
physics suite. It has three 
components, including 1) 
stochastically perturbed physics tendencies (SPPTs; Buizza et al. 1999; Palmer 1997, 2001), 2) stochastically 
perturbed planetary boundary layer humidity (SHUM), and 3) stochastic kinetic energy backscatter (SKEB; 
Berner et al. 2009; Shutts 2005) to represent model uncertainty. All these three schemes use a random pattern 
generator and AR(1) process to produce spatially and temporally correlated perturbations with horizontal 
length/time scales up to five different categories: 500 km/6 hours, 1000 km/3 days, 2000 km/30 days, 2000 
km/90 days and 2000 km/1 year.   
2.  Experiment and verification 

Experiments with the FV3-GEFS configuration as discussed in the previous section were performed for 
one warm season (from Jun. 1 to Aug. 8, 2017) and one cold season (from Dec. 1 2017 to Jan. 30 2018). The 
initial conditions for the control run and ensemble members are generated by using hybrid analysis and EnKF 
6-hour forecasts from FV3GFS parallel runs. The FV3-GEFS performance is verified against the hybrid 
analysis of FV3GFS parallel runs and compared with the operational GEFS against its own analysis. 

(a) (c) 

(b) (d) 

Fig. 2  BSS for the ensemble mean precipitation greater than (a) 1mm (24 h)-1 
and (b) 10 mm (24h)-1 averaged over the warm season. (c) and (d) are as 
same as (a) and (b) except for the cold season. 

(a) (b) 

Fig. 3  Reliability of precipitation > 5mm/day calculated with the 21 probability 
categories from a 21-member ensemble for the (a) warm season and (b) 
cold season. The top-left inset in each plot shows the proportion of cases 
in each probability category. 
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The comparison shows 
that FV3-GEFS improves the 
ensemble-mean forecasts of 
500 hPa geo-potential height 
with higher pattern anomaly 
correlation (PAC) and 
continuous rank probability 
skill scores (CRPSSs) in the 
Northern Hemisphere (NH) 
than that in the operational 
GEFS (Fig. 1).  The 
improvement is generally 
statistically significant at 
95% confidence level and the 
skillful forecast (PAC> 0.6) 
extends 12 hrs in the warm season (Fig 1a). Similar improvement can be seen in the cold season but the 
difference between FV3-GEFS and the operational GEFS in the cold season is not statistically significant (Fig 
1c and Fig.1d).   

Quantitative precipitation forecasts (QPFs) and probabilistic QPFs are verified against the climatology-
calibrated precipitation analysis (CCPA) over the contiguous United States (CONUS). In the categorical 
verification methods, precipitation is categorized by the 24-h accumulated precipitation with threshold amounts 
greater than 1, 5, 10, and 20 mm. Brier skill score (BSS) uses the 10-yr mean of CCPA as the climatology to 
calibrate the Brier score in order to avoid the dependence on the event frequency. FV3-GEFS generally 
outperform the operational GEFS in terms of precipitation BSSs in each category over CONUS.  The BSSs for 
the precipitation categorized with the threshold amounts greater than 1mm and 10 mm in both warm and cold 
seasons are shown in Fig. 2.  Reliability diagrams display the observed probabilities conditioned with the 
forecast probabilities of all forecast samples. They provide information about probability forecast bias. If the 
forecasts have perfect reliability (no bias), the reliability curve would lie along the diagonal line. The 
comparison shows that FV3-GEFS reliability curves are generally closer to the diagonal line than those from 
the operational GEFS. The probabilities for higher probability categories are overestimated as the reliability 
curve is located at the right side of the diagonal line. Apparently, the issue of overestimated probability in FV3-
GEFS is significantly improved compared with the operational GEFS (Fig. 3). For the low probability 
categories, FV3-GEFS presents close perfect reliability.  

The 2017 hurricane season over Atlantic was 
a catastrophic season. There are 17 named storms of which 10 
became hurricanes including six major hurricanes (Category 
3, 4 or 5) – two category-4 hurricanes (Hurricane Harvey and 
Jones) and two category-5 hurricanes (Hurricane Irma and 
Maria). The forecasted tropical cyclone tracks are promising 
with slightly smaller errors in FV3-GEFS in the first 5-6 days 
but with larger errors in longer lead times (Fig. 4a). The 
intensity forecasts are significantly improved (Fig. 4b) as the 
tropical storms are more intense in the new system than in the 
operational GEFS.  

The MJO prediction skill using Wheeler-Hendon MJO 
indices (Wheeler and Hendon 2004) in FV3-GEFS is 
compared with the experimental GEFS extended forecast 
system which was developed to support the Subseasonal 
Experiment (SubX) project (Fig. 5). The comparison shows 
that the skillful MJO prediction with AC > 0.5 extends from 
20 days in Subx GEFS to 22 days in FV3-GEFS.  

(a) (b) 

Fig. 4  Tropical cyclone forecast (a) track and (b) intensity errors over Atlantic basin 
for 2017 hurricane season. The blue curves represent the operational GEFS 
ensemble mean, while the red curves represent the FV3GEFS.  The number of 
TC cases verified for the forecast lead time from 0 - 168 hr listed below the X 
axis. 

Fig. 5  MJO prediction anomaly correlation 
skills  of using Wheeler–Hendon indices for 
FV3GEFS (black curve) and SubX (red 
curve). 
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3.  Summary and discussion 

NCEP FV3-based GEFS is scheduled for implementation at Q3FY2020a system. The integration of this 
new system with all pre-processes and post processes is almost completed and the configuration of FV3-GEFS 
(GEFS v12) is close to be frozen. The preliminary results from the experiments based on FV3-GEFS was 
studied. The performance of FV3-GEFS is promising based on the comparison with the operational GEFS for 
one warm season (from Jun. 1 to Aug. 8, 2017) and one cold season (from Dec. 1 2017 to Jan. 30 2018). FV3-
GEFS is generally more skillful than the operational system over extratropical regions with respect to the 
ensemble mean and probability forecasts of large-scale patterns. The improvement of precipitation forecast over 
CONUS are very encouraging. FV3-GEFS outperforms the operational GEFS in terms of the reliability and 
BSSs of precipitation forecasts. In addition, the performances of FV3-GEFS in tropical cyclone track and 
intensity forecast and MJO skill forecasts are generally positive. Note that this is a preliminary study with very 
limited sample size. Comprehensive verification will be performed after 2.5-year parallel testing with FV3-
GEFS is finished in the near future. 
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Toward Improving Short-Lead Monthly Forecast 
Peitao Peng, Mike Halpert, Stephen Baxter and Mike Charles 

Climate Prediction Center, NOAA/NWS/NCEP 

1.  Introduction 

It is well known that weather forecast skill decays fast with lead time, meanwhile, big anomalies of variables 
occurred in early period of a month could have big impact to their monthly mean values, thus for a short-lead 
monthly forecast, its skill could be improved by appropriately leveraging the decay in skill. 

In this study, this idea was tested by weighting CFS forecasts of four sub-monthly periods (i.e., days 1-3, 
days 4-7, days 8-14, and days 15-30) with their historical skill. It is found that such aggregated 30-day forecasts 
do have higher skill than the simple mean of the 30-day forecast.  

2.  Data 

Model data used in this study are CFSv2 45-day hindcast for the period of 1999-2010 and forecast for the 
period of 2011-2017. Variables to be verified are surface air temperature (SAT) and precipitation (Prec). The 
verification data, both SAT and Prec are from Climate Prediction Center (CPC) analyses. 

3.  Procedures 

 We first calculated the skill of the CFS 
hindcast for the four sub-monthly periods, that 
is, days 1-3, days 4-7, days 8-14 and days 15-
30, then construct 30-day mean forecast by 
aggregating forecast values from each of the 
sub-monthly periods. This was done by 
weighting the sub-monthly forecasts with their 
corresponding hindcast skill: 

𝑓𝑓𝑤𝑤 =
1

30
 �𝑑𝑑𝑛𝑛

4

𝑛𝑛=1

𝑓𝑓𝑛𝑛 𝐴𝐴𝐶𝐶𝑛𝑛 

where, n is the sub-period index, d the number 
of days in sub-period, f the forecast, and AC 
the temporal anomaly correlation skill in 
hindcast. The earlier sub-monthly periods thus 
have heavier weights in the weighted forecast.  

3.  Results 

Figure 1 shows the hindcast AC skill of 
SAT and Prec for the four sub-monthly 
periods. It is obvious that the skill decays fast 
with lead time, and the days 15-30 almost has 
no skill.  

Figure 2 presents the skill of the weighted 
and un-weighted 30-day forecast. The 
improvement of the weighted forecast looks tiny for SAT, but quite obvious for Prec.  

Fig. 1  Hindcast AC skill averaged over CONUS for the 4 
sub-monthly periods. The upper panel is for SAT and 
lower panel for Prec. 
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4.  Summary 

i. Forecast skill decays fast from early to late sub-monthly periods; 
ii. Skill weighted short-lead 30-day forecast has marginal but consistent improvement in skill for Prec, but 

not obvious for SAT; 
iii. As expected, big Prec anomalies in early periods are more likely to dominate monthly mean anomalies 

than SAT; 
iv. Possible reasons for the improvement to be limited are considered as follows.  

a)  Big anomalies don’t always occur in early periods;  
b)  Skill-dependent weighting makes the forecast skewed to higher frequency, and thus could downplay 

lower frequency variability, such as aliased from seasonal and inter-annual variability.  

 

 
 

Fig. 2  Skill (AC) comparison between the weighted and un-weighted short-lead 30-day SAT (left) and Prec 
(right) forecast. The skill is averaged over CONUS. 
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ABSTRACT 

 Recent springtime climate extremes have been observed along the northern coast of Alaska. The dates 
when snow melted at Utqiaġvik (formerly Barrow) in 2015 and 2016 were the 4th and 1st earliest recorded, 
respectively, since 1902. These early years were followed by the latest date of snowmelt since 1988 in 2017 
and the latest date since 1947 in 2018. The range of these melt dates spans 41 days across the months of May 
and June, expressing large interannual variability in the arrival of spring in northern Alaska during recent 
years. Previous work implicates northward advection of warm air circulating around the Aleutian Low during 
years of early melt and blocking by the Beaufort High during years of later melt, and it is the juxtaposition of 
the two pressure centers that is influential for northern Alaska. However, the spatial and temporal variability 
of the melt timing is also sensitive to subtle variations in the way air circulates around these dominant 
pressure centers. For example, while the Beaufort High helped preserve snowpack at Utqiaġvik in 2017, 
circulation patterns also favored the transport of warmer air to points along the northern coast east of 
Utqiaġvik, which contributed to an 
earlier melt there. This suggests that the 
position of a high-pressure ridge to the 
east of the Aleutian Low is also 
important in modulating the timing of 
snowmelt regionally. We investigate 
these relationships using reanalysis, 
satellite retrievals, and surface-based 
data sets. We expand the analysis 
spatially beyond terrestrial snow cover 
to also analyze the spatial patterns in the 
timing of the onset of melt over sea ice 
in the Chukchi and Beaufort seas. We 
introduce a new 4-point climate index 
based on regional 850 hPa GPH called 
the Aleutian Low – Beaufort Sea 
Anticyclone (ALBSA). ALBSA tracks 
the synergy of the Aleutian Low and 
Beaufort High and is shown to explain 
some of the variance in the melt metrics 
over both the terrestrial and marine 

Fig. 1  Correlation (r) between ALBSA in May 1979-2017 and a 
combination of satellite observations; the date of snow melt 
derived from the Northern Hemisphere Snow Cover Extent (NH-
SCE) (terrestrial regions) (Estilo et al. 2015) and the date of melt 
onset over sea ice derived from SSM/I passive microwave data 
(sea ice regions) (Markus et al. 2009). Dots (land) and solid 
contour (ocean) denote areas of statistically significant correlation 
(p < 0.05). 
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regions. The index is therefore suitable for monitoring changes in regional circulation and may be useful for 
developing seasonal-scale predictive tools.  
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ABSTRACT 

Increasing temperatures, changes in damaging extreme events, rising costs of energy, heightened 
environmental consciousness, degraded land productivity, and overburdened water resources are among a 
variety of stressors that can stem from regional changes in the natural, managed, and built environments. Over 
the Arabian Peninsula, water can play a multi-faceted role to not only the sustainability but also the vulnerability 
of prosperity and continued growth across its populated areas.  Therefore, simulating future changes in the 
regional climate – with particular attention to the changing characteristics of precipitation – is key to those 
adjustments. However, global model projections are too coarse to represent the unique surface and atmospheric 
features of the region. To help assess changes in regional climate and support regional sustainability efforts, we 
perform convection permitting regional climate modeling simulations and dynamically downscale Community 
Earth System Model (CESM) projections under a high-impact emission scenario using the Weather Research 
and Forecasting (WRF) model to 4 km horizontal resolution. Preliminary results focusing on historical and 
future changes in the mean and extremes of climate variables are presented here. 

1. Introduction 

Water consumption in the Kingdom of Saudi 
Arabia (KSA) has been increasing. As part of Vision 
2030 investment activities 
(https://vision2030.gov.sa/en), several investments 
have been made and are planned in the region in the 
near future such as new solar power operated 
desalinization plants, sustainable infrastructure and 
touristic areas to attract global attention. 
Furthermore, recently KSA has been experiencing 
intense extreme precipitation events: For example, 
Jeddah floods of 2009, 70 mm of rain was recorded 
at Jeddah meteorological station. The event led to 
flooding that cost lives of 122 people while 350 were 
missing. Damaged businesses created a huge cost 
($270 million) to the economy. Hence, structure and 
infrastructure failure due to intense precipitation 
events (Ameur, 2016) and the financial and cost 
associated with recovery have become a main concern for the Kingdom. Particularly of interest is estimating 
the changes in the intensity and frequency of extreme events (precipitation, heat waves, and dust storms) 
affecting the region under climate change. For planning new touristic areas, engineering heat withstanding 
infrastructure, and choosing locations of new infrastructure that will serve the cities, future climate information 
is needed in local scales. In this study, we are using global model projections to drive a regional climate model 

Fig. 1  WRF model domain used in this study. 
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to produce high-resolution climate variables under a high impact emissions scenario. We will use these high-
resolution projections 1) to study changes in regional climate and climate extremes and 2) as input for 
hydrological and flood models to assess future changes in water resources, guide sustainable infrastructure 
design under climate change and help future urban city planning and expansion efforts in the Kingdom of Saudi 
Arabia.  
2.  Methods 

To obtain high resolution climate projections, we dynamically downscaled the bias corrected CESM 
projections under Representative Concentration Pathway (RCP) 8.5 (Bruyère et. al., 2014) using the WRF 
Model v3.6.1. Our methodology and model setup are similar to Komurcu et al. (2018). In WRF, we use three 
nested domains of 36, 12 and 4 km horizontal resolution. Model domain, nesting and parameterization setup 
were established after a series of sensitivity runs on MIT’s Svante High Performance Computing System. The 
model domain used in this study is shown in Fig. 1. To assess future changes in climate, we perform dynamical 
downscaling of CESM projections for two time periods representative of present day (2008-2017) and mid-
century (2041-2050). 

3.  Results 

Results presented in this paper are preliminary.  Figure 2 shows August mean temperatures from WRF-
ERA (WRF driven by ERA-Interim data) and MERRA-2 (Modern-Era Retrospective Analysis for Research 
and Applications version 2) averaged over 2008 to 2017.  WRF-ERA is able to simulate similar temperatures 

Fig. 2  August mean temperatures at 2 meters [K] from (a) WRF-ERA (b) MERRA-2 averaged over 2008-2017. 

Fig. 3  November precipitation rates [mm/month] averaged over 2008-2017 as simulated from (a) WRF-ERA 
and observed/retrieved from (b) TRMM. 
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to those from (MERRA-2) and provides the detailed, high-resolution temperature data needed for local climate 
change assessments and sustainability studies.  

November precipitation rates from (a) WRF-ERA and (b) TRMM (Tropical Rainfall Measuring Mission) 
are presented in Fig. 3.  WRF-ERA is generally able to capture the observed precipitation structure and locations 
of increase in precipitation rates.  There is a slight positive bias along certain coast lines and in the center of the 
Kingdom in WRF-ERA compared to TRMM, which may be associated with the higher resolution (hence more 
detailed representation of the topographical features) in our WRF simulations compared to TRMM.  Due to a 
lack of a dense, homogeneous network of historical observations of precipitation rates, it is difficult to establish 
the biases beyond a comparison with TRMM.  Nevertheless, these biases need to be taken into account while 
interpreting future projections of precipitation rates.  

Figure 4 a and b show the probability density functions (PDFs) of present day and mid-century precipitation 
rates (mm/day) in Riyadh for November and March respectively for 5 years. We find that while mid-century 
mean precipitation rates reduce in November compared to present day climate, extreme precipitation events 
become more intense and frequent. In March, more precipitation events occur mid-century while extreme events 
become rare compared to present day climate. 

In Fig. 5, we present the PDFs of temperatures for November and August for five years of the simulated 
time period. We find that while temperatures increase for both November and August by mid-century, this rate 
of increase is more pronounced in August. 
  

Fig. 5  PDFs of daily temperatures at 2 meters for present day (blue) and mid-century (red) climate for (a) November 
and (b) August. 

Fig. 4  PDFs of present day (blue) and mid-century (red) precipitation rates (mm/day) in Riyadh for (a) November 
and (b) March. 
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4.  Conclusions and future work 

Our preliminary analysis shows that there are significant differences between mid-century and present-day 
mean and extreme climate in the Kingdom’s capital Riyadh.  Work is currently underway to 1) expand the 
projections to span 20 years in each time period, 2) extend the regions studied 3) use high resolution projections 
generated in further analysis related to the sustainability of the region. 
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1.  Introduction 

One-tier global atmospheric and 
oceanic seasonal and climate modeling is a 
trend for both research and operational 
centers. NCEP developed dynamical 
seasonal forecast system before 2000 
(Kanamitsu et al. 2002) and moved to one-
tier model CFS v1.0 (NCEP GFS coupled 
with GFDL MOM3) in 2004 (Saha et al. 
2006). ECMWF started improving system 
1 (Stockdale et al. 1998) since 1996, and 
moved to one-tier with system 2 (T95L40) 
in 2003 (Anderson et al. 2003), and recently 
with higher resolutions. 

  In 2010, Central Weather Bureau 
(CWB) in Taiwan began to develop its own 
global atmosphere-ocean coupling model. 
Based on NCEP CFS package, NCEP 
global atmospheric model was replaced by 
CWB's own global atmospheric model 
(CWB GFS in resolution of T119L40, Paek 
et al. 2015) and coupled with the GFDL 
MOM3 (TCWB1T). It takes six years to 
build the couple model to be routinely 
operation, including workflow 
construction, model tuning with adjusting 
cloud physics etc., 20 more years hindcast, 
and ensemble member bias correction etc. 
It is used to provide seasonal forecast and 
ENSO forecast up to 9 months. It started 
operating routinely in 2017 at Taiwan 
CWB.  

2.  Data and experimental design 

Based on NCEP CFS v2 reforecast (hindcast) data set, we follow the method of their hindcast member 
selection for our hindcast design. The NCEP CFS v2 hindcast was running 4 cycles for selected 6 dates for any 

Fig 1  Niño 3.4 regional SST anomaly forecast for DJF by TCWB1T 
was close to the OISST trend at the initial time from June to 
November. 

Fig 2  Fraction of variance explained by EOF modes 1 through 5 for 
SST anomaly. purple line is TCWB1T, black line is ERSST. 
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given month. The dates are 1, 6, 11, 16, 21, and 26 of 
any given month. Due to our resource problems, we 
did two experiments. The first set, we have 
accomplished two cycles, 00z and 12z with dates of 1, 
6, 11, 16, 21, and 26, and the second, we have only 
accomplished one cycles 00z with dates of 1, 3, 6, 8, 
11, 13, 16, 18, 21, 23, 26, 28 of any given month. The 
results shows that more dates are more important than 
more cycles, so we choose one cycle 00z, the second 
set, to do reforecast from 1982 to 2011.  

3.  Results 

3.1 Hindcast analysis (1982-2011)  
By analyzing SST of hindcast data from 1982 to 

2011, we found that NINO3.4 regional SST anomaly 
forecast for DJF was close to the OISST trend at the 
initial time from June to November (Fig. 1).  Figure 2 
show the fraction of variance explained by EOF modes 
1 through 5 for SST anomaly. TCWB1T (purple line) 
is close to ERSST (black line). The result of EOF1 
analysis shows that El Niño pattern of TCWB1T 
similar to ERSST (Fig. 3-1), the anomaly correlation 
between TCWB1T and ERSST is more than 0.72 from 
lead-012 (JAS) to lead-456 (NDJ) (Fig. 3-2). 

The SST forecasting ability is better than T2M and 
precipitation, only captured over tropical sea. The 
forecasting ability of TCWB1T shows that winter is 
better than summer (Fig. 4). 
  

Fig. 4  The DJF forecast anomaly correlations of SST, 
T2M, precipitation between TCWB1T and 
observation/reanalysis in November.  Only 
correlations significant at 0.05 are presented. 

Fig. 3-1  The EOF1 of ERSST (left) and TCWB1T (right) lead 0 month SST forecast. 

Fig. 3-2  The leading (from lead 0 to lead 4) anomaly correlations of PCA are above 0.72. 

Lead-1 

Lead-3 

Lead-2 

Lead-4 

APCP 
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3.2 Forecast verification 

We are starting MJO analysis on the 
operational forecast results of TCWB1T 
this year. During the season of DJFM 
from 2012 to 2018, 22 days of correlation 
coefficient between the observation and 
the forecast of RRM1 and RRM2 index 
from the model of TCWB1T are higher 
than 0.5 (Fig. 5). It indicates that CWB 
CFS1Tier can be used for ENSO as well 
as MJO forecasts. 

4. Future work 

We will have a newly updated 
TCWB1T this year 2019. It will have 
improved dynamic, corrected low 
boundary conditions, adjusted 
microphysics, better initial condition and 
climatology fields. And we will finish 
everyday hindcast run from 1999 to 
present in August. In the future, we will 
increase model resolution of atmosphere and ocean model. For example, CWB GFS T239L60 couple with 
GFDL MOM3 or MOM5.  CWB 1-Tier is a seasonal forecast model that will be used for operational S2S in 
the near future (ex. MJO and BSISO (Boreal Summer Intraseasonal Oscillation) forecasts). 

References 

Anderson, D. L. T., T. Stockdale, M. A. Balmaseda, L. Ferranti, F. Vitart, P. Doblas-Reyas, R. Hagedorn, T. 
Jung, A. Vidard, A. Troccoli, and T. Palmer, 2003:  Comparison of the ECMWF seasonal forecast systems1 
and 2, including the relative performance for the 1997/8 El Niño. ECMWF Technical Memorandum 404, 
93pp. https://www.ecmwf.int/sites/default/files/elibrary/2003/7728-comparison-ecmwf-seasonal-forecast-
systems-1-and-2-including-relative-performance-19978-el.pdf 

Kanamitsu, M., and Coauthors, 2002: NCEP dynamical seasonal forecast system 2000. Bulletin Amer. Meteor. 
Soc., 83, 1019-1037, doi:10.1175/1520-0477(2002)083<1019:NDSFS>2.3.CO;2 

Paek, H., J.-Y. Yu, J.-W. Hwu, M.-M. Lu, T. Gao, 2015: A source of AGCM Bias in simulating the western 
pacific subtropical high: different sensitivities to the two types of ENSO. Mon. Wea. Rev., 143, 2348-2362. 

Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 3483–3517. 

Stockdale, T. N., D. L. T. Anderson, J. O. S. Alves, and M. A. Balmaseda, 1998:  Global seasonal rainfall 
forecasts using a coupled ocean–atmosphere model. Nature, 392,370–373. 

Fig. 5  From 2012 to 2018, the 28-day forecast anomaly 
correlations of DJFM RMM1 and RMM2 index. 

 



Science and Technology Infusion Climate Bulletin 
NOAA’s National Weather Service  
43rd NOAA Annual Climate Diagnostics and Prediction Workshop  
Santa Barbara, CA, 23-25 October 2018 

______________ 
Correspondence to: Daniel Barandiaran, Climate Prediction Center, NOAA/NWS/NCEP, 5830 University Research Court, 
College Park, MD 20740, and Innovim, LLC, Greenbelt, MD;  E-mail: daniel.barandiaran@noaa.gov 

CPC's New Consolidated Hybrid Statistical/Dynamical Model for 
Seasonal Prediction of Temperature and Precipitation 

Daniel Barandiaran 
Climate Prediction Center, NOAA/NWS/NCEP, College Park, MD  

and 
 Innovim, LLC, Greenbelt, MD 

1.  Introduction 

It has been known for some time that CPC could benefit from a new seasonal forecast consolidation that 
will serve as a ‘first guess’ for the forecaster, with the aim of improving forecast reliability and month-to-month 
consistency across forecast and forecasters. The prior consolidation, implemented in 2006, had the positive 
benefit of leading to increased forecast coverage and improved ‘all forecasts’ skill scores (Baxter 2016). There 
are, however, some limitations of this consolidation that reduce its usefulness to CPC forecasters. First, the 
consolidation uses climate division data (CD-102) with coverage of the continental United States only. Second, 
the consolidation makes use of decades-old statistical tools and only one dynamical model input, namely the 
Climate Forecast System (CFS). Finally, the consolidation process itself is something of a black box, for 
instance giving little information to the forecaster regarding the contribution of various components of the 
consolidation to overall forecast skill. 

Since the implantation of the operational consolidation in 2006, there have been advances in model post-
processing and calibration (e.g., Unger et al. 2009; Ou et al. 2016; van den Dool et al. 2017) that have been 
implemented across many of CPC’s operational forecast products and tools. An effort was therefore initiated 
to take advantage of such 
methodologies as well as to 
make use of newer 
statistical tools and a larger 
pool of dynamical models, 
therefore creating a robust 
forecast tool that can more 
easily be utilized by the 
forecaster. 

2.  Methods and data 

The primary goal of this 
project was to apply a 
probability anomaly 
correlation (PAC) 
calibration to a new suite of 
empirical forecast tools, and 
consolidate those tools with 
the constituent models of 
the National Multi-model 
Ensemble (NMME) system, 
which have been PAC-
calibrated in real-time since 
2016.  The PAC 

Fig. 1  Seasonal consolidation flowchart. The green box indicates process that 
currently executes operationally upstream of the consolidation. All other 
processes are included as part of this experimental consolidation process. 
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methodology, acting on probability anomalies, is analogous to traditional linear regression acting on 
temperature and precipitation anomalies themselves; the former minimizes the Brier score, while the latter 
minimizes the mean squared error (van den Dool et al. 2017).  

The suite of empirical forecast tools being used in the consolidation include a canonical correlation analysis-
based model (CCA, Barnston and He 1996), constructed analog based on sea surface temperatures (SST-CA, 
van den Dool et al. 2003), and a hybrid El Niño-Southern Oscillation/long term trends forecast tool (ENSO-
OCN, Barandiaran and Baxter 2017). These statistical models are all calibrated using GHCN (Global Historical 
Climatology Network )+CAMS (Climate Anomaly Monitoring System) for temperature (Fan and van den Dool 
2008) and CPC’s gridded precipitation reconstruction (Chen et al. 2002). 

The new consolidation flow chart is shown in Fig. 1. The premise is to apply PAC calibration to each of 
the constituent models for both the statistical and dynamical model inputs, and then each stream, statistical (left) 
and dynamical (right), is combined by weighting based on the PAC coefficient (ranging from 0 to 1, with 
negative values set to 0). Because the combination of models is often more skillful than each model separately, 
the results at this point are expected to be underconfident. Therefore, a second pass PAC calibration will 

Fig. 2  Sample output graphics available to forecasters for the Lead-1 temperature forecast. 
 

Fig. 3  Sample historical Brier skill score (BSS) graphics output alongside the forecast graphics. 
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minimize the Brier score of 
the combination of forecast 
tools. This process is 
repeated to consolidate the 
statistical and dynamical 
forecast streams.  

3.  Results 

Forecast probabilities 
and skill metrics are output 
and archived in real-time in 
both NetCDF and binary 
data formats, and forecast 
graphics are output and 
archived.  A web interface 
was created where the 
forecaster can access the 
consolidation forecasts from 
both the NMME and 
statistical tools, and their 
final consolidation. An 
example of the graphics 
forecasters had access to for 
the September seasonal 
forecast cycle is shown in 
Fig. 2. Importantly, 
forecasters can see whether 
contributions to the forecast 
are coming from statistical 
models or the NMME. The 
statistical model stream is 
further broken down into its 
three constituent models. 
Associated skill maps are 
displayed as well, where the 
average of the hindcast Brier 
skill score for above- and 
below-normal temperature 
probabilities is plotted for 
that lead and target season 
(Fig. 3).  

Evaluation of the 
consolidation was 
conducted by calculating the 
BSS for each lead and 
season as well as associated 
reliability statistics. The 
statistical and dynamical 
model components are 
compared to understand 
where the statistical 
guidance adds value to the 

Fig. 4  Panel (a) shows the average Brier skill score (BSS) for Lead-1 above- and 
below-normal temperature forecasts for December-February (DJF). Panel (b) 
shows the BSS difference between the NMME stream and the statistical stream. 
Panel (c) shows the BSS difference. 

Fig. 5  Same as Fig. 4 except for Lead-1 DJF precipitation forecasts. In this case, 
the statistical forecast tools generally enhance the skill of the forecast (Panel C). 
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state-of-the-art dynamical 
model guidance. Finally, 
some comparison is made to 
the current NMME guidance 
utilized by forecasters.  

The average BSS for 
Lead-1 temperature 
forecasts of December-
February (DJF) is shown in 
Fig. 4a. As expected, skill is 
modest across much of the 
CONUS, except where 
ENSO and long-term trends 
are most important. The 
difference between the 
average BSS of NMME 
model consolidation and the 
statistical model 
consolidation is shown in 
Fig. 4b; the statistical 
models outperform the 
NMME only in low-skill 
areas over the central 
CONUS. Figure 4c shows 
the difference in BSS 
between the final 
consolidation and the NMME constituent; this can be thought of as the value added by the inclusion of the 
statistical guidance. There are areas where the statistical guidance clearly adds value, but it is mostly mixed. 
Figure 4d shows the reliability of above- and below-normal temperature forecasts from the final consolidation, 
respectively. As expected given this established methodology, the final consolidation is reliable across forecast 
probabilities. Figure 5 shows the same except for DJF Lead-1 precipitation forecasts. In this case, an obvious 
ENSO skill signature is seen, with the highest forecast skill over regions where seasonal precipitation is known 
to be more correlated to ENSO.  

Finally, Fig. 6 shows a more in-depth breakdown of tools for the Lead-1 DJF temperature forecast. This 
reveals that the addition of the statistical models maintains reliability while adding resolution (increasing the 
frequency with which larger probabilities are forecast). Additionally, it shows that the NMME as currently used 
by CPC forecasters is quite under confident. The second pass PAC calibration in this case increases the 
probabilities to match forecast skill. 

4.  Summary 

• The latest seasonal forecast tools, including constituent models from the NMME and newly derived 
empirical models, are consolidated and recalibrated using the probability anomaly correlation (PAC) 
methodology. 

• The forecast consolidation occurs in two phases: the first in which statistical and dynamical tools are 
consolidated separately, and the second in which these two streams are consolidated (Fig. 1). 

• Real-time forecast graphics are available to forecasters, along with associated skill metrics (Figs. 2 and 
3). 

• The inclusion of statistical tools improves the forecast skill for precipitation in all seasons. For 
temperature the impact is less notable, though there is some evidence that forecast resolution improves 
(Figs. 4, 5, and 6). 

Fig. 6  This figure highlights the reliability and frequency of Lead-1 forecasts of 
above-normal temperatures for December-February from the statistical models 
(left) and the NMME and final consolidation (right). Importantly, the NMME 
as used by seasonal forecasters (blue line, upper right) is notably 
underconfident. 
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1.  Introduction 

 NOAA’s Modeling, Analysis, Predictions and Projections - Climate Test Bed (MAPP-CTB) projects 
support research to significantly increase the accuracy, reliability, and scope of NWS Climate Prediction Center 
operational seasonal-to-subseasonal (S2S) climate probabilistic forecast products. Out of twenty-six funded 
projects, twelve are on track to be completed by the end of fiscal year 2018, seven are in progress with an 
adjusted deliverable schedule, and seven are new development projects. This extended summary provides 
stakeholders an update on 1) completed projects leading to an improved operational prediction capability, 2) 
prominent progress of ongoing projects, and 3) challenging new developments supported by leveraging the 
research community. The CTB management solicits feedback on optimal project performance to accelerate the 
transition from research to operations for service improvement toward the NWS strategic goal of a “Weather-
Ready-Nation”. 

2. Completed projects leading to an improved operational prediction capability 

2.1  System implementations: 

i)  NCEP GEFS for monthly forecast  (PI: Y. Zhu, EMC, NOAA/NWS/NCEP) 

A real-time monthly GEFS version with the identical configuration as reforecast but larger ensemble size 
(21 members) is being conducted every Wednesday since July 2017. Finished a 17-yr reforecast with a high-
resolution (34 km for 0-8 days and 52km for 8-35 day) model and 11 member ensemble. Eleven real-time 
priority variables are delivered to CPC. Other priority 2 and 3 variables are delivered to IRI. The weeks 3&4 
forecast has been assessed.  MJO 
forecast skill (from 12.5 days to 
22 days) and NH 500hPa height 
ensemble mean AC scores (from 
0.35 to 0.404) are improved after 
applying the new stochastic 
physics perturbation (SPs), 
updated SST (CFSBC) and new 
convective schemes (CNV).   
(Fig.1). 

ii)  Improved turbulence and 
cloud processes  (PI: S. K. 
Krueger, University of Utah) 

The Simplified Higher-Order 
Closure (SHOC) and Chikira-
Sugiyama-Arakawa-Wu 
(CSAW) unified cumulus parameterization have been implemented and tested in NEMS/GSM and GFS with 
FV3 dynamical core (FV3gfs).  SHOC, CSAW along with Morrison-Gettelman double moment microphysics 
have been implemented in the Interoperable Physics Driver 4 of the NEMS/FV3 model.  

Fig. 1 Pattern Anomaly Correlation (PAC) for Northern Hemisphere 500 hPa 
geopotential height for lead weeks 3&4 during the period from May 2014 
to May 2016. Control (CTL) is in black, SPs in red, SPs+CFSBC in green, 
SPs+CFSBC+CNV in blue and CFSv2 in brown with period average PAC 
scores for each configuration (numbers in the bottom of plot with 
corresponding color).  (Courtesy of Y. Zhu) 
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iii)  NMME Phase 2  (PI:  RSMAS, B. Kirtman, University of Miami)  

 NMME Partner Agreement was signed by all parties and the Community Earth System Model (CESM), 
and the retrospective forecast completed.  NMME operational forecasts continue to be delivered on time.  A 
new procedure for estimating forecast spread is developed.                       

iv)  Real-time multi-model sub-seasonal predictive capability (SubX)  (PI: B. Kirtman, RSMAS, University of 
Miami) 

The SubX began making real-time predictions in July 2017. The data are provided to CPC as guidance to 
their week 3-4 forecast products and also to IRI for posting on the IRI Data Library.  Completed re-forecast 
database. Comprehensive skill evaluation showed the benefit of the MME over any individual model.  
v)  U.S. monitoring and prediction system for flash droughts  (PI: D. P. Lettenmaier, University of California) 

An experimental real time flash drought monitor is on the CPC website.  Experimental real time flash 
drought forecast in three categories based on the CFSv2 seasonal forecasts has been implemented.  
vi)  Ensemble-based sea ice analysis and forecasting  (PI: J. Carton, University of Maryland) 

Sea ice modeling and data assimilation (EnKF) capability has been implemented in CFS, and a full year 
sea ice analysis using the new ensemble-based system completed.  

2.2  System new components 

i)  Lake-effect process  (PI: J. Jin, Utah State University) 

The 16-year retrospective forecasts with 
nine leads were performed with CFS and 
CFS-Flake.  These forecasts for the Great 
Lakes region were quantitatively analyzed 
with different metrics, showing the predicted 
surface skin temperature, precipitation, and 
lake ice spatial distribution with the coupled 
CFS-Flake were significantly improved 

ii)  CCSM4 (SubX)  (PI: B. Kirtman, 
RSMAS, University of Miami)  
Real‐time Community Climate System 

Model 4.0 (CCSM4) subseasonal forecasts 
began in July 2017.  All priority 1 variables 
from all the hindcasts have been provided to 
IRI. 

iii)  Navy Earth System Model (NESM)  (PI: 
N. Barton, Naval Research Laboratory) 

Demonstrated that NESM forecasts can 
be supplied to NOAA in a timely manner for 
S2S operational products.  Completed the re-
forecasting effort from 1999 to start of the 
real-time experiment, and supplied these 
outputs to NOAA and IRI.  
2.3  System analysis and optimization 

i)  Estimation of NASA GEOS-5 MJO 
forecast skill and land surface feedback 
(PI: D, Achuthavarier, Universities 
Space Research Association) 

Fig. 2 Anomaly correlation coefficient for 5-day averaged H500 
anomalies from GEOS-S2S hindcasts when (left column) 
forecast initialization contains MJO in phases 3 or 7, (middle 
column) for all forecasts irrespective of MJO signal in initial 
conditions, and (right column) difference between the two. The 
rows represent 5-day averaged fields as the forecast progresses 
from day-16 to day-30.  Verification is performed against 
MERRA-2 data, and forecasts cover the period 1999-2015. All 
forecasts are initialized over an extended winter period 
(November through March). The results are promising in that 
increased skill (the red shading in the right column) is observed 
up to days 26-30, especially over the eastern US, suggesting a 
typical MJO-NAO teleconnection pattern. It indicates higher 
skill of H500 anomalies prediction when an MJO in phases 3 or 
7 is present in the initial conditions. (Courtesy of D, 
Achuthavarier) 
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The near real-time production of sub-seasonal 
forecasts commenced at GMAO, NASA/GSFC on 
July 25, 2017, and since then, the forecasts 
(consisting of 10 Priority-1 variables) have been 
submitted to CPC every Wednesday.  In addition, 
39 output fields from the forecasts are being 
submitted to the IRI’s SubX data repository.  
Figure 2 shows a promising result. 

ii) NMME skill, predictability and optimum 
combination  (PI:  T. Delsole, George Mason 
University) 

Developed a new method for determining the 
ensemble size and initialization frequency of the 
lagged ensemble that minimized the MSE.  
Identified the optimal lagged ensemble for 
monthly, subseasonal and seasonal forecasts in 
CFSv2.  Developed new, rigorous methods (code 
available online) for comparing forecast skill.  
iii) Assessment of CFS severe weather predictions  

(PI:  M. Tippett, Columbia University) 

The automated 00 UTC CFS ensemble mean 
severe weather guidance dashboard has been 
transitioned to application 
(www.spc.noaa.gov/exper/CFS_Dashboard/). 

3 Progress from projects on finalization 

One-year no-cost extensions are granted to 
seven projects in final stage for completion.  Here 
are some prominent achievements shown in 
project reports. 

i) Improved cloud and boundary layer processes  
(PI:  C. S. Bretherton, University of 
Washington) 

The new scheme has neutral results in the 
short and medium range forecast skill metrics 
used by NCEP, but has the benefit of increasing 
forecast global low cloud cover by 5%, in better agreement with satellite observations as shown in Fig. 3.   

ii)  Seasonal forecast application for AK wildland fire management  (PI: U. Bhatt, University of Alaska)  
The key index, Buildup Index (BUI), from the Canadian Forest Fire Weather Index System (CFFWIS) 

represents potential fuel availability and flammability.  It is based on cumulative scoring of daily temperature, 
relative humidity, and precipitation.   The biases in temperature and precipitation result in systematic biases in 
BUI for Interior Alaska.  The quantile mapping method is used, which shifts the cumulative distribution of the 
model forecast to match the observed distribution to reduce biases as seen in Fig. 4. 

iii)  Subseasonal excessive heat outlook system  (PI: A. Vintzileos, ESSIC, University of Maryland)  
The global heat-impact oriented subseasonal excessive heat system runs experimentally on real time at the 

University of Maryland since May 2018 and provides probabilistic forecasts of the wet and dry Excess Heat 
Factor (EHF).   Preliminary results are presented in Fig. 5.  Further exploring the margins provided by 
acclimatization and the geographical modulation of the danger level is going to proceed. 

Fig. 3  Mean difference of low (<680 hPa) cloud fraction (%) 
for the forecasts with the new scheme (EDMF-TKE) with 
respect to the control forecasts (EDMF-CTL). The 
forecast period for the mean difference calculation is from 
1 Dec 2016 to 6 Dec 2017, and the low cloud fraction is 
the average of 102, 108, 114, and 120 forecast hours.  
(Courtesy of C. S. Bretherton) 

Fig. 4  Tanana Valley-West climatological seasonal cycle of 
daily precipitation from observations (black), raw model 
forecast (dark blue) and corrected model forecast using 
quantile mapping (light blue). The plot shows a seasonal 
cycle averaged over 1994-2010.  (Courtesy of U. Bhatt) 
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iv)  Eddy-permitting hybrid global ocean data assimilation system  (PI: S. G. Penny, University of Maryland) 

The bulk of the software engineering for Hybrid-GODAS has been recently completed, allowing for initial 
performance tests on the whole system to begin on the Gaea supercomputer. The code has been made publically 
available online while development and tuning continues. Figure 6 shows the Hybrid-DA improvement, 
especially in the tropical Atlantic, a region that the existing GODAS often has trouble with. 
(https://github.com/UMD-AOSC/hybrid-godas). 

Also projects at the final stage are 1) modeling and data infrastructure (PI: C. Deluca, CIRES, University 
of Colorado), 2) S2S climate products for hydrology and water management (PI: A. Wood, NCAR), and 3) 
operational transition of soil moisture and snow data assimilation in NLDAS (PI: Christa Peters-Lidard, 
NASA/GSFC).  

4 Challenging new developments supported by leveraging the research community 

In FY 2018, seven projects are newly supported, focusing on testing and demonstrating experimental 
prediction methodologies or systems developed in the broader community for operational purposes, and 
improving multi-model ensemble prediction systems by utilizing new or higher-resolution models, improved 
forecast initialization practices, and upgrades to other aspects of the system. 

Fig. 5  (a) The dry EHF as calculated using ERA-Interim data from 1979-2016 at the closest grid point to Niamey 
airport, Niger. The reported excessive heat wave, which occurred in April 2010 is well captured. (b) Both dry 
and wet EHF are successful in capturing the April 2010 event, however, during May as the monsoon season 
approaches the wet EHF shows higher sensitivity.  The wind induced skin evaporation and lower solar incoming 
radiation provide relief from excessive heat.  (Courtesy of A. Vintzileos) 

Fig. 6  Comparison of SST bias over a three month test period using no data assimilation (left), 3DVar only (middle) 
and hybrid LETKF/3DVar (right).  (Courtesy of S. G. Penny) 
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 i)  Sensitivity analysis of NMME seasonal predictions to ocean eddy resolving coupled models   (PI:  B. 
Kirtman, RSMAS, University of Miami) 

Develop ocean eddy resolving global coupled prediction system to test the hypothesis of that the presence 
of oceanic mesoscale features, i.e. fronts and eddies, significantly modifies local air-sea coupling, which in turn 
affects the local representation of the predictable large scale climatic features (Fig. 7).  Predictions will be made 
remotely but data given to CPC.   

ii)   Novel statistical-dynamical forecasts for tropical S2S drivers  (PI:  C. J. Schreck III, NCICS, North Carolina 
State University) 

Transition tropical S2S diagnostics from the demonstration platform at NCICS.org/mjo (Fig. 8) into the 
operational environment at CPC.  

Fig. 7  Time mean precipitation simulations in mm day-1 with low (contours) and high (shaded) model resolutions 
(left panel), and the climatological precipitation of CPC Merged Analysis of Precipitation (right panel).  It 
demonstrates the presence of resolved ocean eddies modified the mean climate.  (Courtesy of B. Kirtman) 

a) b) c) 

Fig. 8  (a) Schematic comparison between original Wheeler–Weickmann method (left) and the new methodology 
(right).  Latter pads additionally with 45-day CFSv2 forecasts, which are more accurate than the zeros used in 
former.  The new methodology combines recent observations with CFSv2 forecasts for Fourier filtering of the 
MJO, the low-frequency interannual variability, and convectively coupled equatorial waves, honing the most 
predictable aspects of the tropical S2S variability while removing less predictable small-scale noise. (b) and (c) 
compare the two methods using examples from 16 February 2017. The filtered OLR anomalies (contours) are 
broadly similar in the past, diagnostic data. However, the CFSv2-padded anomalies (see in panel c) maintain 
higher amplitudes since the CFSv2 is able to simulate these modes to a degree.  (Courtesy of C. J. Schreck III) 
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iii)  Predicting atmospheric 
rivers (AR) and their 
impacts in weeks 2-5 
based on the state of the 
MJO and QBO  (PI: E. A. 
Barnes, Colorado State 
University)  

Transition to operations 
the anomalous atmospheric 
river (AR) frequency forecast 
tool based on the observed 
state of the Madden‐Julian 
Oscillation (MJO) and Quasi 
Biennial Oscillation (QBO).  It 
is demonstrated that robust AR 
frequency anomalies can be 
seen more than 4 weeks ahead 
due to the propagation of the 
MJO, and the sign of the 
anomalous frequencies are a 
strong function of QBO phase 
as shown in Fig. 9. 

FY18 new projects will also make following contributions: 1) a new technique for improved MJO 
prediction (PI: C. Zhang, PMEL, NOAA), 2) probabilistic multimodel, calibrated subseasonal global forecast 
products (P.I: A. W. Robertson, IRI, Columbia University), 3) S2S prediction improvement with NCAR’s 
CESM2-WACCM  (PI: J. H. Richter, NCAR - CGD), and 4) a hybrid statistical-dynamical system for the 
seamless prediction of daily extremes and S2S climate variability  (PI: D. Collins, CPC, NOAA/NWS/NCEP). 

5. Remarks 

Recent comprehensive skill metric based on all CPC extended to long range outlooks revealed continuous 
improvement of CPC products, which was inseparable with progresses of ongoing R2O activities.  The 
improvements were reflected in newly implemented systems, tools and products.  In view of future challenges, 
on which researches present to raise prediction skill and hence boost credibility of seasonal-to-subseasonal 
climate service, we placed hopes on our research partners and people in field with considerable effort, and 
sufficient and sustained investment to work together on trying to make a break through.   
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1.  Introduction 

During the recent years, efforts have been made to investigate the time-varying trends in extreme events as 
one of the relevant aspects of climate change across different scales (Asadieh and Krakauer 2015; Armal et al. 
2016; Armal et al. 2018a; Najafi et al. 2019a; Armal and Al-Suhili, 2019).  Yet, there is a little understanding 
on space-varying trend of extreme rainfall events. For understanding the impact of anthropogenic forcing on 
occurrence of extremes, researchers (Sillmann et al. 2017; Vautard et al. 2016; Yiou et al. 2017) often separate 
the indirect effect on changing circulation pattern (also called dynamical process) from thermo-dynamic 
pathway. The dynamic process is more specific to local scale (Pfahl et al. 2017) and is frequently associated 
with regional anomalous weather pattern. However, it is fairly small compared with the uncertainty that 
introduced by internal climate variability (Deser et al. 2014).  Therefore, it is more fruitful to investigate the 
modes of internal variability, peculiarly characterized by anomalous sea surface temperature and barometric 
pressure pattern especially quasi-periodically oscillations indices e.g. El Niño/Southern Oscillation (ENSO), 
the Pacific Decadal Oscillation (PDO), the North Atlantic Oscillation (NAO) and other so-called modes of 
variability (Hartmann et al. 2013; Trenberth et al. 2015; Najafi et al. 2018a; Najafi et al. 2018b; Najafi et al. 
2018c;  Armal et al. 2018b; Najafi et al. 2019b).  This study extracts and validates an index to study the space-
varying trends in simultaneous extreme precipitation events. It correlates the frequency of simultaneous 
extremes with Global Surface Anomaly Temperature (GST) as a proxy of thermodynamic pathway, and a 
number of climate variability modes (ENSO, NAO, PDO and AMO), as a proxy of internal climate variability.  

2.  Methodology 

In a few examples of applying spatial indices, researchers either look at the grids with highest and lowest 
30% of the values, associated with the number of wet and dry grids, in each year of global data (Donat et al. 
2016) or rely on the high percentile index of daily data over limited spatial extent (Fischer and Knutti 2015). 
The global ratio of daily extremes (GRDE) is designed to aggregate in-situ extremes over space. For each day 
of data, we consider the total number of stations with rainfall events exceeding a threshold of 99% of the full 
period. The product data is a time-series of daily total number of stations which are showing a value above 99% 
threshold. To minimize the effect of data scarcity in our analysis, the number of stations with extreme events is 
divided by the number of stations with available data: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑑𝑑 =  
∑ 𝛿𝛿𝑖𝑖𝑑𝑑𝑁𝑁𝑁𝑁
𝑖𝑖=1
𝑁𝑁𝑁𝑁

     ,       𝛿𝛿𝑖𝑖𝑑𝑑
𝑗𝑗 =  �

1     𝑖𝑖𝑖𝑖     𝑃𝑃𝑖𝑖𝑑𝑑
𝑗𝑗  ≥   𝑃𝑃𝑖𝑖∗

0     𝑖𝑖𝑖𝑖     𝑃𝑃𝑖𝑖𝑑𝑑
𝑗𝑗  <   𝑃𝑃𝑖𝑖∗

 

where d is the day index, i is the numerator index for stations with available data, 𝑃𝑃𝑖𝑖𝑑𝑑
𝑗𝑗  is the 𝑗𝑗𝑡𝑡ℎ daily rainfall of 

station i in a year, and 𝑃𝑃𝑖𝑖∗ is the rainfall exceeding threshold for that station.  NS is the total number of stations 
with available data in the day d.  δ is the binary indicator function. 

At first, we implement GRDE aggregation over different continents to extract the top 20 days with higher 
values. These dates are applied to daily composites of perceptible water content (PWC) anomalies (mean - total 
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mean) to perceive whether there is any distinctive circulation pattern over the region (note that the historical 
climate data starts from 1948, hence the selected dates for composite maps are limited to this period). Moreover, 
these patterns are compared to the global spatial distribution of stations that experience at least one extreme in 
the top 20 dates.  The extent of anomalous PWC yields information about the occurrence of extremes in rest of 
the world. 

Also, we apply Generalized Extreme Value (GEV) fit distribution on yearly maximum GRDE and inform 
the location parameters with GST as an indicator for thermodynamic pathway and ENSO, NAO, PDO and 
AMO as an indicator for dynamical process. 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚  ~ 𝐺𝐺𝐺𝐺𝐺𝐺�𝜇𝜇𝑦𝑦 � 𝐺𝐺𝑁𝑁𝐺𝐺 + 𝐺𝐺𝑁𝑁𝑁𝑁𝐸𝐸 + 𝑁𝑁𝑁𝑁𝐸𝐸 + 𝑃𝑃𝐺𝐺𝐸𝐸 + 𝑁𝑁𝐴𝐴𝐸𝐸,𝜎𝜎, 𝜀𝜀) 
Here 𝜇𝜇𝑦𝑦 is the location parameter, 𝜎𝜎 is the scale parameter and 𝜀𝜀 is the shape parameter. For every continent as 
well as Northern/Southern hemisphere, we randomly chose 100 blocks with 60-yr size of data, and performed 
the GEV fit distribution. Furthermore, we exclude the all the estimations which are outside the 95 confidence 
interval.  

3.  Results 

We present the results of our analysis for three continents: North America, Europe and Australia. Figure 2 
indicates the location of global stations that shows at least one day of extreme precipitation in the top 20 GRDE. 
Fig. 2-a is based on the top 20 days with highest percentage of simultaneous extreme events in North America, 
Fig. 2-b is based on Europe and Fig. 3-c is based on Australia. 

The PWC composite maps identify the anomaly of total water content in the selected days. Unlike Europe, 
both North America and Australia confirm the occurrence of wide spread extreme rainfall with positive anomaly 
values of PWC.  Notably, in the top 20 GRDE of North America many stations flags with extreme rainfall in 
Australia. Reciprocally, the same feature is observed in North-west America, in the top 20 GRDE days of 
Australia. Another possible linkage is evident in the top 20 GRDE of Europe, when many stations in North 
America are identified with an extreme rainfall. The PWC maps suggest spread of spatial anomalous field across 

Fig. 1  We looked at more than 100,000 GHCN (Global Historical Climatology Network - daily database 
https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/) stations across the globe and extracted the total daily 
precipitation from those that have data from 1900 - 2016 (117 years). From this data, we selected high-quality 
stations using the following procedure. First, for each year, if more than 40% of days is missing data, we flag 
this as a missing year.  Next, only stations that have at least 70 years of complete data are selected. This 
process yielded 6185 stations across the globe. 
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the globe, with no significant impact over Europe. The number of extremes is concentrated over relatively small 
area and induced by few number of stations.  

Figure 3 shows the values obtained for location parameters for different continents. This values are obtained 
from 100 bootstrapping block over GEV analysis. None of the results suggest the impact of high to medium 
frequency modes of climate variability on the occurrence of simultaneous extreme rainfall. In Europe/Australia, 
there is a strong positive/negative correlation between trend in GRDE and global surface temperature anomaly.  
The response of North America to GST highly varies but the median is close to zero. Moreover, in North 
America/Australia, positive/negative AMO links to frequency of the simultaneous extreme events. The linkage 
of AMO variation with strength of Thermohaline Circulation (THM) (García‐García and Ummenhofer 2015) 
can regulate the climate across the globe and impact the occurrence of global extremes. 
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